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Abstract. The aim of the current study was to investigate the 
effects and mechanism of metformin in oxidative stress and 
p38 mitogen‑activated protein kinase (p38MAPK) expression 
in rat glomerular mesangial cells (MCs) cultured in a high 
glucose medium. Rat glomerular MCs (HBZY‑1) were cultured 
in complete medium and divided into the following five groups: 
Normal control (NC), high glucose (HG), metformin‑treated, 
SB203580‑treated (SB) and N‑acetylcysteine‑treated (NAC). 
The production of intracellular reactive oxygen species (ROS) 
in rat glomerular MCs was measured using flow cytometry. 
Superoxide dismutase (SOD) activity and malondialdehyde 
(MDA) content in the supernatant was detected using colo-
rimetric analysis and an ELISA, respectively. p22phox 
mRNA levels in rat glomerular MCs were determined using 
reverse transcription‑quantitative polymerase chain reac-
tion. The levels of p22phox protein and phosphorylated p38 
mitogen‑activated protein kinase (p‑p38MAPK) protein in rat 
glomerular MCs were determined by western blot analysis. 
Compared with the NC group, the activity of SOD in the 
supernatant was significantly reduced, whereas the levels of 
MDA in the supernatant, intracellular p22phox mRNA and 
protein, p‑p38MAPK protein in addition to ROS production 
in rat glomerular MCs were significantly increased in the 
HG group (P<0.05). When metformin was added to the high 
glucose medium, the activity of SOD in supernatant fluid 
was increased significantly, whereas a significant reduction 
(P<0.05) was observed in the levels of MDA in the superna-
tant, intracellular p22phox mRNA and protein, p‑p38MAPK 
protein in addition to ROS production in rat glomerular MCs. 

These results were similar to those obtained when SB203580 
or N‑acetylcysteine was added to the high glucose medium 
(P<0.05). In conclusion, metformin was suggested to alleviate 
high glucose‑induced oxidative stress and p‑p38MAPK protein 
expression in rat glomerular MCs, which may contribute to its 
reno‑protective abilities in diabetes.

Introduction

Diabetes is the primary cause of end‑stage renal disease (ESRD), 
which accounts for almost half of all new patients diagnosed 
with ESRD (1). The pathogenesis of diabetic nephropathy 
(DN) is complex and indefinite, involving metabolic disorder, 
activation of the renin‑angiotensin‑aldosterone system, 
alteration in glomerular hemodynamics, genetic susceptibility, 
oxidative stress, an inflammatory reaction and cytokine 
overexpression  (2‑8). Hyperglycemia has been reported to 
promote oxidative stress and the generation of ROS in vivo and 
in vitro (9,10). Increased levels of ROS result in direct oxidation 
and damage to DNA, protein, lipid and carbohydrate, and are 
hypothesized to have a key role in the pathogenesis of chronic 
diabetic complications (11,12), particularly DN (2). In addition, 
ROS have been reported to function as signaling molecules, 
mediating high glucose‑induced activation of signal transduc-
tion cascades and transcription factors, which in turns leads to 
transcriptional activation of profibrotic genes in the kidney that 
are essential for the development and progression of DN (13). 
A key protective mechanism against oxidative stress‑induced 
DN is mediated via antioxidant gene induction and/or oxida-
tive gene inhibition  (14). Previous studies have indicated 
that p38MAPK is involved in multiple signal transduction 
channels in the pathogenesis of DN, activation of which may 
promote cell proliferation, growth and differentiation (15,16). 
p38MAPK has been reported to be an essential downstream 
effector of NADPH oxidase 4 (Nox4) in the signaling pathway 
that is involved in high glucose and tubular cell injury (17). 
Metformin is an aminoguanidine derived hypoglycemic agent, 
which is commonly used in the management of diabetes (18). 
Multiple clinical trials have confirmed that metformin is able 
to reduce levels of protein oxidative end‑products, advanced 
glycation end products and ROS, in addition to its hypogly-
cemic activity (19‑21). However, it has not been previously 
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reported whether metformin is able to reduce oxidative stress 
by inhibiting the activity of p38MAPK. The aim of the present 
study was to investigate the inhibitory effects of metformin 
on high glucose‑induced oxidative stress and p38MAPK 
expression in rat glomerular mesangial cells (MCs), in order to 
elucidate its underlying reno‑protective mechanisms in vitro.

