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Abstract. Chronic myeloid leukemia  (CML) is a myelo-
proliferative disease characterized by the presence of the 
BCR‑ABL1 fusion gene, a constitutively active, oncogenic 
tyrosine kinase that is responsible for the clinical features of 
CML. Tyrosine kinase inhibitors, such as imatinib, have mark-
edly altered the treatment of CML. However, tyrosine kinase 
inhibitors are associated with side effects on bone metabolism, 
in adult and pediatric patients. Vitamin D3 is involved in the 
complex cycle of bone remodeling, therefore the present study 
aimed to investigate the influence of imatinib on vitamin D3 
metabolism in the HaCaT human keratinocyte cell line, using 
commercially available enzyme assays. Imatinib was shown to 
significantly reduce the production of calcidiol and calcitriol. 
Based on interaction studies of imatinib with the cytochrome 
P450 (CYP450) inhibitors VID400 and ketoconazole, it is 
proposed that imatinib may interfere with the vitamin D3 
cascade due to its metabolism by CYP27B1, which is involved 
in vitamin D3 metabolism.

Introduction

Chronic myeloid leukemia  (CML) is characterized by 
the presence of the Philadelphia (Ph+) chromosome 
[t(9;22) q34;q11)] (1). This chromosome harbors the consti-
tutively active, oncogenic tyrosine kinase (TK) Breakpoint 
Cluster Region‑Abelson murine leukemia viral proto‑onco-
gene 1 (BCR‑ABL1), which is responsible for leukemic cell 
transformation (2‑4). Imatinib mesylate (Glivec®/Gleevec®, 
Novartis, Basel, Switzerland) is a potent and selective inhib-

itor of BCR‑ABL1. It was initially licensed in 2001 (5‑10), and 
has since rapidly become the standard front‑line treatment for 
CML, leading to high response rates (11). However, imatinib 
shows off‑target effects on TKs other than BCR‑ABL1, such 
as platelet‑derived growth factor and colony‑stimulating 
factor 1 receptor, which are involved in the bone remodeling 
cycle  (12). Previous studies have revealed that prolonged 
imatinib treatment in adult CML patients may cause hypo-
phosphatemia and altered bone mineralization  (13‑15), 
whereas pediatric CML patients develop growth retardation 
in ≤70% of cases (16,17).

Growth delay due to long‑term imatinib intake is increas-
ingly observed (11,12,16,18,19), and is more prominent in 
patients who began treatment with imatinib at prepubertal 
age (12). In addition, pediatric patients exhibit reduced serum 
levels of 25‑hydroxyvitamin D3 (25‑OH‑VD3; calcidiol) and 
1,25‑dihydroxyvitamin D3 (1,25‑(OH)2‑VD3; calcitriol) (20) 
whilst on imatinib treatment. In humans, vitamin D3 (VD3) 
is synthesized by keratinocytes in the skin, by UVB‑induced 
photolysis of 7‑dehydrocholesterol (7‑DHC), which results 
in the formation of previtamin D3, followed by a thermal 
isomerization step  (21). Thereafter, VD3 is enzymatically 
hydroxylated to calcidiol by cytochrome P450  (CYP450) 
isoenzymes CYP2R1 and/or CYP27A1  (22) in the liver, 
and further metabolized to hormonally active calcitriol 
by CYP27B1  (23‑25) in the kidney (Fig.  1). In order to 
investigate the calcitriol pathway and its modulation, the 
HaCaT human keratinocyte cell line was established by 
Lehmann (26) as a cellular model, thus demonstrating for 
the first time that HaCaT cells were capable of hydroxylating 
calcidiol to calcitriol.

