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Abstract. Neuroblastoma is a common solid malignant tumor 
of the sympathetic nervous system, which contributes to 15% of 
cancer‑related mortality in children. The differentiation status 
of neuroblastoma is correlated with clinical outcome, and 
the induction of differentiation thus constitutes a therapeutic 
approach in this disease. However, the molecular mechanisms 
that control the differentiation of neuroblastoma remain 
poorly understood. The present study aimed to define whether 
GATA3 is involved in the differentiation of neuroblastoma 
cells. The results demonstrated that GATA3 is a prognostic 
marker for survival in patients with neuroblastoma, and that 
high‑level GATA3 expression is associated with increased 
self‑renewal and proliferation of neuroblastoma cells. Retinoic 
acid treatment led to GATA3 downregulation together with 
neuronal differentiation, suppression of cell proliferation and 
inhibition of tumorigenecity in neuroblastoma cells. These 
findings suggest that GATA3 is a key regulator of neuroblas-
toma differentiation, and provide a novel potential therapeutic 
strategy for the induction of neuroblastoma differentiation.

Introduction

Neuroblastoma is a common childhood malignant tumor of 
the sympathetic nervous system, accounting for up to 10% of 
pediatric cancers and 15% of cancer‑related mortality in chil-
dren (1‑3). Neuroblastoma comprises a heterogeneous group of 

tumors, in which the level of differentiation is known to be of 
prognostic significance (4,5). Histologically, neuroblastomas 
range from tumors containing poorly‑differentiated neuro-
blasts to those composed of fully‑differentiated sympathetic 
neurons (6,7). Patients with poorly differentiated neuroblas-
tomas have a significantly poorer survival than those with 
neuroblastomas that are shown to be well‑differentiated on 
histological examination (4,5,8).

Retinoic acid (RA) is an effective inducer of the differ-
entiation of neuroblastoma cells  (9,10), which has been 
used in clinical practice as a therapeutic agent in high‑risk 
neuroblastomas in order to improve the differentiation state 
of the cells (11,12). In addition, GATA transcription factors 
are involved in the regulation of hematopoiesis, and the 
development of the cardiovascular, nervous, and urogenital 
systems (13‑17). The GATA family contains six members, 
which are reported to be expressed in distinct spatiotemporal 
patterns (18‑20). GATA2 and GATA3 are the only members of 
this family that are present in the nervous system (21,22), and 
the pattern of the expression of these two proteins is known 
to overlap. GATA3 has been reported to be involved in the 
development of serotonergic neurons during formation of the 
ear, and in the development of the caudal raphe nuclei and the 
peripheral nervous system (22‑27). The present study investi-
gated the role of GATA3 in neuroblastoma proliferation and 
differentiation.

Materials and methods

Cell culture. SHEP1, SK‑N‑DZ, SK‑N‑AS, and SK‑N‑SH 
human neuroblastoma cells were grown in Dulbecco's modi-
fied Eagle's medium (DMEM) supplemented with 10% fetal 
bovine serum (FBS). SK‑N‑BE (2), IMR32, BE (2)‑C and SY5Y 
human neuroblastoma cell lines were grown in a 1:1 mixture 
of DMEM and Ham's nutrient mixture F12 (F12/DMEM), 
supplemented with 10% FBS and nonessential amino acids. 
LAN‑6 and SMS‑KCNR human neuroblastoma cell lines 
were grown in RPMI-1640 supplemented with 10% FBS. The 
growth media and FBS were obtained from Invitrogen Life 
Technologies (Carlsbad, CA, USA). All cells were obtained 
from American Type Culture Collection (Manassus, VA, 
USA) and cultured at 37˚C in a 5% CO2 humidified incubator. 
The 293GPG retroviral packaging cell line was cultured as 
described previously (28).
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Retroviral production and infection. The retroviral constructs, 
pBabe‑green fluorescent protein (GFP) and pBabe‑GATA3, 
were used in the overexpression experiments. Retroviruses were 
produced using the 293GPG packaging cell line as described 
previously (28). At 24 h following the final round of retroviral 
infection, cells were cultured in the growth medium containing 
1.0 µg/ml puromycin for three days, and drug‑resistant cells 
were pooled. The percentage of retrovirus‑infected cells ranged 
between 80 and 90%, as estimated in parallel infections using 
the retrovirus‑expressing GFP. Over‑expression of relevant 
proteins was verified by an immunoblotting assay.

