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Abstract. The mechanisms underlying cancer radiore-
sistance remain unclear. Several studies have found that 
increased glucose transporter‑1 (GLUT‑1) expression is 
associated with radioresistance. Recently, the phosphatidylino-
sitol 3-kinase  (PI3K)/protein kinase B (Akt) pathway was 
reported to be involved in the control of GLUT‑1 trafficking 
and activity. Activation of the PI3K/Akt pathway may itself 
be associated with cancer radioresistance. Thus, increasing 
attention has been devoted to the effects of modifying the 
expression of GLUT‑1 and the PI3K/Akt pathway on the 
increase in the radiosensitivity of cancer cells. This review 
discusses the importance of the association between elevated 
expression of GLUT‑1 and activation of the PI3K/Akt pathway 
in the development of radioresistance in cancer.
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1. Introduction

Glucose is one of the primary energy sources required to main-
tain the normal functioning of cells. The glucose transporters 
(GLUTs) mediate glucose transport (1). Compared with their 
nonmalignant counterparts, the metabolic rate of glucose is 
higher in malignant cells. This phenomenon has been demon-
strated using positron emission tomography (PET) scanning 
with the glucose analog tracer, 18F‑2‑fluoro‑2‑deoxy‑D‑glucose 
(18F‑FDG) (2‑4). Several mechanisms of 18F‑FDG uptake that 
may explain the accelerated glucose use in growing tumors 
and in transformed and malignant cells have been proposed, 
including passive diffusion, Na+‑dependent glucose trans-
port, the activation of oncogenes, the phosphatidylinositol 
3‑kinase/protein kinase B (PI3K/Akt) pathway and upregula-
tion of facilitative GLUT (5‑8). GLUT5 is considered to be the 
primary mechanism for increasing glucose influx into cells (5).

GLUTs are membrane proteins that facilitate the transport 
of glucose across cellular membranes. Thirteen members of 
the facilitative sugar transporter family are now recognized 
(GLUT‑1 to ‑12 and HMIT; gene name, SLC2A)  (9). The 
human genes encoding these proteins are named GLUT‑l 
to ‑5 and GLUT‑7 to ‑13; GLUT‑6 and ‑14 are now known 
to be pseudogenes. Of the 14 isoforms, GLUT‑1 appears to 
be the most ubiquitously distributed (10). A number of studies 
have shown increased GLUT‑1 expression in various types of 
cancer (11‑16), including in head and neck cancer (5,17‑20). It 
has been reported that overexpression of GLUT‑1 is associ-
ated with lymph node metastasis and a poor prognosis in head 
and neck cancers (17‑20). Thus, GLUT‑1 may be a potential 
therapeutic target in malignant tumors (14,16,21‑24).

Radiotherapy is important in treating advanced cancers 
and in organ preservation strategies for cancers at an earlier 
stage (25). However, radioresistance of cancer cells affects 
treatment efficacy.

To date, a number of strategies have been introduced in an 
attempt to increase radiosensitivity, including hyperfraction-
ation to overcome intrinsic radioresistance (26-28), concurrent 
chemoradiotherapy (29,30) and the use of certain radiosensi-
tizers that enhance radiosensitivity by improving the hypoxic 
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status of tumors (31,32). Although these efforts have increased 
survival rates and regional control, certain issues have been 
reported and the effects are less than ideal, including the 
development of central radionecrosis as well as early or late 
toxicity. Thus, more efficacious treatments with fewer side 
effects are required in order to improve radiosensitivity.

Although a number of factors contributing to radiore-
sistance are understood, such as hypoxia, re‑population and 
DNA damage repair, other aspects remain unclear. A number 
of studies have found that increased GLUT‑1 expression is 
significantly correlated with radioresistance (33‑38). Thus, 
the suppression of GLUT‑1 expression as a novel therapeutic 
target is a focus in research into increasing radiosensitvity of 
malignant tumors (33,34,39). However, abnormal expression 
of GLUT‑1 in malignant tumors is not the only cause of radio-
resistance. Other genes, including epidermal growth factor 
receptor (EGFR) and NOTCH, may also be involved (40,41). 
Abnormal expression of GLUT‑1 and its activity are regu-
lated by a number of factors, including the activation of 
oncogenes  (13,42), hypoxia via hypoxia‑inducible factor 
(HIF)‑1‑dependent and independent mechanisms  (42,43), 
and signaling pathways, such as mitogen‑activated protein 
kinase (MAPK)  (44), and the PI3K/Akt pathway  (45‑47). 
Recently, the PI3K/Akt pathway was reported to be involved 
in the control of GLUT‑1 trafficking and activity (1,48,49). It 
was also suggested that the PI3K/Akt pathway may regulate 
GLUT‑1 localization in T cells (1,47).