Calcitriol is essential in regulating blood levels of 
calcium and phosphorus  (27) and has a key role during 
bone mineralization (28‑30). Numerous studies have identi-
fied an association of vitamin D3 deficiency (as indicated 
by low calcidiol/calcitriol blood levels) with impaired 
growth, particularly during puberty and prepuberty (28,31). 
However, the detailed mechanisms causing growth delay 
during imatinib therapy are currently speculative. The aim 
of the present study was to investigate the effects of the TK 
inhibitor (TKI) imatinib on vitamin D3 metabolism in the 
HaCaT human keratinocyte cell line.
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Materials and methods

Cell culture protocol. The HaCaT human keratinocyte cell line 
was purchased from Leibniz Institute DSMZ‑German Collection 
of Microorganisms and Cell Cultures (Braunschweig, Germany). 
The cells were seeded at a density of 1x105 cells/cm2 and grown 
in Dulbecco's modified Eagle's medium (DMEM; Gibco Life 
Technologies GmbH, Darmstadt, Germany), supplemented with 
10% fetal bovine serum (FBS; Gibco Life Technologies GmbH) 
in a 95% humidified atmosphere containing 5% CO2, at 37˚C 
for 48 h. The media was subsequently replaced by serum‑free 
DMEM for 18 h, in order to induce synchronization of the cell 
cycle. The cells were then grown in FBS‑supplemented DMEM 
for 8 h, until they had reached 80‑90% confluency. To investi-
gate the metabolism of vitamin D3, the cells were seeded at a 
density of 5x104 cells/cm2 in culture dishes (Ø, 30 mm).

Vitamin D3 assay. To investigate vitamin D3 metabolism the 
HaCaT cells (5x104 cells/cm2) were incubated with 25 µM 
7‑DHC (dissolved in 100% ethanol; Sigma‑Aldrich, Steinheim, 
Germany) as a substrate, and exposed to UVB (300 nm; appli-
cation rate, 75 mJ/cm2). Irradiation of the cells was performed 
using a tuneable high intensity monochromator (FWHM, 
5 nm; Müller Optik‑Elektronik, Moosinning, Germany) over 
15 min. At the start of irradiation the cells were incubated 
with imatinib (supplied by Novartis, Basel, Switzerland), at a 
concentration of 1 µM [dissolved in 100% dimethylsufloxide 
(DMSO)] for 24, 48, or 72 h. Following the incubation, the 
media and detached keratinocytes were collected and calcitriol 
was extracted using methanol  :  chloroform (1:1) (Merck, 
Darmstadt, Germany). The levels of calcitriol were determined 
quantitatively from the organic phase using a commercially 
available enzyme assay (1,25‑Dihydroxy Vitamin D EIA; IDS, 
Frankfurt, Germany). All experiments were performed four 
times and the results were normalized to 1x106 cells. Control 
experiments with ethanol and DMSO were conducted in order 
to identify any interactions with solvents or other components.

To determine whether the VD3 processing CYP450 isoen-
zymes CYP2R1, CYP27A1 and CYP27B1 were inhibited by 
imatinib, specific inhibitors of the CYP450 isoenzyme family 
(VID400 and ketoconazole) were applied concomitantly. These 
experiments were conducted without irradiation. The HaCaT 
cells were incubated for 0, 2 or 4 h with either 5 µM cholecal-
ciferol or 5 µM calcidiol (both dissolved in 100% ethanol) as a 
substrate. Prior to substrate incubation, the cells were incubated 
for 1 h with 200 nM VID400 or 10 µM ketoconazole (both 
dissolved in 100% ethanol), with or without 1 µM imatinib.

Statistical analysis. Statistical analysis at defined time points 
of incubation was performed using one-way analysis of vari-
ance with Bonferoni adjustment to evaluate the effects of 
IMA‑treated samples compared with untreated controls, using 
the GraphPad Prism 6.0 software (GraphPad Software, Inc., 
San Diego, CA, USA). P<0.05 was considered to indicate a 
statistically significant difference.

Results

Inhibitory effects of imatinib on calcitriol synthesis. Imatinib 
incubation at the clinically effective concentration of 1 µM, 

significantly reduced the calcitriol levels to ~50%, as compared 
with the controls, which were not treated with the TKI (Fig. 2). 
To verify these results, control experiments were conducted in 
the presence of 7‑DHC without irradiation, and in the absence 
of 7‑DHC with irradiation. Furthermore, to screen out any 
interactions of the solvents used, control experiments with 

Figure 1. Vitamin D cascade and the enzymes involved. Modulation of 
CYP24A1 by citamin D metabolites or other compounds, such as PXR, may 
generate a high expression and vitamin D deficiency, as detected in various 
tumor tissues [modified after Schuster et al (32)]. VDR, vitamin D receptor; 
VD3, vitamin D3; 7‑DHC, 7‑dehydrocholesterole; PXR, pregnane x receptor; 
CYP2R1, cytochrome P450 family 2, subfamily R, polypeptide 1 (vitamin 
D 25‑hydroxylase); CYP27A1, cytochrome P450, family 27, subfamily A, 
polypeptide 1 (vitamin D 25‑hydroxylase); CYP27B1, cytochrome P450, 
family 27, subfamily B, polypeptide 1 (1α‑Hydroxylase); CYP24A1, cyto-
chrome P450, family 22, subfamily a, polypeptide 1 (1,25‑dihydroxyvitamin 
D3 24‑hydroxylase).