Materials and methods

Materials. Rat glomerular mesangial cells (HBZY‑1) were 
obta ined f rom China Center  for  Type Cultu re 
Collection (Wuhan, China). The following material, reagents 
and kits were used in the present study: Dulbecco's modified 
Eagle's medium (DMEM; HyClone Laboratories, Inc., Logan, 
UT, USA), fetal calf serum (HyClone Laboratories, Inc.), 
trypsin (HyClone Laboratories, Inc.), polyvinylidene fluoride 
(PVDF) membranes (EMD Millipore, Billerica, MA, USA), 
metformin (Sigma‑Aldrich, St. Louis, MO, USA), 4‑(4‑fluorop
henyl)‑2‑(4‑methylsulfinylphenyl)‑5‑(4‑pyridyl)‑1H‑imidazole 
(SB203580; Sigma‑Aldrich), N‑acetylcysteine (NAC; 
Sigma‑Aldr ich), 2',7 '‑dichloro‑f luoresceindiacetate 
(DCFH‑DA; Sigma‑Aldrich), phenylmethanesulfonyl fluoride 
(Sigma‑Aldrich), RevertAid First Strand cDNA Synthesis kit 
and PCR Master Mix (Thermo Fisher Scientific, Waltham, 
MA, USA), total superoxide dismutase (SOD) assay kits 
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China), 
ELISA kit for malondialdehyde (MDA) kits (USCN Life 
Science Inc., Wuhan, China), p22phox and GAPDH primers 
(Sangon Biotech Co., Ltd., Shanghai, China), MTT 
[(3‑4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium 
bromide; Invitrogen Life Technologies, Carlsbad, CA, USA], 
TRIzol reagent (Invitrogen Life Technologies) and electroche-
miluminescence (ECL) color developing reagent (Pierce 
Biotechnology, Inc., Rockford, IL, USA). In addition the 
following primary antibodies were used in the present study: 
Rabbit monoclonal primary anti‑p38MAPK (1:1,000; 
cat. no. 8690S; Cell Signaling Technology, Inc., Danvers, MA, 
USA), rabbit monoclonal anti‑phosphorylated p38MAPK 
(p‑p38MAPK; 1:1,000; cat.  no.  4631S; Cell Signaling 
Technology, Inc.), rabbit polyclonal anti‑p22phox (1:500; 
cat. no. sc‑20781; Santa Cruz Biotechnology, Inc. (Dallas, TX, 
USA), and monoclonal rabbit GAPDH (1:1,000; cat. no. 2118S; 
Cell Signaling Technology, Inc.). Goat anti‑rabbit horseradish 
peroxidase (HRP)‑conjugated secondary antibodies (1:1,000; 
cat. no. 7074) were purchased from Cell Signaling Technology, 
Inc.

Cell viability MTT assay. Rat MCs in the exponential growth 
phase were cultured in complete medium (DMEM supple-
mented with 10% fetal calf serum, 100 U/ml penicillin and 
100 µg/ml streptomycin; North China Pharmaceutical Group 
Corporation, Shijiazhuang, China) and then seeded into 
96‑well plates at a density of 5x103 cells/well. Different 
concentrations of metformin (2.5, 5.0, 10.0 and 20.0 mmol/l) 
were then added. The viability of cells was assessed using the 
MTT assay, as previously described (22) and the half maximal 
inhibitory concentration (IC50) of metformin was determined.