The PI3K/Akt pathway is often found to be overactive in 
a variety of tumor types and triggers a cascade of responses, 
from cell growth and proliferation to increased cell survival 
and motility, which drive tumor progression (40). Activation of 
the PI3K/Akt pathway may be associated with radioresistance 
of cancer (25,50‑52). Thus, research has become increasingly 
focused on modifying the expression of GLUT‑1 and the 
PI3K/Akt pathway in order to increase radiosensitivity.

Although GLUT‑1 expression is a common feature in 
patients with cancer, the prognostic value of this parameter, 
along with the degree of FDG uptake, has not been evaluated 
with respect to PI3K/Akt. The selection of GLUT‑1 and Akt 
as targets is logical considering their importance in cancer 
survival and resistance to radiation and chemotherapy.

This review discusses the role of an interaction between the 
elevated expression of GLUT‑1 and activation of the PI3K/Akt 
pathway in cancer radioresistance. It is proposed that suppres-
sion of GLUT‑1 expression and the PI3K/Akt pathway may be 
therapeutic targets for carcinomas (Fig. 1).

2. Overexpression of GLUT‑1 and radioresistance

A number of studies have demonstrated that increased 
GLUT‑1 expression is associated with the development of 
radioresistance in cancer. In the CPH 54A and CPH 54B lung 
cancer cell lines, CPH 54A tumors are more radiosensitive 
than CPH 54B tumors in vivo and in vitro. Pedersen et al (36) 
found that GLUT‑1 mRNA and protein expression levels are 
higher in 54B than in 54A cells. They also detected greater 
FDG uptake in 54B tumors, using PET scans, and suggested 
that there appears to be a correlation between the level of 
GLUT‑1 and FDG uptake. Brophy et  al  (53) investigated 
GLUT‑1 expression in 69 pretreatment biopsy samples from 

patients with rectal cancer. The patients received preoperative 
chemoradiotherapy followed by surgical resection. GLUT‑1 
negative tumors had a 70% probability of a good response 
to chemoradiotherapy compared with a response rate of 31% 
for GLUT‑1 positive tumors. Korkeila et al (37) compared the 
expression of GLUT‑1 in 53 operative samples from patients 
who had undergone a surgical resection for rectal cancer and 
78 preoperative biopsies of patients with rectal cancer who 
had been treated by preoperative radiotherapy. They found 
that negative or weak GLUT‑1 expression was linked to 
pronounced tumor regression. There was a tendency towards 
improved disease‑free survival following a long course of 
radiotherapy when GLUT‑1 staining intensity in the operative 
sample was negative or weak (37). Another study found that 
preoperative radiotherapy markedly upregulated the expres-
sion of GLUT‑1 (31). Saigusa et al (33) investigated whether 
GLUT‑1 expression was associated with clinical outcome in 
52 patients with rectal cancer following preoperative chemora-
diotherapy. They found that elevated GLUT‑1 gene expression 
was associated with a more advanced stage of the disease, 
lymph node metastasis and distant metastasis, and was an 
independent predictive factor for recurrence‑free and overall 
survival. In  vitro, DLD1 and LoVo colorectal cancer cell 
lines show high expression of GLUT‑1 whereas the Caco‑2 
colorectal cancer cells have a lower level of expression of 
GLUT‑1 (33). The relative gene expression levels of GLUT1 in 
DLD1 and LoVo cells were found to be 30‑ and 14‑fold that of 
Caco‑2, respectively. It was observed that DLD1 cells, which 
had the highest GLUT‑1 gene expression levels, were more 
resistant to irradiation than Caco‑2 and LoVo cells. However, 