Figure 2. Time‑dependent calcitriol  (1,25‑(OH)2‑VD3) synthesis in the 
HaCaT human keratinocyte cell line following incubation with 7‑dehy-
drocholesterole (7‑DHC) as a substrate and UV irradiation (300 nm). The 
cells were either untreated (controls; white bars) or treated with imatinib 
(1 µM, black bars). The data represents the mean ± standard deviation of 
four experiments.



MOLECULAR MEDICINE REPORTS  11:  3143-3147,  2015 3145

ethanol and DMSO were conducted. As expected, no genera-
tion of calcitriol was detectable in the control experiments.

Effects of selective inhibitors in combination with imatinib on 
the vitamin D3 cascade. Using cholecalciferol as the vitamin D3 

synthesis‑starting substrate, the levels of calcidiol and calcitriol 
in the cells exposed to imatinib over 4 h were lowered to 50% 
that of the controls (Fig. 3). Treatment with the CYP450 inhibi-
tors VID400 and/or ketoconazole, in the absence of imatinib, 
had nearly no effect on calcidiol levels (range, 90‑110 ng/1x106 
cells), whereas calcitriol levels decreased to 60% of the control 
values. Treatment with imatinib in the presence of VID400, 
resulted in increased calcidiol levels by 600% but had no 
effects on calcitriol synthesis. Treatment with ketoconazole 
and imatinib resulted in increased levels of calcitriol, by 200% 
(Fig. 3).

Furthermore, the experiments were repeated using 
calcidiol as the substrate and analyzed in the same way as 
previously described, resulting in calcitriol levels concordant 
with those described in Fig. 3, with the exception of keto-
conazole. The cells incubated with imatinib in the absence 
of VID400 or ketoconazole had lower calcitriol levels, as 
compared with those incubated without imatinib. Identical 
levels were detected in the presence of VID400 without 
imatinib, whereas the combination of VID400 and imatinib 
increased the levels. In the presence of ketoconazole the 
calcitriol levels, with and without imatinib exposure, were 
decreased.

Discussion

Dur ing imat in ib t reatment  longitud ina l  g rowth 
retardation has been identified as a frequent side effect in chil-
dren (13‑15,32‑43). Jaeger et al (20) investigated biochemical 
skeletal markers in 17 pediatric patients with CML (age, 4‑17 
years) undergoing imatinib treatment and reported low serum 
levels of vitamin D3, as well as impaired bone metabolism. 
However, children undergoing treatment for various types of 
cancer frequently exhibit vitamin D3 deficiencies (44,45). The 

reason for this may be a lack of sun exposure or poor nutrition, 
but may also be due to drug interactions, or a combination of 
these factors (44).

In humans, vitamin D3 has a primary role in maintaining 
extracellular ionized calcium levels and bone mineraliza-
tion (46). In children, vitamin D3 is required for growth and 
also for the prevention of rickets (47). In addition, vitamin D3 
is an important immunomodulator, that has been shown to 
have antiproliferative effects, potentiate apoptosis and inhibit 
angiogenesis (45). Pediatric oncology patients have a higher 
prevalence of vitamin D3 hypovitaminosis (20,45). The present 
study aimed to investigate the reasons for vitamin D3 deficiency 
and recognize the potentially causative mechanisms for low 
vitamin D serum levels and growth retardation in prepubertal 
patients with CML. The results of the present study demonstrate 
an inhibitory effect of imatinib on the synthesis of calcidiol and 
calcitriol during vitamin D3 synthesis in human keratinocytes, 
leading to decreased levels by 50%. This finding is in concor-
dance with the published clinical data of Jaeger et al (20).

