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Abstract. Aromatase inhibitors (AIs) are widely used in 
the treatment of hormone‑dependent breast cancer and as a 
result, aromatase inhibitor‑associated bone loss (AIBL) has 
become a major concern amongst patients receiving AI treat-
ment. Modified Shu‑Gan‑Liang‑Xue decoction (mSGLXD), a 
clinical prescription, has been used for ameliorating AIBL in 
patients with breast cancer for decades and has achieved good 
clinical efficacy. However, the mechanism underlying how 
mSGLXD influences bone homeostasis and alleviates AIBL 
has remained elusive. In the present study, mSGLXD was 
supplemented with Rhizoma Drynariae containing phytoes-
trogens, and the safety of mSGLXD was evaluated. mSGLXD 
did not possess estrogenic activity and significantly inhibited 
the proliferation of estrogen receptor‑positive breast cancer 
cell line MCF‑7, which suggested that mSGLXD was safe for 
postmenopausal patients with breast cancer. Subsequently, 
the effects of mSGLXD alone or in combination with anas-
trozole on osteoblastic MC3T3‑E1  cell proliferation and 
differentiation were investigated. Cell counting kit‑8, reverse 
transcription‑polymerase chain reaction and biochemical 
methods, such as ELISA and alizarin red S staining, were 
used in the present study. It was revealed that mSGLXD not 
only stimulated MC3T3‑E1 cell proliferation, but also upregu-
lated alkaline phosphatase and osteocalcin gene and protein 
expression levels. High concentrations of anastrozole (10 or 
100 µmol/l) markedly inhibited MC3T3‑E1 cell prolifera-
tion, but this inhibitory effect was attenuated by mSGLXD. 
Furthermore, mSGLXD increased MC3T3‑E1 cell miner-

alization following β‑glycerophosphate and ascorbic acid 
induction. Therefore, the results of the present study suggested 
that mSGLXD may be a promising adjuvant therapy, with high 
safety and efficacy, for the prevention and treatment of AIBL 
in patients with breast cancer who receive AI treatment.

Introduction

Breast cancer is the most common malignancy amongst 
females worldwide (1). Experimental data strongly suggest 
that estrogens have an important role in the development 
and progression of hormone‑dependent breast cancer  (2). 
Approximately two thirds of postmenopausal breast cancer 
cases are hormone‑dependent, which means that they are 
estrogen receptor (ER)‑positive and require estrogens for 
tumor growth (3). Aromatase is the rate‑limiting enzyme in 
the synthesis of estrogens from androgenic substrates  (4). 
Aromatase inhibitors (AIs) were found to markedly suppress 
plasma estrogen levels, as well as intratumoral aromatase 
activity in postmenopausal females with breast cancer by 
inhibiting or inactivating the aromatase enzyme (4‑7). As a 
result, less estrogen becomes available to stimulate the growth 
of hormone‑dependent breast cancer cells. Large, adjuvant 
randomized trials have demonstrated that AIs exhibited signif-
icant improvement in disease‑free survival, time to recurrence 
and time to distant recurrence compared with tamoxifen (8‑10). 
For postmenopausal females with receptor‑positive breast 
cancers, AIs have emerged as an alternative to tamoxifen due 
to its superior efficacy and reduced incidence of side effects, 
including endometrial cancer and thromboembolism (11‑13).

In addition to stimulating ER‑positive breast cancer cell 
growth, estrogens also have an important role in maintaining 
normal bone mass (14). Bone remodeling, which comprises 
bone formation by osteoblasts and bone resorption by osteo-
clasts, is a dynamic metabolic process that occurs throughout 
life (15). Estrogens are known to regulate bone homeostasis by 
inhibiting osteoclast activity, as well as enhancing osteoblast 
proliferation and osteoblast‑related collagen formation (16,17). 
Bone mineral density (BMD) declines in females concurrently 
with the onset of menopause and may be accompanied by an 
increased risk of fracture due to the rapid decrease in serum 
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estrogen levels (18). AI treatment markedly reduces these low 
circulating estrogen levels by a further 80‑90% in postmeno-
pausal patients with breast cancer (19). Therefore, AIs lead to 
an increase in bone loss (osteoporosis), known as aromatase 
inhibitor‑associated bone loss (AIBL), and a higher bone frac-
ture rate than tamoxifen (11‑13). Therefore, accelerated bone 
loss due to long‑term estrogen deprivation has become a major 
concern underlying the safety of AI treatment.