Cell culture and specimen collection. Rat MCs were cultured in 
complete medium (as above) in a humidified incubator at 37˚C 

and 5% CO2 and were subcultured every two days. The cells 
were seeded into 6‑well plates at a density of 1x106 cells/well 
and were divided into the following five groups: Normal 
control (NC; glucose concentration 5.6 mmol/l), high glucose 
(HG; glucose concentration 30 mmol/l), metformin‑treated 
(MET; glucose concentration 30 mmol/l + metformin final 
concentration 6.8 mmol/l), SB203580‑treated (SB; glucose 
concentration 30 mmol/l + SB203580 final concentration 
10 µmol/l) and NAC‑treated (NAC; glucose concentration 
30 mmol/l + NAC final concentration 100 µmol/l). Rat MCs 
and the supernatant were collected after centrifugation at 
1,500 x g for 5 min at 20˚C, following cell culture for 48 h at 
37˚C and 5% CO2.

Detection of intracellular ROS production in rat MCs by 
flow cytometry. Intracellular ROS production in rat MCs was 
analyzed fluorometrically by detecting the oxidation of the 
non‑fluorescent probes 2',7' ‑dichloro‑fluoresceindiacetate 
(DCFH) to the fluorescent metabolites dichlorofluorescein 
(DCF). Briefly, 10 µM DCFH‑DA was added to each well of 
MCs and the wells were incubated for 30 min at 37˚C. The 
oxidation of DCFH by ROS was determined by measuring 
the percentage of cells marked by DCF in a minimum of 
10,000 cells using a flow cytometer (Cytomics FC 500 MPL; 
Beckman Coulter, Brea, CA, USA) at excitation and emission 
wave lengths of 488 and 525 nm, respectively.

Colorimetric analysis of SOD activity in supernatant fluid. 
SOD activity in the supernatant fluid was determined by the 
xanthine oxidase method using SOD kits according to the 
manufacturer's instructions. Absorbance values of samples 
were determined at 550 nm using an ultraviolet spectropho-
tometer (UVmini‑1240; Shimadzu Corporation, Kyoto, Japan). 
According to enzymatic definition, when the inhibitory ratio 
of SOD in 1 ml supernatant reached 50%, the corresponding 
dose of SOD was considered a vitality unit, which represents 
the quantity of enzyme that can transform 1 µmol substrate in 
a minute under certain conditions.

Detection of MDA content in the supernatant fluid by ELISA. 
MDA content in the supernatant fluid was determined using 
ELISA kits for MDA according to the manufacturer's instruc-
tions. Absorbance values of samples were measured at 450 nm 
using an ultraviolet spectrophotometer (UVmini‑1240) and the 
MDA content (ng/ml) was determined.

Quantification of p22phox mRNA expression in rat MCs by 
reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA was extracted using the TRIzol reagent 
kit according to the manufacturer's instructions and quantified 
by measuring the absorbance at 260 nm. RNA quality was then 
determined by measuring the 260/280 nm ratio. Subsequently, 
first‑strand cDNA was synthesized from total RNA using 
a RevertAid First Strand cDNA Synthesis kit according 
to the manufacturer's instructions. The sequences of PCR 
primers used in the assays are as follows: p22phox forward, 
5'‑TCC​ACT​TAC​TGC​TGT​CCG​T‑3' and reverse,  5'‑TGG​
TAG​GTG​GCT​GCT​TGA​T‑3' (NM_024160; 185  bp); and 
GAPDH forward, 5'‑ACA​GCA​ACT​CCC​ATT​CTT​C‑3' and 
reverse, 5'‑TGG​TCC​AGG​GTT​TCT​TAC‑3' (163 bp). RT‑qPCR 
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was subsequently performed using SsoFast EvaGreen 
Supermix (Bio‑Rad Laboratories, Inc., Hercules, USA) and 
a CFX96™ Real‑Time PCR system (Bio‑Rad Laboratories, 
Inc.) according to the manufacturer's instructions. Reaction 
conditions for the PCR were as follows: Enzyme activation at 
95˚C for 30 sec followed by 35 cycles at 95˚C for 5 sec, 56˚C 
for 5 sec and 72˚C for 5 sec. The threshold cycle (Ct) value for 
each gene was normalized to the Ct value of GAPDH. The 
relative mRNA expression was calculated using the compara-
tive Ct (2‑ΔΔCt) method as previously described (23,24).