Immunoblot analysis. Following RA (Sigma‑Aldrich, St. Louis, 
MO, USA) treatment or retroviral infection, cells in the exponen-
tial growth phase at 70‑80% confluence were harvested at various 
time points and washed once with ice‑cold phosphate‑buffered 
saline. Cell pellets were suspended in SDS sample buffer 
and boiled for 10 min prior to centrifugation at 211 x g for 
10 min. Samples were subjected to 12% SDS‑polyacrylamide 
gel electrophoresis (SDS‑PAGE) and transferred to a polyvi-
nylidene fluoride membrane (EMD Millipore, Billerica, MA, 
USA). The membrane was probed with antibodies and binding 
was visualized using enhanced chemiluminescence (ECL; 
Beyotime Institute of Biotechnology, Haimen, China). The 
following primary antibodies were used: Rabbit polyclonal 
anti-GATA3 (1:100; H-48, sc-9009; Santa Cruz Biotechnology 
Inc., Dallas, TX, USA), mouse monoclonal anti‑Mash1 (1:100; 
clone 24B72D11.1; BD Pharmingen, San Diego, CA, USA), 
rabbit polyclonal anti‑peripherin (1:2,000; AB1530; Chemicon 
International, Inc., Billerica, MA, USA) and mouse monoclonal 
anti‑α‑tubulin (1:10,000; B‑5‑1‑2; Sigma‑Aldrich). Horseradish 
peroxidase‑conjugated goat anti‑mouse and goat anti‑rabbit 
IgG (1:5,000, ICN, Bryan, OH, USA) were used as secondary 
antibodies.

Cell growth and differentiation assays. For differentiation 
assays, RA was dissolved in dimethyl sulfoxide (DMSO) and 
10 mM stock solutions were prepared. SK‑N‑SH cells were 
treated with 1 µM RA. DMSO (0.1%; Sigma-Aldrich) was used 
as negative control. Cell growth was observed under a micro-
scope (Olympus IX71; Olympus, Tokyo, Japan) and determined 
by MTT analysis (Sigma‑Aldrich) 

Patient data analysis. Patient data and gene expression datasets 
were obtained from the Oncogenomics Section Data Center 
(http://pob.abcc.ncifcrf.gov/cgi‑bin/JK). Kaplan‑Meier analysis 
and resulting survival curves were created using GraphPad 
Prism (version 6.0; GraphPad Software, Inc, La Jolla, CA, USA). 
All data and P‑values (log‑rank test) for these experiments 
were downloaded online (http://pob.abcc.ncifcrf.gov/cgi-bin/
JK) and all cutoff values for separating the groups with high 
and low expression were determined using the online database 
algorithm (29). A good prognosis of neuroblastoma patients was 
considered to be associated with better survival.

Soft agar clonogenic assay and sphere formation assay. Cells 
were mixed in 0.3% Noble agar (Sigma-Alrdich) in DMEM 
supplemented with 10% FBS and plated at 4,000 cells/well 
into 6‑well plates, which contained a solidified bottom layer 
composed of 0.6% Noble agar in the same growth medium. 

At 14 days, colonies were stained with 5 mg/ml MTT and 
photographed (Olympus, IX71; Olympus). For sphere forma-
tion assays, cells were plated at 4,000 cells/well in serum‑free 
DMEM, and supplemented with 20 ng/ml epidermal growth 
factor and basic fibroblast growth factor (Invitrogen Life 
Technologies) in Matrigel ultra‑low attachment plates (Thermo 
Fisher Scientific, Pitsburgh, PA, USA). Spheres that arose within 
1‑2 weeks were counted.