Clinical evidence has shown that bisphosphonates may 
maintain BMD and decrease fracture risk for patients with 
breast cancer receiving adjuvant AI therapy (20‑23). However, 
side effects, including renal dysfunction and osteonecrosis of 
the jaw, have been reported following bisphosphonate treat-
ment  (24‑26). Therefore, the combination of AI treatment 
with alternative approaches with long‑term efficacy and safety 
profiles, including the use of Traditional Chinese Medicine, for 
the management of AIBL requires further analysis.

Shu‑Gan‑Liang‑Xue decoction (SGLXD), a clinical 
prescription, has been used extensively for ameliorating 
hot flush symptoms in patients with breast cancer receiving 
endocrine therapy  (27). SGLXD inhibited breast tumor 
growth in tumor‑bearing nude mice  (28), and none of the 
component herbs exhibited estrogenic activity (29). Modified 
Shu‑Gan‑Liang‑Xue decoction (mSGLXD) has been used to 
prevent AIBL and has achieved good clinical efficacy. SGLXD 
was supplemented with Rhizoma Drynariae (RD; Gu‑Sui‑Bu 
in Chinese), Caulis Piperis Kadsurae (Hai‑Feng‑Teng in 
Chinese) and Caulis Trachelospermi (Luo‑Shi‑Teng in 
Chinese), and Radix Cynanchum Strati (Baiwei in Chinese) 
and Fructus Schisandrae (Wuweizi in Chinese) were removed, 
to produce mSGLXD.

RD, the dried rhizome of Drynaria fortunei (Kunze) J. 
Sm., has been known as a kidney‑tonifying and anti‑osteo-
porosis herb for the treatment of osteoporosis and bone 
fractures for thousands of years in China  (30,31). The 
natural product RD, which contains phenolic compounds, 
was suggested to possess estrogenic activity  (32) and the 
methanolic extract of RD was able to increase the growth of 
MCF‑7 cells at low concentrations (33). Although SGLXD 
has demonstrated anti‑tumor efficacy, it was necessary to test 
the effects of mSGLXD on breast cancer cell proliferation 
due to the supplementation of RD. Therefore, the effects of 
mSGLXD and RD alone on the proliferation of ER‑positive 

breast cancer cell line MCF‑7 were investigated and their 
estrogenic activities were also evaluated. To further elucidate 
the role of mSGLXD in alleviating AIBL, the effects of 
mSGLXD alone or in combination with an AI (anastrozole) 
on the proliferation and differentiation of osteoblastic cell 
lines in vitro were investigated using MC3T3‑E1 cells, a 
mouse calvaria osteoblast‑like cell line (34).

Materials and methods

Cell culture. MCF‑7 (HTB‑22, a human breast cancer 
cell line) was purchased from the American Type Culture 
Collection (Rockvil le, MD, USA) and MC3T3‑E1 
(3111C0001CCC000012), an osteoblast‑like cell line from 
the C57BL/6 mouse calvaria, was obtained from the Cell 
Resource Center (IBMS, CAMS/PUMC, Beijing, China). 
The MCF‑7  cell line was grown in Dulbecco's modified 
Eagle's medium (DMEM; Bioroc, Tianjin, China) and the 
MC3T3‑E1 cell line was cultured in α‑modified minimal 
essential medium (α‑MEM) with 292 mg/ml L‑glutamine, 
10 mg/l ribonucleosides and 10 mg/l deoxyribonucleosides 
(Bioroc Pharmaceutical & Biotech Co., Ltd, Tianjin, China). 
Unless specified, the medium contained 10% heat‑inacti-
vated fetal bovine serum (FBS; Gibco‑BRL, Invitrogen Life 
Technologies, Carlsbad, CA, USA), 100 U/ml penicillin and 
100 µg/ml streptomycin (Solarbio Science & Technology 
Co., Ltd., Beijing, China). Cells were incubated at 37˚C in 
a humidified atmosphere with 5% CO2. For all experiments, 
routine cell culture procedures were strictly followed to 
maintain cell density and all subcultures were used prior to 
passage 20.