Detection of p22phox and p‑p38MAPK protein expression 
in rat MCs by western blot analysis. Rat MCs were rinsed 
twice with ice‑cold phosphate‑buffered saline (Bailunsi 
Biotechnology Co., Ltd., Tianjin, China) and lysed on ice with 
Cellytic M lysis buffer (Sigma‑Aldrich, St. Louis, MO, USA) 
supplemented with protease inhibitors (Sigma‑Aldrich) and 
phosphorylase inhibitors (Phosphatase Inhibitor Cocktail 2; 
Sigma‑Aldrich) for 30  min. Following centrifugation at 
12,000 x g for 5 min at 4˚C, total cell lysate extracts were 
collected and the protein content was determined using the 
protein assay (Beyotime Institute of Biotechnology, Shanghai, 
China). A total of 50  µg  total proteins were separated 
using SDS‑PAGE and transferred onto PVDF membranes. 
The membranes were blocked with 5%  non‑fat milk in 
Tris‑buffered saline containing 0.05% Tween 20 (Bailunsi 
Biotechnology Co., Ltd.) for 1 h and were then incubated with 
p22phox, GAPDH, p38MAPK or p‑p38MAPK monoclonal 
antibodies at 4˚C overnight, followed by incubation with a 
HRP‑conjugated secondary antibody for 1 h. Immunoblots 
were developed using ECL color developing reagent and the 
chemiluminescence image analysis system (Tanon 5500 Gel 
Imaging System; Tanon Science and Technology Co., Ltd, 
Shanghai, China) was used to quantitatively analyze the immu-
noblot results. The band intensity ratio of p22phox to GAPDH 
and p‑p38MAPK to p38MAPK represented the p22phox 
and p‑p38MAPK protein relative content respectively, while 
GAPDH or p38MAPK served as the internal reference.

Statistical analysis. A minimum of three repeats were 
conducted for each experiment. All data are expressed as the 
mean ± standard deviation and were analyzed with an analysis 
of variance using SPSS software, version 13.0 (SPSS, Inc., 
Chicago, IL, USA). For experiments in which only single 
experimental and control groups were used, the difference 
between groups was examined using an unpaired Student's 
t‑test. P<0.05 was considered to indicate a statistically signifi-
cant difference.

Results

ROS production in rat MCs. Compared with that of the NC 
group, ROS production in rat MCs was significantly increased 
in the HG group (P<0.05). In addition, ROS production was 
significantly reduced in the MET, SB and NAC groups, 
compared with that of the HG group (P<0.05) (Fig. 1).

SOD activity in supernatant fluid. Compared with that of the 
NC group, SOD activity in the supernatant was significantly 
reduced in the HG group (P<0.05). By contrast, SOD activity 

was significantly higher in the MET, SB and NAC groups, 
compared with that of the HG group (P<0.05) (Fig. 2).

MDA content in the supernatant fluid. Compared with that of 
the NC group, MDA content in the supernatant was signifi-
cantly increased in the HG group (P<0.05), whereas MDA 
content was significantly reduced in the supernatant of the 
MET, SB and NAC groups compared with that of the HG 
group (*P<0.05) (Fig. 3).

p22phox mRNA expression in rat MCs. Compared with that 
of the NC group, p22phox mRNA expression in rat MCs 
was identified to be significantly increased in the HG group 
(P<0.05); however, p22phox mRNA expression was signifi-
cantly reduced in the MET, SB and NAC groups compared 
with that of the HG group (P<0.05) (Fig. 4).

p22phox protein expression in rat MCs. Compared with that 
of the NC group, p22phox protein expression in rat MCs was 
significantly increased in the HG group (P<0.05). By contrast, 
p22phox protein expression was significantly reduced in the 
MET, SB and NAC groups compared with that of the HG 
group (P<0.05) (Fig. 5).

p‑p38MAPK protein expression in rat MCs. Compared with 
that of the NC group, p‑p38MAPK protein expression in rat 
MCs was observed to increase in the HG group (P<0.05); 
however, p‑p38MAPK protein expression was significantly 
reduced in the MET, SB and NAC groups compared with that 
of the HG group (P<0.05) (Fig. 6).