Figure 1. Role of GLUT-1 and PI3K/Akt in radioresistance. GLUT‑1, glucose 
transporter 1; HIF‑1α, hypoxia‑inducible factor‑1α; AMPK, AMP‑activated 
protein kinase‑α ; VEGF, vascular endothelial growth factor. 
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LoVo cells were more sensitive to radiation than Caco‑2 cells. 
One possible explanation for this may be that radiosensitivity 
is dependent on Ki‑67 expression, as LoVo cells exhibited the 
highest MKI67 gene expression of the seven cell lines exam-
ined. Following chemoradiotherapy, residual cancer growths 
may contain cells with different characteristics, depending on 
their location. GLUT‑1 expression is predominantly found in 
the central portion of such residual cancer masses (33). Finally, 
it was observed that the growth of DLD1 and LoVo cells was 
inhibited by the glycolysis inhibitor 3‑BrPA to a greater extent 
than that of Caco‑2 cells. This suggested that the inhibition 
of glycolysis may be a potential novel strategy for the treat-
ment of patients with colorectal cancer who express the KRAS 
mutation (33).

Few studies have investigated the association between 
GLUT‑1 and radioresistance in cancer  (19,35). A GLUT‑1 
labeling index (LI) was determined using immunohistochem-
istry in 40 biopsies from patients with oral squamous cell 
carcinoma (OSCC) prior to treatment (19). Clinical responders 
to radiation showed a significantly lower expression of GLUT‑1 
when compared with incomplete responders  (P=0.009). A 
significant association (P=0.023) was observed between the 
GLUT‑1 LI and the resistance of tumor cells. These results 
suggest that GLUT‑1 expression could be considered to be a 
marker of radioresistance in OSCC, in which high GLUT‑1 
expression is associated with a poor radiation response and 
vice versa (19). Doki et al (35) found a high level of expres-
sion of GLUT‑1 in squamous cell carcinoma of the esophagus 
following radiotherapy. In a previous study, it was shown that 
GLUT‑1 overexpression in vitro is associated with increased 
cell proliferation and glucose uptake in Hep‑2 laryngeal carci-
noma cells. Conversely, the suppression of GLUT‑1 expression 
by antisense oligodeoxynucleotides (AS‑ODNs) may decrease 
glucose uptake and inhibit the proliferation of Hep‑2 cells (54). 
Recently, it was shown that radioresistance in laryngeal carci-
noma cells may be associated with increased expression of 
GLUT‑1 mRNA and protein. GLUT‑1 AS‑ODNs may enhance 
the radiosensitivity of laryngeal carcinoma cells, primarily by 
inhibiting the expression of GLUT‑1 in vitro and in vivo (55).

Possible mechanisms of GLUT‑1‑mediated radioresistance  
Raised glucose metabolic rate. A higher glucose metabolic 
rate has been observed in malignant tumor cells compared 
with non‑malignant cells, even during aerobic glycolysis. 
This phenomenon is referred to as the Warburg effect (56,57) 
and was demonstrated using PET scanning with the glucose 
analog tracer FDG (58). Transport of glucose across the plasma 
membrane is the initial rate‑limiting step in glucose metabo-
lism and it is mediated by facilitative glucose transporter 
proteins (59). GLUT‑1 is important in glucose metabolism 
within malignant cells and may contribute to the observed 
increase in FDG uptake. In addition, GLUT‑1 may be an 
intrinsic marker of hypoxia in malignant tumors (14,16,21‑24). 
Elevated GLUT‑1 expression may enable malignant tumors to 
increase their energy expenditure leading to proliferation and 
radioresistance of tumor cells.

Hypoxia. Hypoxic cells represent 10‑50% of solid tumor 
cells. Hypoxia is known to promote chemoradioresistance 
in carcinomas (60,61). In addition, GLUT‑1 is overexpressed 
in hypoxic states. HIF‑1α, a transcription factor associated 

with the cellular response to hypoxia (62), upregulates the 
expression of several hypoxia response genes, including 
GLUT‑1 (64). A correlation has been demonstrated between 
GLUT‑1 and HIF‑1α expression in laryngeal carcinoma (65). It 
is suggested that GLUT‑1 expression is associated with cancer 
radioresistance as a result of upregulation by HIF‑1α.