Preparation of drugs. The components of SGLXD and 
mSGLXD are exhibited in Table I. The Chinese herbs 
were processed into formula granules by Beijing Tcmages 
Pharmaceutical Co., Ltd (Beijing, China). The quality of 
formula granules was monitored by Fourier transform 
infrared spectroscopy (FTIR) (Model IRPRestige‑21; 
Shiamdzu Corporation, Kyoto, Japan). Prior to use, the 
formula granules were dissolved in deionized distilled 
water to achieve a concentration of 1 g/ml crude drug. The 
solutions were sterilized by filtration through a 0.22‑µm 
pore‑sized membrane (EMD Millipore, Billerica, MA, USA) 

Table I. Components of Shu‑Gan‑Liang‑Xue decoction (SGLXD) and modified SGLXD (mSGLXD).

Chinese name	 English name	 Botanical name	 mSGLXD (g)	 SGLXD (g)

Baiwei	 Radix Cynanchum Strati	 Cynanchum atratum Bunge, in Asclepiadaceae	‑	  15
Mudanpi	 Tree peony bark	 Paeonia suffruticosa Andr.	 15	 15
Baishao	 White peony root	 Paeonia lactiflora Pall.	 15	 15
Chaihu	 Chinese thorowax root	 Bupleurum chinense DC.	 10	 10
Yujin	 Wenchow turmeric root tuber	 Curcuma aromatic Salisb.	 10	 10
Wuweizi	 Fructus Schisandrae	 Schisandra chinensis (Turcz.) Baill.	‑	  15
Gusuibu	 Rhizoma Drynariae	 Drynaria fortunei (Kunze ex Mett.) J. Sm.	 15	‑
Haifengteng	 Caulis Piperis Kadsurae	 Piper kadsura (Choisy) Ohwi.	 15	‑
Luoshiteng	 Caulis Trachelospermi	 Trachelospermum jasminoides (Lindl.) Lem.	 15	‑
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and stored at ‑80˚C. The concentrations of mSGLXD and RD 
in the present study refer to the crude drug concentrations.

Estrogenic activity of mSGLXD and RD. Estrogenic 
activity was evaluated using a Dual‑Luciferase® reporter 
assay (Promega Corp., Beijing, China) based biolumi-
nescent measurement method. The p(estrogen‑responsive 
element)‑TK‑Luciferase and p(Renilla luciferase)‑TK plas-
mids were provided by Professor Wen‑Ling Han (Center 
for Human Disease Genomics, Peking University, Peking, 
China). Following transfection for 24 h, MCF‑7 cells were 
treated with various concentrations of mSGLXD (0.625, 2.5 
or 10 mg/ml), 17β‑estradiol (E2; 10 nmol/ml; Sigma‑Aldrich, 
St Louis, MO, USA) or RD (10 mg/ml) for 48 h, and the 
control group was treated with equal drug dissolved solute 
only, prior to being lysed for the measurement of luciferase 
activity. The Dual‑Luciferase® reporter assay system contains 
Passive Lysis Buffer (PLB), which can directly lyse cells. 
Briefly, growth media was removed from the cultured cells, 
which were then washed with 1X phosphate‑buffered saline. 
Following washing 100 µl 1X PLB was added to each well 
and the culture plates were gently agitated for 15 min at room 
temperature. The lysates were then transferred to tubes and 
centrifuged at 12,000 x g for 10 min at 4˚C. Luciferase activity 
was detected using chemiluminescence apparatus (Model 
LMax II; Molecular Devices, Sunnyvale, CA, USA).