Discussion

Oxidative stress has been reported to be an important factor 
involved in the pathogenesis of diabetic complications, such 
as DN (25‑29). Diabetes is associated with an increase in the 
generation of ROS in the kidney (25,27‑29), which is involved 
in the accumulation of extracellular matrix in the MCs and 
glomerulosclerosis. Although there are various sources of 
ROS in cells and tissues, the major sources of ROS in renal 
cells were found to be the mitochondrial electron transport 
chain (30,31) and the Nox family (32,33). Nox4 and p22phox 
have been identified to be involved in high‑glucose‑dependent 
oxidative stress and fibronectin or collagen IV accumulation 
in MCs  (34,35). p22phox mRNA and protein expression 
were observed to be upregulated by high glucose in these 
cells in addition to glomeruli from diabetic animals (34,35). 
Xia et al (36) additionally reported that high‑glucose‑induced 
oxidative stress involved the ROS production by p22phox‑based 
Nox, which occurs due to the upregulation of p22phox protein 
in MCs. Increased cellular oxidative stress was previously 
demonstrated to act as a second messenger for cellular signaling 
pathways, which in turn activates numerous redox‑sensitive 
transcription factors, and results in cell membrane damage and 
the inactivation of enzymes (37). Human (2) and animal (38) 
studies have reported a significant reduction in the levels of 
SOD and catalase were observed in uncontrolled diabetes, 
whereas serum levels of MDA were found to be increased. In 
the current study, the activity of SOD in the supernatant of 
rat MCs was significantly reduced, whereas the level of MDA, 
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intracellular ROS production, p22phox mRNA and protein 
expression were all identified to increase when rat MCs were 

cultured in high glucose. This indicated that high glucose 
induced oxidative stress.

Figure 1. Flow cytometric analysis of rective oxygen species production in different experimental and control groups. (A) The oxidation of the non-fluorescent 
probes DCFH to the fluorescent metabolites DCF in every group. (B) The percentage of cells marked by DCF in a minimum of 10,000 cells in every 
group. The values are expressed as the mean ± standard deviation (∆P<0.05, vs. NC group; *P<0.05, vs. HG group). HG, high glucose; MET, metformin-
treated; SB, SB203580-treated; NAC, N-acetylcysteine-treated; NC, normal control; DCF, dichlorofuorescein; DCFH, 2’,7’-dichloro-fluoresceindiacetate.

  A

  B
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Previous studies have demonstrated that metformin, an oral 
hypoglycemic drug, exhibits antioxidative effects (19,39). A 
direct scavenging effect of metformin has also been reported, 
with studies identifying that metformin acts to remove oxygen-
ated free radicals and ROS generated in aortic endothelial cells, 
the mechanism of which was found to proceed via the reduction 

of Nox and/or mitochondrial respiratory chain pathways (40,41). 
In the current study, in vitro administration of metformin to 
cultured rat MCs significantly reversed the high glucose‑medi-
ated over‑production of MDA and intracellular ROS, reversed the 
overexpression of p22phox mRNA and protein levels as well as 
improved SOD activity. These results suggested that metformin 

Figure 3. MDA content in different groups. Values are presented as the 
mean ± standard deviation. ∆P<0.05 vs. the NC group; *P<0.05 vs. the HG 
group. MDA, malondialdehyde; HG, high glucose; MET, metformin‑treated; 
SB, SB203580‑treated; NAC, N‑acetylcysteine‑treated; NC, normal control.

Figure 5. Protein expression levels of p22phox in different groups. (A) The 
band intensity ratio of the protein expression levels of p22phox to GAPDH 
in every group. (B) The band intensity of the protein expression levels of 
p22phox and GAPDH in every group. The values are expressed as the 
mean ± standard deviation (∆P<0.05, vs.NC group; *P<0.05, vs. HG group). 
HG, high glucose; MET, metformin-treated; SB,SB203580-treated; NAC, 
N-acetylcysteine-treated; NC, normal control.