GLUT‑1 expression increases cell metabolism. 
Evans et al (66) showed that GLUT‑1 overexpression without 
a coordinated increase in HIF‑1‑regulated glycolytic enzymes 
increased glucose uptake but not the glycolytic rate (66). They 
found that increased GLUT‑1 expression resulted in chemo-
resistance by increasing cell turnover. Thus, it is possible that 
a similar mechanism may be involved in GLUT‑1‑mediated 
radioresistance. However, this requires further investigation.

Involvement of cancer stem cells. CD133+ cancer stem 
cells may be important in the development of cancer radiore-
sistance (67,68). Ke et al (67) reported that GLUT‑1 expression 
was higher in CD133+ than CD133‑ cells in thyroid cancer 
following 131I radiotherapy. Mai et al (69) showed that stem 
cells from proliferating hemangiomas may produce GLUT‑1. 
In a previous study, our group found higher GLUT‑1 mRNA 
and protein expression in CD133+ Hep‑2 laryngeal carcinoma 
cells than in CD133‑ cells  (70). This also requires further 
investigation.

Mechanisms independent of hypoxia. A number of studies 
have shown that GLUT‑1-mediated chemoradioresistance is 
independent of hypoxia. Mayer et al (44) found no correlation 
between the expression of GLUT‑1 and oxygenation variables. 
Evans et al (66) showed that GLUT‑1 overexpression was coor-
dinated with increases in HIF‑1‑regulated glycolytic enzymes, 
which increased glucose uptake, but not the rate of glycolysis. 
GLUT‑1 overexpression was correlated with higher levels of 
phosphodiesterase in xenografts, which was related to the 
metabolic turnover of phospholipids and involved in membrane 
lipid degradation, indicating a mechanism by which GLUT‑1 
may be involved in increased cell turnover (66). The regulation 
of GLUT‑1 expression is dependent not only on HIF‑1‑induced 
transcription but also on the post‑transcriptional steady‑state 
of the GLUT‑1 gene (71).

Changes in the cell cycle and apoptosis. The cell cycle 
may be involved in cancer radioresistance (72‑74). G2/M phase 
arrest occurs in a significant number of cancer cells following 
irradiation. A previous study found that the percentage of cells 
that were arrested in the G2/M phase increased in a dose‑depen-
dent manner in response to radiation. This indicated that entry 
into mitosis had been delayed by the administration of radia-
tion. G2/M arrest in the 12‑Gy group was maximal, whilst the 
expression of GLUT‑1 mRNA and protein was higher than 
that in the control groups (55).

Involvement of signaling pathways. AMPK and PI3K/Akt 
signaling pathways may regulate the expression of GLUT‑1. 

3. Role of PI3K/Akt in radioresistance

Radiotherapy affects the expression of oncogenes and tumor 
suppressor genes. This alters internal and external signal trans-
duction pathways of the cells, and affects the response of tumor 
cells to radiotherapy (24). Since 1995, the PI3K/Akt survival 
signal transduction pathways have been shown to be involved 
in regulating the expression of a variety of tumor biology 
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markers (25,53,75). PI3K is an important dimer enzyme that is 
involved in growth and proliferation, and growth factor signal 
transduction pathways have been found in recent years that 
may be activated primarily by a combination of growth factors 
and receptors (75,76). Akt is also termed PKB or Rac. PI3K 
is one of the important downstream serine‑threonine regula-
tion kinases. A variety of molecules may activate Akt, such 
as insulin, heat shock proteins and tumor necrosis factor-α. 
Activated Akt is central to the mediation of cell growth, 
survival and differentiation by the PI3K/Akt signal transduc-
tion pathways. The biological effects of the activation of this 
pathway include apoptosis, cell cycle regulation and promotion 
of invasion, metastasis and angiogenesis (75,76). The abnormal 
expression of certain proteins, as well as abnormal increases 
in kinase activity in the Akt cascade signal pathway have been 
identified in a number of human malignancies. The PI3K/Akt 
pathway is associated with the increased proliferation of tumor 
cells, and its activation is closely correlated with a poor prog-
nosis and resistance to cancer radiotherapy.