Cell proliferation assays. MCF‑7 and MC3T3‑E1  cells 
were suspended in DMEM and α‑MEM culture media and 
plated at a density of 5.0x103 cells/well in 96‑well culture 
dishes (Costar, Cambridge, MA, USA). Following 24 h of 
culture, the medium was replaced with complete culture 
medium supplemented with various concentrations of 
drugs. To assess the effects of mSGLXD and RD alone on 
MCF‑7  cell proliferation, MCF‑7 cells were treated with 
mSGLXD (1.25‑50 mg/ml) or RD (1.25‑50 mg/ml). To assess 
the effects of mSGLXD and anastrozole alone or in combi-
nation on MC3T3‑E1  cell proliferation, MC3T3‑E1 cells 
were treated with mSGLXD (0.625‑10 mg/ml), anastrozole 
(0.01‑100 µmol/l) or mSGLXD (0.625‑10 mg/ml) as well as 
10 or 100 µmol/l anastrozole. Following 48 h of drug treat-
ment, the cells were incubated with cell counting kit‑8 solution 
(CCK‑8; Dojindo Molecular Technologies, Inc., Kumamoto, 
Japan) for 2 h. Subsequently, the absorbance (optical density, 
OD) at 450  nm was measured using a microplate reader 
(Model 680; Bio‑Rad Laboratories, Hercules, CA, USA) and 

cell viability was calculated according to the following formula:  
(ODsample‑ODblank)/(ODcontrol‑ODblank)x100%.

Reverse transcription polymerase chain reaction (PCR) 
analysis. For analysis of alkaline phosphatase (ALP) and osteo-
calcin (OCN) gene expression, MC3T3‑E1 cells were treated 
with mSGLXD (10 mg/ml) and anastrozole (10 µmol/l), alone 
or in combination, for 48 h. Total RNA was extracted from 
cells using TRIzol reagent (Invitrogen Life Technologies). 
The concentration and quality of the extracted RNA were 
measured with a NanoDrop 2000 (Thermo Fisher Scientific, 
Wilmington, DE, USA). The first‑strand cDNA was generated 
using the TransScript first‑strand cDNA synthesis supermix 
(Transgen, Beijing, China) according to the manufacturer's 
instructions. Primers designed for PCR were synthesized by 
Sangon Biotech Co., Ltd (Shanghai, China) and are shown in 
Table II. The PCR assay was performed using SYBR green 
qPCR supermix (Applied Biosystems Life Technologies, Foster 
City, CA, USA) and performed in an ABI prism 7500 sequence 
detection system (Applied Biosystems Life Technologies). The 
PCR was carried out using the following conditions: 35˚C for 
10 min, followed by 40 cycles of 95˚C for 30 sec, and 72˚C for 
32 sec. The amount of mRNA for each gene was calculated 
using the delta‑delta CT (cycle threshold) method (35), and 
gene expression levels were normalized to GAPDH.

Biochemical markers. MC3T3‑E1 cells were cultured in a 
six‑well culture plate (Costar) at a density of 4x104 cells/well 
for 24 h. Following treatment with mSGLXD (10 mg/ml) and 
anastrozole (10 µmol/l), alone or in combination, for 48 h, 
cell ALP activity was determined using an ALP Assay kit 
(Jiancheng, Nanjing, China) according to the manufacturer's 
instructions. ALP activity was normalized to total protein, 
as determined by bicinchoninic acid protein assay (Thermo 
Fisher Scientific). The OCN content in MC3T3‑E1 cells was 
measured using a sandwich ELISA assay kit from Beijing Ke 
Ying Mei Technology Co. Ltd (Beijing, China).