To identify the potential target of imatinib within the 
vitamin D3 cascade, the synthesis of calcidiol and calcitriol 
was examined in confluent HaCaT cells treated with two 
well‑known specific CYP450 inhibitors: VID400 and ketocon-
azole. While ketoconazole is known to be a general inhibitor 
of P450 enzymes, VID400 specifically blocks CYP24A1, thus 
allowing the identification of the potential target of imatinib 
within the vitamin D3 cascade with enzymes involved, such 
as CYP24A1, CYP27A1 and CYP27B1 (Fig. 1). Experiments 
were conducted in combination with and without imatinib 
using cholecalciferol as a substrate, therefore no irradiation 
of the cells was required. As previously described, VID400 
at a concentration of 200 nM, may dose‑dependently inhibit 
CYP24A1 activity, and partially inhibit CYP27B1 by 30% (48). 
Ketoconazole, at a concentration of 10  µM, is a general 
inhibitor of the CYP450 isoenzymes (49), including vitamin D 
hydroxylating enzymes, such as CYP24A1, CYP27A1 and 
CYP27B1 (50). The present study demonstrated that expo-
sure to VID400 alone stabilized the levels of endogenously 
produced calcitriol.

It has been shown that VID400 results in increased expres-
sion of Cyp24 (451,52). CYP24 catalyzes the metabolism of 
calcidiol and calcitriol. The activity is regulated by a negative 
feedback loop dependent on calcitriol concentration, resulting 
in decreased calcitriol levels. It has previously been suggested, 
that in cancer cells, particularly in prostate cancer, a rapid 
breakdown of calcitriol levels is caused by an overactive 
CYP24 (53). The combination of the CYP24 inhibitors tested 
with imatinib, resulted in increased levels of calcidiol levels. 
These results suggest that besides the inhibition of CYP24 by 
VID400, the activity of CYP27B1 is impaired by imatinib, 
resulting in an intracellular accumulation of calcidiol. This 
is in concordance with a previous in vivo study, where it was 
shown that imatinib is metabolized by various liver CYP450 
isoenzymes, mainly CYP3A4 and CYP3A5 (54). CYP3A4 is 
also known to be a human microsomal vitamin D 25‑hydroxy-
lase (55), similar to CYP27B1.

Isolated ketoconazole exposure resulted in increased 
calcidiol and decreased calcitriol levels, whereas the combi-
nation with imatinib increased the levels of calcidiol and 
calcitriol. Ketoconazole is also known to be a strong inhibitor 

Figure  3.  Synthesis of calcidiol (25‑OH‑VD3, white bars) and cal-
citriol  (1,25‑(OH)2‑VD3; black bars) in the HaCaT human keratinocyte 
cell line following incubation with cholecaliferol as a substrate. The 
cells were either untreated or treated with imatinib (1 µM) and inhibitors 
VID400 (200 nM) or ketoconazole (10 µM). The data are presented as the 
mean ± standard deviation of four experiments, in pg/1x106 cells for calcitriol 
and ng/1x106 cells for calcidiol.
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of CYP3A4 (56), resulting in poor metabolism of imatinib. 
Based on a drug interaction study, co‑administration of 
imatinib and inhibitors as well as inducers of CYP3A4 
activity (57), requires careful monitoring of the patients to 
rule out toxic side effects, or decreased TKI effects on the 
underlying CML.

To catalyze the 25‑hydroxylation step in the liver, at least 
six CYPs are involved in vivo, the most prominent ones being 
CYP27A1 and CYP2R1 (58). CYP27B1 is responsible for the 
renal 1α‑hydroxylation of vitamin D to hormonally active 
calcitriol. The vitamin D synthesis cascade is a complex 
system with numerous enzymes involved at diverse steps; 
therefore, various enzymes may be affected by imatinib. 
Imatinib, the inhibitors (VID400 and/or ketoconazole) and 
the substrates (cholecalciferol and/or calcidiol) may all 
compete for binding to one or more CYPs in keratinocytes, 
resulting in interference with vitamin D3 metabolism. The 
results of the present study clearly indicate a competitive 
inhibition of CYP27B1 by imatinib, as concomitant blocking 
of CYP27B1 with VID400 resulted in elevated levels of 
calcidiol, but decreased levels of calcitriol. However, the 
mechanism remains poorly understood, and additional 
studies are required.
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