Possible mechanisms of radiation resistance caused by 
PI3K/Akt include hypoxia, intrinsic radiation resistance, and 
external factors, such as tumor cell proliferation following 
radiation therapy (25,75).

PI3K/Akt and hypoxia in radiation resistance. The associa-
tion between PI3K/Akt and the hypoxic microenvironment 
of tumors is of interest in research into radioresistance. 
Hypoxia often results in an increase in the glucose metabolic 
rate of malignant cells. The abnormal expression of GLUT‑1 
is known to be correlated with these factors. The supply and 
consumption of oxygen in the majority of solid tumors are 
not balanced, which results in tumor hypoxia. Cells that are 
progressing through the cell cycle become hypoxic so that 
their progression becomes delayed relative to well‑oxygen-
ated cells. Slower progression of hypoxic than normoxic cells 
through G2 leads to a temporary accumulation of hypoxic 
G2 cells in poorly differentiated mammary adenocarcinoma 
non‑transgenic (NT) and anaplastic sarcoma F. Progression 
of hypoxic cells through the cell cycle in each tumor type 
is delayed as a result of the deprivation of oxygen and other 
nutrients (78). Koritzinsky et al (78) found that when cells 
that had arrested in G1 during hypoxic conditions progressed 
through S‑phase following re‑oxygenation, the speed with 
which they progressed was similar to that of untreated cells. 
By contrast, the cells that had arrested in S‑phase during 
hypoxia progressed more slowly through this S‑phase 
following re‑oxygenation. Groups of cells that maintain 
proliferative capacity under hypoxic conditions are a signifi-
cant cause of treatment failure.

Hypoxia results in genomic instability and increased 
instability in the malignant phenotype by stimulating invasion 
and metastasis of tumors (79). Hypoxia induces and promotes 
the mutation of key regulatory genes (HIF‑1, solute carrier 
family 2 and phosphatidylinositol‑dependent kinase‑1) (80), 
leading to increased resistance to therapy.

One of the key genes involved in the response to hypoxia 
is HIF. HIF regulates the expression of >60 genes involved in 
angiogenesis, anaerobic glycolysis and cell survival, and the 
coordinated expression of these genes results in cellular adap-
tation to acute and chronic hypoxia (81). Studies have shown 

that hypoxia of head and neck squamous cell carcinoma is 
associated with poor local control and overall survival (82,83). 
The PI3K/Akt signal pathway is important in promoting an 
adaptive response to low levels of oxygen in tumor cells.

Radiation increases HIF‑1 activity, which has been hypoth-
esized to be involved in regulating the tumor response to 
irradiation through a number of mechanisms (84). The PI3K/Akt 
pathway is involved in HIF‑1α protein expression. Activation 
of PI3K/Akt/mammalian target of rapamycin (mTOR) leads 
to stimulation of de novo synthesis and transcriptional activa-
tion of HIF‑1α (85,86). HIF‑1α protects tumors from radiation 
damage directly and indirectly. Inhibition of the PI3K/Akt 
pathway by wortmannin and LY294002, and inhibition of 
HIF‑1α by short interfering (si)RNA may therefore enhance 
the efficacy of radiotherapy.

PI3K/Akt, reoxygenation and neoangiogenesis in radia‑
tion resistance. Irradiation may lead to reoxygenation and 
neoangiogenesis of cancer cells following radiotherapy. The 
regulatory mechanism may occur via upregulation of VEGF. 
Inhibition of neoangiogenesis results in normalization of the 
vasculature and improved perfusion, leading to a reduction in 
tumor cell hypoxia (50). The PI3K/Akt pathway may induce 
the expression of VEGF via activation of HIF‑1α (87). VEGF 
protects endothelial cells against radiation by activating the 
PI3K/Akt pathway, leading to enhanced expression of the 
antiapoptotic protein Bcl‑2 (88). Antiangiogenic therapy may 
therefore enhance the cytotoxic effects of radiotherapy (89,90). 
Certain antiangiogenic drugs target the vasculature, directly 
or indirectly, by disrupting VEGF. These include inhibitors 
of the PI3K/Akt pathway. This may lead to increased blood 
flow and oxygenation, thereby potentially increasing radiosen-
sitivity (91). A combination of low doses of a PI3K inhibitor 
(LY294002) and cisplatin significantly enhanced the thera-
peutic efficacy of radiation therapy by preferentially targeting 
tumor blood vessels  (89). However, the hypothesis that an 
inhibitor of the PI3K/Akt pathway may also achieve prolonged 
vascular normalization, and thereby enhance radiosensitivity, 
requires further investigation (92).