Mineralization assay. Bone mineralization was determined by 
alizarin red S (AR‑S) staining. Calcium was bound selectively 
to AR‑S and stained dark red. MC3T3‑E1 cells were cultured 
in differentiation medium [α‑MEM supplemented with 10% 
FBS, 10 mmol/l β‑glycerophosphate and 50 µg/ml ascorbic 
acid (Sigma‑Aldrich)] with or without mSGLXD (10 mg/ml) 
and anastrozole (10  µmol/l), alone or in combination, for 
21 days in six‑well plates (4x104 cells/well). The treated cells 

Table II. Primers for polymerase chain reaction.

Target gene	 Primers (5'‑3')	 Annealing temperature	 Amplification length (bp)

Alkaline phosphatase	 TCCTGACCAAAAACCTCAAAGG
	 TGCTTCATGCAGAGCCTGC	 60˚C	 101
Osteocalcin	 CTCACAGATGCCAAGCCCA
	 CCAAGGTAGCGCCGGAGTCT	 60˚C	 98
GAPDH	 GGTGAAGGTCGGTGTGAACG
	 CTCGCTCCTGGAAGATGGTG	 62˚C	 233
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were subsequently stained using an AR‑S cell staining kit 
(Genmed, Shanghai, China) according to the manufacturer's 
instructions. Images of the stained matrix were observed 
under an inverted microscope (CKX41; Olympus Corporation, 
Tokyo, Japan) and captured using a digital camera (Canon, 
Inc., Tokyo, Japan). To quantify matrix mineralization, AR‑S 
staining was released from the cell matrix by incubation with 
10% cetylpyridinium chloride in 10 mmol/l sodium phosphate 
(pH 7.0; Sigma‑Aldrich) for 20 min. The AR‑S concentration 
was determined by measuring the absorbance at 562 nm (36), 
using a microplate reader (Model 680; Bio‑Rad Laboratories).

Statistical analysis. All experiments were repeated three to 
five times and values are expressed as the mean ± standard 
deviation. All data were analyzed using one‑way analysis of 

variance followed by least significant difference comparison 
using SPSS statistical software 16.0 (SPSS, Inc., Chicago, IL, 
USA). P<0.05 was considered to indicate a statistically signifi-
cant difference between values.

Figure 3. Effects of mSGLXD and anastrozole alone or in combination on 
MC3T3‑E1 cell proliferation. MC3T3‑E1 cells were treated with various 
concentrations of (A)  mSGLXD or (B)  anastrozole for 48  h, and cell 
viability was determined by cell counting kit‑8 assay. *P<0.05, **P<0.01 vs. 
negative control, respectively). (C) Cell viability of MC3T3‑E1 cells treated 
with various concentrations of mSGLXD combined with 10 µmol/l anas-
trozole for 48 h. **P<0.01 vs. 10 µmol/l anastrozole alone. (D) Cell viability 
of MC3T3‑E1  cells treated with various concentrations of mSGLXD 
combined with 100 µmol/l anastrozole for 48 h. **P<0.01 vs. 100 µmol/l 
anastrozole alone. Values are presented as the mean ± standard deviation of 
≥three independent experiments. mSGLXD, modified Shu‑Gan‑Liang‑Xue 
decoction.

Figure 2. Effects of mSGLXD and RD on MCF‑7 cell proliferation. Following 
treatment with various concentrations of mSGLXD or RD for 48 h, cell 
viability was measured by cell counting kit‑8 analysis. Representative results 
from ≥three independent experiments are shown. Values are presented as the 
mean ± standard deviation. *P<0.05, **P<0.01 vs. mSGLXD negative control; 
##P<0.01 vs. RD negative control. mSGLXD, modified Shu‑Gan‑Liang‑Xue 
decoction; RD, Rhizoma Drynariae.