Figure 4. p22phox mRNA expression levels in different groups. Values 
are presented as the mean ± standard deviation. ∆P<0.05 vs. the NC group; 
*P<0.05 vs. the HG group. HG, high glucose; MET, metformin‑treated; SB, 
SB203580‑treated; NAC, N‑acetylcysteine‑treated; NC, normal control.

Figure 6. Protein expression of phosphorylated p38MAPK in different groups. 
(A) The band intensity ratio of p-p38MAPK to p38MAPK protein expres-
sion in every group. (B) The band of p-p38MAPK and p38MAPK protein 
expression in every group. The values are expressed as the mean ± standard 
deviation (∆P<0.05, vs. NC group; *P<0.05, vs. HG group.p38MAPK, p38 
mitogen-activated protein kinase; p-, phosphorylated; HG, high glucose; 
MET, metformin-treated; SB, SB203580-treated; NAC, N-acetylcysteine-
treated; NC, normal control.

Figure 2. SOD activity in different groups. Values are presented as the 
mean ± standard deviation. ∆P<0.05 vs. the NC group; *P<0.05 vs. the HG group. 
SOD, superoxide dismutase; HG, high glucose; MET, metformin‑treated; SB, 
SB203580‑treated; NAC, N‑acetylcysteine‑treated; NC, normal control.

  A

  A

  B

  B
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may act to reduce oxidative stress in high glucose‑stimulated 
rat MCs, thus leading to reno‑protection, which is in agreement 
with the results of previous studies (39,42).

Nishida et al (43) reported that ROS are able to induce the 
activation of p38MAPK in rat neonatal cardiomyocytes, which 
was in agreement with an additional study using 3T3‑L1 
adipose cells (44). ROS are also able to promote the activation 
of p38MAPK in rat MCs cultured in a high glucose medium, 
which was reversed by antioxidants (45). Song et al (46) iden-
tified that SB203580, a p38MAPK inhibitor, reduced MDA 
content and enhanced SOD activity in rats with spinal cord 
injury (46). In addition, various previous studies have observed 
that exposure of cells to H2O2 results in the activation of 
p38MAPK, which in turn mediates ROS‑induced senescence 
and oxidative stress‑induced autophagy (47‑49). The current 
study observed that oxidative stress marker expression levels 
and p‑p38MAPK protein in rat MCs cultured in a high glucose 
medium were increased compared with those of the NC group. 
These effects were reduced by the addition of SB203580 
(p38MAPK inhibitor) and NAC (antioxidant), indicating that 
ROS promotes activation of p38MAPK in rat MCs, which in 
turn mediates oxidative stress.

Bae  et  al  (50) reported that metformin resulted in 
the phosphorylation of p38MAPK in NCI‑H292 airway 
epithelial cells, while an additional study demonstrated that 
high‑dose metformin increased phosphorylation of p38MAPK 
protein (51). However, metformin has been observed to reduce 
paclitaxel‑elicited p38MAPK phosphorylation in non‑small 
cell lung cancer cells (52). Kappe et al (53) also confirmed that 
metformin significantly reduces the expression of p38MAPK 
in glucagon‑like peptide‑1‑secreting cells. The present study 
demonstrated that metformin alleviated the phosphorylation 
of p38MAPK protein in rat MCs, which may be partly respon-
sible for its effect in inhibiting oxidative stress in rat MCs 
stimulated by high glucose.

In conclusion, the current study demonstrated that oxida-
tive stress results in activation of the p38MAPK signaling 
pathway, which amplifies its cascade reaction to in turn stimu-
late oxidative stress. Metformin was suggested to be able to 
alleviate oxidative stress and phosphorylation of p38MAPK 
protein in MCs cultured with high glucose, which may explain 
the preventative ability of metformin in DN.
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