In vivo tumorigenic assay. For the tumorigenic assays, six female 
NOD/SCID mice (4 weeks old) were used and were maintained 
under SPF conditions. For the tumorigenic assays, the mice were 
randomly divided into two groups, control group and GATA3-
overexpressing group. Mice were injected subcutaneously in 
both flanks with 1x107 SK-N-SH cells or SK-N-SH-GATA3 
cells in 200 µl DMEM. At one week following the injection of 
tumor cells, tumor growth was estimated using calipers, and 
tumor volume was calculated using the formula 4/3пr3, where 
r is the radius of the tumor. Tumors were removed and weighed 
following three weeks of tumor growth. The present study was 
approved by the Institutional Animal Care and Use Committee 
of Southwest University (Chonqing, China).

Figure 1. Association between GATA3 expression and survival in patients 
with neuroblastoma. (A) Kaplan-Meier analysis of progression-free survival 
for the Seeger database, with the log rank test P-value indicated. A cutoff 
value of 0.0365 was used to separate the patients into high and low GATA3 
expression groups. (B) Box plot of GATA3 expression levels in tumors from 
groups of patients with good and poor prognoses.
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Statistical analysis. Data are presented as the mean ± standard 
deviation. Two‑tailed Student's t‑test was conducted for paired 
samples and was performed using GraphPad Prism version 
6.0 software (GraphPad Software, Inc., La Jolla, CA, USA). 
P≤0.05 was considered to indicate a statistically significant 
difference.

Results

High GATA3 expression predicts poor survival in neuroblas-
toma patients. The correlation between GATA3 expression 
levels and prognosis in primary neuroblastoma was investi-
gated using the Seeger microarray dataset, which is available 
from the online Oncogenomics database. This dataset includes 

a cohort of 102 neuroblastoma patients with metastatic tumors 
lacking MYCN amplification (30). Kaplan‑Meier analysis of 
progression‑free survival for the Seeger dataset showed that 
low GATA3 expression was associated with a good prog-
nosis, whereas high GATA3 expression was associated with 
a poor outcome (Fig. 1A). Furthermore, a box plot of GATA3 
expression levels in tumors from patients with either a good 
or a poor prognosis demonstrated the same result (Fig. 1B). 
This analysis indicated that GATA3 is a prognostic marker in 
neuroblastoma, which is independent of the status of MYCN 
amplification.

GATA3 is commonly expressed in neuroblastoma cells. The 
expression of GATA3 in various neuroblastoma cell lines 

Figure 2. Expression of GATA3 in various neuroblastoma cell lines. (A) Western blot analysis of GATA3 expression in eight neuroblastoma cell lines. 
(B) Western blot analysis of GATA3 expression in SK-N-SH, SK-N-SY5Y and SHEP1 cell lines. α-tubulin levels were used as a loading control.

Figure 3. Association between GATA3 expression and neuronal differentiation in neuroblastoma cells. (A) Morphological examination of SK-N-SH cells 
treated with RA or DMSO (magnification, x20). (B) SK-N-SH cells were treated with RA or DMSO, and cell proliferation was analyzed with an MTT assay. 
(C) SK-N-SH cells were plated at 4x103 cells per well in six-well culture plates. At days 14 to 21 soft agar colonies grew from the cells treated with DMSO. Cells 
treated with RA were observed to give rise to small and scanty colonies in soft agar. (D) and (E) SK-N-SH cells were plated at 4x103 cells per well in Matrigel 
ultra-low attachment plates. At days 14 to 21, spheres grew from cells treated with DMSO, and were recorded. (F) Western blot analysis of GATA3 expression 
in SK-N-SH cells treated with RA or DMSO (magnification, x10). α-tubulin levels are shown as a loading control. Data in (B) and (E) are presented as the 
average obtained from three independent experiments. Error bars, represent standard deviation. *P≤0.05. RA, retinoic acid; Un, untreated; DMSO, dimethyl 
sulfoxide; RA-(1D, 7D and 10D), one day, seven days and ten days following RA treatment, respectively; OD, optical density.
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was examined. GATA3 was found to be widely expressed in 
the majority of neuroblastoma cell lines (Fig. 2A), including 
BE (2)‑C, IMR32, SK‑N‑DZ, SK‑N‑AS, and SK‑N‑BE, which 
are malignant cell lines. The expression of GATA3 was also 
investigated in the SHEP1 cell line, which is a benign neuro-
blastoma cell line with a highly differentiated status (31,32). 
The results indicated that GATA3 may be associated with the 
degree of neuroblastoma differentiation and the consequent 