Figure 1. Estrogenic activity of mSGLXD and RD. Following transfection 
for 24 h, the culture medium was replaced by fresh medium containing E2 

(10 nmol/l), various concentrations of mSGLXD (0.625, 2.5 or 10 mg/ml) or 
RD (10 mg/ml) for 48 h. The treated cells were lysed to measure luciferase 
activity by dual‑luciferase reporter‑based bioluminescent assay. Values are 
expressed as the mean‑fold induction over negative control which was normal-
ized to one. Values are presented as the mean ± standard deviation of three 
independent experiments. **P<0.01 vs. negative control. mSGLXD, modified 
Shu‑Gan‑Liang‑Xue decoction; RD, Rhizoma Drynariae; E2, 17β‑estradiol.
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Results

mSGLXD does not possess estrogenic activity, whereas 
RD alone does. Following treatment for 48 h, the luciferase 
activities in MCF‑7 cells treated with various concentrations 
of mSGLXD were significantly lower than those induced by 
E2 (10 nmol/l; P<0.01). There was no significant difference 
for luciferase activities between cells treated with mSGLXD 
and negative control groups (P>0.05), which suggested that 
mSGLXD did not possess estrogenic activity (Fig. 1). The 
luciferase activity induced by 10 mg/ml RD was ~2.5‑fold 
that of the negative control and mSGLXD groups (P<0.01), 
indicating that RD exerted estrogenic activity.

mSGLXD inhibits MCF‑7 cell proliferation. Following treat-
ment for 48 h, mSGLXD significantly inhibited MCF‑7 cell 
proliferation in a dose‑dependent manner compared to that 
of the control group (P<0.01), while low concentrations of 
RD (1.25, 2.5 mg/ml) slightly promoted MCF‑7 cell prolif-
eration (P>0.05). However, RD dose‑dependently inhibited 
MCF‑7 cell proliferation in the range of 5‑50 mg/ml (Fig. 2).

mSGLXD enhances MC3T3‑E1  cell proliferation and 
attenuates anastrozole‑induced inhibition of proliferation. 
mSGLXD dose‑dependently stimulated MC3T3‑E1  cell 
proliferation in the range of 0.625‑10 mg/ml following treat-
ment for 48 h (P<0.01) (Fig. 3A). Compared with the negative 

control, cell viability was increased by 22.49% in the 10 mg/ml 
mSGLXD treatment group.

Low concentrations of anastrozole (0.01‑1 µmol/l) did not 
influence MC3T3‑E1 cell proliferation following treatment 
for 48 h, while high concentrations of anastrozole (10 and 
100 µmol/l) inhibited MC3T3‑E1 cell proliferation by 12.31 
and 28.38%, respectively, compared with that of the negative 
control group (P<0.01; Fig. 3B).

Furthermore, mSGLXD was able to prevent 10 and 
100 µmol/l anastrozole‑induced MC3T3‑E1 cell death, and 
had a more marked effect on proliferation in the 10 µmol/l 
anastrozole‑treated group. Cells treated with combined 
10 µmol/l anastrozole and 10 mg/ml mSGLXD demonstrated 
a significant increase in cell viability by 15.81%, as compared 
to cells treated with 10 µmol/l anastrozole alone (P<0.05). 
Lower concentrations of mSGLXD (0.625, 2.5 mg/ml) demon-
strated certain protective effects against anastrozole‑induced 
cell viability inhibition but without significant difference 
(Fig. 3C and D).

mSGLXD alone or in combination with anastrozole enhances 
ALP and OCN mRNA expression. Based on the results of 
the aforementioned experiments, 10 µmol/l anastrozole and 
10 mg/ml mSGLXD were used for the following experiments. 
The PCR analysis results indicated that ALP and OCN mRNA 
expression levels were increased following treatment with 
mSGLXD alone or combined with anastrozole, in comparison 

Figure 5. Effects of mSGLXD and anastrozole alone or in combination on ALP activity and OCN content of MC3T3‑E1 cells. Cells were treated with 
mSGLXD (10 mg/ml) and anastrozole (10 µmol/l) alone or in combination (combined group) for 48 h. (A) ALP activity was determined using an ALP kit. 
**P<0.01 vs. control group. (B) OCN concentration was determined by ELISA, *P<0.05 vs. control group. Values are expressed as the mean ± standard devia-
tion. ALP, alkaline phosphatase; OCN, osteocalcin; mSGLXD, modified Shu‑Gan‑Liang‑Xue decoction; gprot, grams of protein.