PI3K/Akt and the cell cycle in radiation resistance. Radiation 
may activate p53‑dependent or independent cell cycle G1 
and G2 arrest (93). The PI3K/Akt pathway acts to overcome 
p53‑independent cell cycle arrest via activation of cyclin D 
and inactivation of the cell cycle‑dependent kinase inhibitor 
p27 (94). Activation of the Akt/PKB pathway is able to over-
ride the G2/M phase cell cycle arrest that occurs as a result 
of irradiation‑induced DNA damage (95). Phosphatase and 
tensin homolog (PTEN), a tumor‑suppressor gene, antago-
nizes the PI3K/AKT signaling pathway that is involved in 
promoting escape from cell‑cycle arrest. Park et al (94) found 
that PTEN may be essential in cancer cell radiosensitivity by 
using LY294002 or PTEN‑specific siRNA to block PI3K/Akt 
signaling in non‑small‑cell lung cancer cells (NSCLC).

PI3K/Akt and DNA repair in radiation resistance. Irradiation 
may cause DNA damage, including single‑strand breaks, 
double‑strand breaks (DSBs), base excision and glucose 
damage. Enhanced DNA repair activity tends to be resistant to 
radiotherapy. DNA‑dependent protein kinase catalytic subunit 
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(DNA‑PKcs) and ataxia telangiectasia‑mutated are two members 
of the PI3K family that repair DNA DSBs (97‑99). Inhibition of 
PI3 kinases using a pharmacological approach may improve the 
response of cancer cells to radiotherapy. Nimotuzumab inhibits 
the radiation‑induced activation of DNA‑PKcs by blocking 
the PI3K/AKT pathway (99). Inhibition of the PI3K/Akt cell 
survival signaling pathway and DNA‑PKcs may contribute to 
the wortmannin‑induced radiosensitivity observed in NSCLC 
cells (100). Azad et al (101) found that BEZ235, a novel inhibitor 
of DNA‑PK and PI3K/mTOR, abrogates radiation‑induced DSB 
repair, resulting in cellular radiosensitization and growth delay 
in irradiated NSCLC xenografts.

PI3K/Akt, epidermal growth factor receptor (EGFR) and cell 
proliferation in radioresistance. Activated Akt promotes cell 
proliferation and inhibits apoptosis. Radiation‑induced Akt 
activation may modulate the radioresistance of human cancer 
cells  (102). Certain serum factors, including integrin‑β1, 
and growth factor receptors, including EGFR, may also be 
involved (103,104). Minjgee et al (103) showed that there was 
increased basal Akt phosphorylation as well as augmented 
output from the PI3K/Akt pathway following EGF stimula-
tion in cell lines with higher levels of ErbB1 and integrin‑β1 
expression. Akt phosphorylation may be related to adhesion 
and migration, which are regulated by integrin signaling. 
Inhibition of AKT, EGFR and integrin‑β1 may thus improve 
radioresistance (104).

4. Association between GLUT‑1 and PI3K/Akt

The abnormal expression of GLUT‑1 is correlated with 
multiple signal transduction pathways, including the PI3K/Akt 
signaling pathway, which is known to be important in the regu-
lation of GLUT‑1 expression. Several studies have confirmed 
that the PI3K/Akt pathway and GLUT‑1 expression affect 
glucose metabolism (1,47‑49).

Hematopoietic cells and T lymphocytes depend on GLUT‑1 
as the primary source of intracellular glucose, while growth 
factors, such as interleukin (IL)‑3, IL‑7 or CD28 provide 
important signals for GLUT‑1 synthesis and glucose uptake in 
these cells (47,105‑107). Cell growth factors regulate GLUT‑1 
predominantly through PI3K and its downstream effector Akt. 
This leads to activation of mTOR and glycogen synthetase‑3 
(GSK‑3), as well as other methods of controlling the activation, 
recirculation and internalization of GLUT‑1.