prognosis. The SK-N-SH cells were a group of mixed cells 
which were isolated into SY5Y and SHEP1 in different condi-
tions (33), and SY5Y is a type of malignant cell comparing 
with SHEP1 (32). As hypothesized, GATA3 expression was 
relatively high in the SY5Y and SK‑N‑SH cell lines, but there 
was no detectable expression in the SHEP1 cell line (Fig. 2B). 
This suggests that GATA3 may be used as a prognostic marker 
in neuroblastoma.

Figure 4. Effect of GATA3 overexpression on the proliferation and self-renewal of neuroblastoma cells. (A) Western blot analysis of GATA3 expression in 
SK-N-SH cells with GFP or GATA3 overexpression. α-Tubulin levels were used as a loading control. (B) SK-N-SH cells with GFP or GATA3 overexpression 
were analyzed for cell growth curve with an MTT assay. (C) SK-N-SH cells with GFP or GATA3 overexpression were plated at 4x103 cells per well in six-well 
culture plates. At days 14 to 21, soft agar colonies grew from cells with GFP or GATA3 overexpression. Cells with GATA3 overexpression were observed to 
give rise to larger and more colonies in soft agar. (D) Colonies >0.5 mm or that contained >50 cells were recorded. (E) and (F) SK-N-SH cells with GFP or 
GATA3 overexpression were plated at 4x103 cells per well in Matrigel ultra-low attachment plates. At days 14 to 21, spheres grew and were recorded (magni-
fication, x10). Data in (B), (D) and (F) are presented as the average obtained from three independent experiments. Error bars represent the standard deviation. 
*P≤0.05. GFP, green fluorescent protein; OD, optical density.
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  E   F  D

Figure 5. Effect of GATA3 overexpression on the tumorigenicity of neuroblastoma cells. (A) Western blot analysis of GATA3 and peripherin expression in 
SK-N-SH cells treated with RA or DMSO. (B) Western blot analysis of GATA3 and Mash1 expression in SK-N-SH cells with GFP or GATA3 overexpression. 
α-tubulin levels were used as a loading control. (C) Tumor growth in NOD/SCID mice injected with indicated SK-N-SH cells. (D) Scatter plot of xenograft 
tumor weight with horizontal lines indicating the mean per group. (E) Xenograft tumor volume was measured using calipers. *P≤0.05. Scale bar=5 cm. GFP, 
green fluorescent protein; Un, untreated; RA‑3D/RA‑7D, three and seven days, respectively, following retinoic acid administration.
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GATA3 is associated with neuronal differentiation in 
neuroblastoma cells. Since RA is commonly used to induce 
neuronal differentiation in neuroblastoma (34), SK‑N‑SH cells 
were treated with RA for 10 days. On examination the cells 
displayed morphological features of neuronal differentia-
tion, such as small and rounded cell bodies, scant cytoplasm, 
and extensive neurite‑like processes (Fig. 3A). Furthermore, 
MTT, sphere formation and soft agar analyses showed that 
RA treatment resulted in the suppression of cell prolif-
eration, tumorigenicity and self‑renewal of neuroblastoma 
cells  (Fig.  3B‑E). The GATA3 expression in this process 
was measured, and the results showed that RA induction led 
to marked downregulation of GATA3 expression with time 
(Fig. 3F). These findings suggest that RA‑induced neuronal 
differentiation is accompanied by GATA3 downregulation, 
which leads to weakened self‑renewal of neuroblastoma cells.