Figure 4. Effects of mSGLXD and anastrozole alone or in combination on ALP and OCN mRNA expression levels in MC3T3‑E1 cells. Cells were treated 
with mSGLXD (10 mg/ml) and anastrozole (10 µmol/l) alone or in combination (combined group) for 48 h. (A) ALP and (B) OCN mRNA expression levels 
were determined by polymerase chain reaction. Values are expressed as the mean ± standard deviation of three independent experiments. *P<0.05, **P<0.01 vs. 
control group. ALP, alkaline phosphatase; OCN, osteocalcin; mSGLXD, modified Shu‑Gan‑Liang‑Xue decoction; mRNA, messenger RNA.
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with those of the control group (P<0.05 and P<0.01, respec-
tively; Fig. 4). No significant change was observed in the 
anastrozole only treatment group.

mSGLXD alone or in combination with anastrozole enhances 
ALP activity and OCN protein expression. The effects of 
mSGLXD and anastrozole alone or in combination on ALP 
activity and OCN content in MC3T3‑E1 cells are exhibited in 
Fig. 5A and B. In the presence of 10 mg/ml mSGLXD alone or 
combined with 10 µmol/l anastrozole, ALP activity and OCN 
content were significantly increased following 48 h of culture 
(P<0.01 and P<0.05, respectively), while 10 µmol/l anastrozole 
had no significant effect.

mSGLXD alone or in combination with anastrozole enhances 
bone mineralization of MC3T3‑E1  cells. AR‑S staining 
is a standard method used for the visualization of nodular 
patterns and calcium deposition in MC3T3‑E1 cell cultures 
in vitro. As shown in Fig. 6A, following culture in differential 
medium supplemented with β‑glycerophosphate and ascorbic 
acid for 21 days, treatment with 10 mg/ml mSGLXD alone 
or in combination with anastrozole markedly increased AR‑S 
staining in MC3T3‑E1 cells. The AR‑S concentration in the 
mSGLXD and combined groups demonstrated significant 
differences compared with that of the control group (P<0.01, 
Fig. 6B). Concurrent with the results of the other experiments, 
10 µmol/l anastrozole did not influence the mineralization of 
MC3T3‑E1 cells.

Discussion

Phytoestrogens, natural estrogen‑like substances contained 
in plant food, demonstrated estrogenic activities through 
binding to the ER and exhibiting ER‑mediated estrogenic 
properties  (37). Epidemiological and experimental data 

regarding the association between phytoestrogens and breast 
cancer risk or progression are inconsistent (37‑40). Therefore, 
the safety of phytoestrogens for patients with breast cancer 
has remained to be elucidated. Clinically, Rhizoma Drynariae 
is added to mSGLXD to tonify the kidneys and strengthen 
the bones, while Caulis Piperis Kadsurae and Caulis 
Trachelospermi are supplemented as collateral‑dredging and 
pain‑relieving herbs. According to the results of a previous 
study, RD may possess estrogenic activity (32); however, no 
study had demonstrated that Caulis Piperis Kadsurae and 
Caulis Trachelospermi were phytoestrogens. Therefore, in 
the present study, the estrogenic activities of mSGLXD and 
RD were evaluated by dual‑luciferase reporter assay‑based 
bioluminescent measurements. In accordance with previ-
ously reported results, the results of the present study 
confirmed that RD had certain estrogenic properties and that 
low concentrations of RD stimulated MCF‑7 cell prolifera-
tion (32,33). Of note, despite the addition of phytoestrogen 
RD, mSGLXD was found to not possess estrogenic activity. 
Furthermore, mSGLXD significantly inhibited MCF‑7 cell 
proliferation following supplementation of the original drug 
SGLXD with RD and two additional herbs, and the removal 
of Radix Cynanchum Strati and Fructus Schisandrae. 
A possible explanation may be that since mSGLXD is a 
Traditional Chinese Medicine composed of numerous herbs, 
the estrogenic activity of RD may be modulated or counter-
acted by the presence of other bioactive components, which 
may have an antagonistic effect on the ER signaling pathway. 
Therefore, the results indicated that mSGLXD was safe for 
patients with breast cancer and also had certain anti‑tumor 
effects on breast cancer cells.