In addition to the regulation of GLUT‑1 expression at the 
cell surface, Akt also controls the activity of GLUT‑1 via 
activation of mTOR (106). In hematopoietic cells and T cells 
that have been transfected with the GLUT‑1 gene, an increase 
in glucose metabolism results in increased levels of phos-
phorylation of GSK‑3α,β (108). It has been reported that Akt 
phosphorylates 21/9 serine of GSK‑3 directly, thus inhibiting 
the activity of GSK‑3 kinase (48). As a substrate of Akt, GSK‑3 
can also regulate the transmission of GLUT‑1 by improving 
the recycling of integrin (109). Continuous activation of Akt 
expression increases the ability of lymphocytes to absorb 
and utilize glucose (48,107,110), improves the glycolysis of 
T lymphocytes  (107) and may lead to the development of 
autoimmune disorders and lymphoma. Suppression of PI3K 
can prevent the activation of lymphocytes, increase glucose 

metabolism following stimulation by cytokines and reduce the 
ability of leukemic cells to absorb glucose (1,110‑112).

PI3K pathways also affect insulin‑induced glucose transport 
in fatty cells (113,114). Apigenin downregulates the expression 
of GLUT‑1 mRNA and protein in CD18 and S2‑013 pancreatic 
cancer cell lines, and inhibits the PI3K/Akt channel (49,115). 
It has been found that inhibition of the PI3K/Akt pathway may 
induce a decrease in GLUT‑1 mRNA (112,116).

Research has shown that cell growth factors promote the 
transmission and activation of GLUT‑1 in hematopoietic cells 
and T lymphocytes via the PI3K/Akt pathway (48,105‑107), 
and that activated Akt is sufficient to maintain GLUT‑1 and 
glucose uptake on the surface of cells in the absence of cyto-
kines  (107,117). A previous study found that expression of 
GLUT‑1, p‑Akt, and PI3K protein in adenoid cystic carcinoma 
(ACC) was higher than that in inflammatory lesions or benign 
tumors (P<0.001). The percentage of cells expressing these 
proteins for GLUT‑1, PI3K and p‑Akt protein in ACC were 38.1 
(16/42), 38.1 (16/42) and 50.0% (21/42), respectively. Significant 
correlations between GLUT‑1 and PI3K expression (r=0.394, 
p=0.01), between GLUT‑1 and p‑Akt expression (r=0.528, 
P<0.001), and between p‑Akt and PI3K expression (r=0.528, 
P<0.001) were also observed. In this study, a multivariate 
analysis showed that p‑Akt was a significant predictor of recur-
rence and that GLUT‑1 expression was associated with T stage 
(according to the TNM classification) and distant metastasis of 
ACC (118). In a ceruminous adenoma of the external auditory 
canal, it was also shown by immunohistochemistry that tumor 
cells were positive for GLUT‑1, HIF‑1, PI3K and p‑Akt (119). 
In U87MG glioblastoma cells, inhibition of the PI3K pathway 
by LY294002 may decrease the expression of GLUT‑1 mRNA, 
VEGF mRNA, and HIF‑1α mRNA (116).

mTOR is a downstream target of PI3K. Radhakrishnan 
et  al  (112) found that GLUT‑1 was linked to the mTOR 
pathway and that GLUT‑1 may be useful as a biomarker of 
mTOR status in head and neck cancers. mTOR inhibition 
may activate an AKT feedback loop in tumors sensitive 
to rapamycin treatment. In acute lymphoblastic leukemia, 
IL‑17 upregulates the expression of GLUT‑1 via PI3K acti-
vation (120,121). In endometrial carcinoma cells, GLUT‑1, 
pAkt and pmTOR were found to be strongly expressed and 
the mTOR inhibitor, rapamycin, induced apoptotic cell 
death (122). However, in breast cancer cells, rapamycin and 
sorafenib downregulated GLUT‑1 expression and glucose 
uptake to similar extents, whereas the dual PI3K/mTORC1‑C2 
inhibitor NVP‑BEZ‑235 did not have the same effect. This 
suggested that sorafenib‑mediated activation of AMPK, rather 
than the PI3K/Akt pathway, initially stimulated glucose uptake 
by increasing GLUT‑1 protein expression (123).