GATA3 promotes proliferation and tumorigenicity of neuro-
blastoma cells. To confirm the correlation between GATA3 
and self‑renewal of neuroblastoma cells, GATA3 was overex-
pressed in neuroblastoma cells, using GFP as a control (Fig. 4A). 
GATA3 significantly increased cell proliferation, which was 
verified by MTT analysis (Fig. 4B). In addition, GATA3 mark-
edly upregulated the self‑renewal ability, including the colony 
forming and sphere forming capability, of neuroblastoma 
cells (Fig. 4C and 4F). These results demonstrated that high 
expression of GATA3 is associated with increased self‑renewal 
and cell proliferation in neuroblastoma cells.

Furthermore, the RA‑induced neuroblastoma differen-
tiation was accompanied by GATA3 downregulation and 
the upregulation of peripherin, a neuronal differentiation 
marker (35) (Fig. 5A). GATA3 upregulation led to a significant 
increase in the expression of Mash1 (Fig. 5B), which is a poten-
tial stem cell or progenitor cell marker (36,37). Similar results 
were obtained from the in vivo tumorigenicity analysis using 
the SK‑N‑SH neuroblastoma cells. Overexpression of GATA3 
in SK‑N‑SH cells significantly enhanced tumor growth and 
development in NOD/SCID mice  (Fig.  5C‑E). These data 
indicate that GATA3 is not only a prognostic marker, but also 
an important mediator of cell proliferation and differentiation.

Discussion

The current study provided a number of lines of evidence 
to support the hypothesis that GATA3 acts as an impor-
tant mediator of neuroblastoma differentiation. GATA3 
was shown to be expressed at significantly lower levels 
following RA‑induced differentiation. Overexpression of 
GATA3 expression significantly increased cell growth 
and self‑renewal in neuroblastoma cells. Furthermore, 
RA‑induced neuronal differentiation resulted in the upregula-
tion of peripherin, a neuronal differentiation marker, and the 
downregulation of GATA3. In turn, GATA3 overexpression 
increased the expression of a marker of a self‑renewal marker, 
Mash1. These results suggest a possible molecular mechanism 
linking neuronal differentiation and self‑renewal. Using a 
gene expression dataset of 102 metastatic neuroblastoma 
tumors, it was shown that high GATA3 expression is a prog-
nostic marker of poor outcome, which supported the results of 
the other experiments.

MYCN is an important oncogene in the pathogenesis of 
neuroblastoma (38), and is known to regulate various cellular 
processes, including cell growth, cell proliferation, cell differ-
entiation and apoptosis (39,40). The oncogene MYCN was 
originally identified in neuroblastoma cells (41,42), and it has 
been reported as a prognostic marker in patients with neuro-
blastoma (43). Amplification of MYCN occurs in 22% of cases 
of neuroblastoma and is associated with advanced stages of this 
disease and a poor prognosis (7). N‑myc is currently the only 
marker commonly used in the diagnosis of neuroblastoma. It 
is therefore necessary to identify further genetic markers for 
neuroblastoma. The current study showed that high GATA3 
expression was correlated with poor survival in patients with 
neuroblastoma. Low expression of GATA3 was associated 
with a high degree of differentiation, indicating that GATA3 
may be of use as a prognostic marker in neuroblastoma.

Neuroblastoma originates from precursor neuroblasts of 
the sympathetic nervous system, and is characterized by a 
unique capacity for complete spontaneous regression, at least 
partly through the process of neuronal differentiation (8). In 
clinical practice, patients with advanced neuroblastoma may 
be successfully treated by the administration of RA, which 
induces tumor cells to differentiate and leads to growth inhibi-
tion (9,11,44). In the current study, neuronal differentiation, 
induced by RA, was accompanied by GATA3 downregula-
tion in neuroblastoma cells, whereas upregulation of GATA3 
was associated with increased self‑renewal and proliferation 
of neuroblastoma cells. In conclusion, the present results 
confirmed that GATA3 has an important function in neuro-
blastoma differentiation and proliferation. Therefore, GATA3 
may be useful as a prognostic marker in patients with neuro-
blastoma, and may also serve as a potential therapeutic target 
for neuroblastoma.
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