Formation of new bone is the task of osteoblasts; there-
fore, enhancing osteoblast proliferation and differentiation 
is a potential therapeutic strategy for bone loss. During the 
formation phase of the bone cycle, ALP is expressed in 

Figure 6. Mineralization nodules of MC3T3‑E1 cells treated with mSGLXD and anastrozole alone or in combination. MC3T3‑E1 cells were cultured in 
differentiation medium (α‑MEM supplemented with 10% FBS, 10 mmol/l β‑glycerophosphate and 50 µg/ml ascorbic acid) with mSGLXD (10 mg/ml) and 
anastrozole (10 µmol/l) alone or in combination (combined group) for 21 days. The mineralization nodules were visualized with AR‑S staining. (A) Digital 
images (magnification, x100) and (B) quantification values of AR‑S staining. Values are presented as the mean ± standard deviation. **P<0.01 vs. control group. 
mSGLXD, modified Shu‑Gan‑Liang‑Xue Decoction; AR‑S, alizarin red S.
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markedly high quantities and therefore becomes an indicator 
of bone formation activity and a useful clinical therapeutic 
monitoring index  (41). OCN, another classical biomarker 
of osteoblast cell function, was also investigated  (41,42). 
The results of the present study indicated that mSGLXD 
not only stimulated MC3T3‑E1 cell proliferation, but also 
upregulated ALP and OCN gene and protein expression 
levels. High concentrations of anastrozole markedly inhibited 
MC3T3‑E1 cell proliferation. However, this inhibitory effect 
of anastrozole on MC3T3‑E1 cell growth was alleviated by 
the addition of mSGLXD. Furthermore, mSGLXD (10 mg/ml) 
increased the mineralization of MC3T3‑E1 cells induced by 
β‑glycerophosphate and ascorbic acid. These results indicated 
that mSGLXD had anabolic effects on bone via the promotion 
of osteoblastic proliferation and differentiation, suggesting 
that it may provide a useful pathway for the prevention and 
treatment of AIBL. 

Aromatase, an enzyme of the cytochrome P‑450 super-
family and the product of the CYP19 gene, catalyzes the 
aromatization of C19 steroids (androstendione, testosterone 
and 16α‑hydroxyandrostendione) to E1 and E2 (43). Aromatase 
is also the target of AIs, which are widely used in breast 
cancer endocrine therapy at present. Previous research by our 
group indicated that SGLXD, the original form of mSGLXD, 
simultaneously downregulated aromatase and steroid sulfa-
tase at transcription and protein levels in ER‑positive breast 
cancer cell lines MCF‑7 and T47D (44), which may underlie 
the anti‑tumor mechanism of SGLXD. Therefore, SGLXD 
may have synergistic inhibitory effects on aromatase with 
AIs to a certain extent. However, to elucidate whether the 
mSGLXD used in the present study exhibits a similar dual 
inhibitory effect on aromatase and steroid sulfatase requires 
further investigation. Bone is dynamically balanced by bone 
formation and bone resorption (45); therefore, the effects of 
mSGLXD on osteoclasts requires further investigation and 
conclusions should be confirmed by studies in vivo.

In conclusion, the present study demonstrated that 
mSGLXD not only inhibited breast cancer cell proliferation 
but also stimulated osteoblastic cell proliferation and differ-
entiation. Furthermore, the inhibitory effect of anastrozole 
on osteoblastic cell growth was abrogated in the presence 
of mSGLXD. These results suggested that mSGLXD was a 
promising adjuvant therapy with high safety and efficacy in 
the prevention and treatment of AIBL in patients with breast 
cancer receiving AI treatment. 
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