It is a novel idea to target GLUT‑1 and AKT expression 
with the aim of improving the radiosensitivity of cancers. Other 
signaling pathways are involved in cancer radioresistance, 
not all of which regulate or interact with GLUT‑1, and which 
may indeed be independent of the glucose/AKT pathway. The 
stress‑activated protein kinase/c‑Jun NH(2)‑terminal kinase 
pathway has been found to be involved in the radioresistance 
of nasopharyngeal carcinoma (124). The RAF kinase/mitogen 
activated protein kinase/extracellular signal‑regulated kinase 
(ERK) pathways are also important in the radiation resistance 
of squamous cell cancers, and kinase suppressor of RAS 1 
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AS‑ODN may act a radiosensitizer for treating Ras‑dependent 
human malignancies (125). It has been observed in clinical 
trials that inhibition of PI3K (126) and GLUT‑1 (127) increase 
the expression of other oncogenes, such as that of pERK1/2 
or pEGFR, and induce the persistent phosphorylation of 
ribosomal protein S6. ERK1/2 activates the p90 ribosomal 
S6 kinase  (128), which subsequently phosphorylates S6 at 
Ser235/236, independently of PI3K/mTOR signaling, and 
increases tumor resistance to radiation therapy (129).

5. Conclusion

Activation of the PI3K/Akt pathway, and the transcription and 
expression of GLUT‑1 (promoted by PI3K/Akt) are closely 
associated with glucose uptake, energy consumption, cell 
proliferation and the malignant transformation of tumor cells. 
GLUT‑1 activation by PI3K/Akt is an important metabolic 
regulator of tumor cells. Overexpression of molecules in this 
pathway is associated with a poor prognosis and resistance to 
radiotherapy.

Radiation resistance of tumor cells, which develops during 
the course of radiotherapy, necessitates the development of 
novel therapies to combat this problem. The radiosensitivity 
of tumor cells is key to treatment efficacy and is associated 
with their inherent sensitivity prior to irradiation as well as 
adaptations developed to deal with injury following irradia-
tion. Intrinsic radiosensitivity is determined genetically and 
by disorders involving tumor suppressor genes, while the 
response of cells to injury is induced by protein modifications 
and ultimately by relevant alterations in signal transduction 
pathways.

Preclinical data have shown that enhancing radiosen-
sitivity by inhibiting PI3K/Akt is possible. LY294002 and 
wortmannin, which target the p110 catalytic subunit of PI3K, 
provide powerful preclinical tools with which to investigate 
the cellular consequences of inhibiting this pathway (94,100). 
RAD‑001, a rapamycin analog, is a potent radiosensitizer that 
acts via mTOR‑dependent enhancement of radiation‑induced 
autophagy and the induction of apoptosis in vascular endothe-
lial cells (130,131). In a phase III trial, CCI‑779, another mTOR 
inhibitor, showed a significant improvement in progression‑free 
survival (5.5 compared with 3.1 months) and in overall survival 
in patients with metastatic renal cell carcinoma (132). However, 
no data on enhancing radiosensitivity by combining inhibition 
of PI3K/Akt with that of GLUT‑1 expression in carcinomas 
are available to date. A number of studies have shown that 
activation of the PI3K/Akt signaling pathway and abnormal 
expression of GLUT‑1 are associated with tumor progression, 
a poor prognosis and the development of resistance to chemo-
therapy and radiotherapy. The ability of a malignancy to resist 
radiation‑induced damage is associated with PI3K/Akt and 
the overexpression and activation of GLUT‑1, which is one of 
the key regulators of radiotherapy sensitivity. Targeted therapy 
directed to the PI3K/Akt pathway and GLUT‑1 may disrupt 
the development of radiation resistance and enhance radiosen-
sitivity, thus increasing the survival rates of cancer. Targeting 
GLUT‑1 with antisense oligonucleotides, and the PI3K/Akt 
pathway with wortmannin and LY294002, in an attempt to 
increase radiosensitivity in laryngeal carcinoma will be the 
next focus for our group. The prospect of targeted therapies 

aimed at these molecules currently holds promise for the treat-
ment of a variety of types of cancer.
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