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Abstract. Metallothioneins (MTs) are metal‑binding proteins 
involved in diverse processes, including metal homeostasis 
and detoxification, the oxidative stress response and cell 
proliferation. Aberrant expression and silencing of these genes 
are important in a number of diseases. Several positive regula-
tors of MT genes, including metal‑responsive element‑binding 
transcription factor (MTF)‑1 and upstream stimulatory factor 
(USF)‑1, have been identified and mechanisms of induction 
have been well described. However, the negative regulators of 
MT genes remain to be elucidated. Previous studies from the 
group of the present review have revealed that the hematopoi-
etic master transcription factor, PU.1, directly represses the 
expression levels of MT genes through its epigenetic activi-
ties, and upregulation of MT results in the potent inhibition of 
myeloid differentiation. The present review focuses on PU.1 
and several other negative regulators of this gene, including 
PZ120, DNA methyltransferase  3a with Mbd3 and Brg1 
complex, CCAAT enhancer binding protein α and Ku protein, 
and describes the suppression of the MT genes through these 
transcription factors.
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1. Introduction

The metallothioneins (MTs) are a group of low molecular 
weight, cysteine‑rich intracellular proteins, which are involved 
in maintaining intracellular metal homeostasis by binding 
metals, including zinc and copper. There are 10 functional 
isoforms of MTs, which are divided into four classes, desig-
nated MT‑1 to ‑4, on the basis of small differences in protein 
sequence, expression and characteristics (1,2). They maintain 
transition metal ion homeostasis and redox balance, serve as 
anti‑oxidants and protect against DNA damage and apop-
tosis  (3). Reduced expression of MT has been observed in 
liver (4), colon (5) and prostate (6) cancer. It was suggested 
that during the transformation of normal colorectal tissue 
to adenomatous polyps and adenocarcinoma, a progressive 
decrease in the expression of MT occurs (7,8). The role of MT 
in these types of cancer remains to be elucidated, however, 
considering its anti‑oxidant activity and its protective potential 
against DNA damage, this reduction may increase suscepti-
bility to toxin‑induced damage. Indeed, an MT knockout in 
mice has been reported to induce a higher rate of induced 
carcinogenesis  (9). Conversely, aberrant overexpression of 
MT has been observed in various types of human cancer, 
including breast cancer, gallbladder cancer, melanoma and 
lymphoma (10‑13). It has been suggested that the overexpres-
sion of MT may protect cells from free radical‑induced DNA 
damage and lipid peroxidation (14). Overexpression of MT has 
been demonstrated to be important in drug resistance, since 
nuclear expression of MT protects DNA in ovarian cancer cells 
from the toxic effect of treatment with cisplatin (15). This indi-
cates that aberrant under/over‑expression of MT are important 
in various types of cancer.

A study revealed that the hematopoietic master transcrip-
tion factor, PU.1, directly suppresses the MT‑1A and MT‑1G 
promoter through DNA methylation and histone deacetylase 
(HDAC) activity  (16). Additionally, it was revealed that 
MT‑1A is suppressed, while the expression of PU.1 is induced, 
during 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑induced 
monocytic differentiation of THP‑1 cells (17). Notably, the 
suppression of MT‑1s by PU.1 is required for the proper differ-
entiation of myeloid cells. 

Although there are several reviews regarding the regula-
tion of the MT gene (18‑20), reviews regarding the suppressive 
regulation of MT genes are relatively scarce. Therefore, this 
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review summarized the regulation of MT genes and particu-
larly focused on PU.1 and other suppressive regulators of the 
MT genes.

2. Positive regulators of MT genes

The basal activity of MT is regulated by several general tran-
scription factors, including the TFIID complex comprising 
TATA‑binding protein (TBP), TBP associated factors and 
Sp1 (18‑20). In addition, MT can be activated by a variety 
of stimuli, including metal ions, cytokines and growth 
factors  (1). Several inducible expression regulators of the 
MT genes have been identified, including metal‑responsive 
element (MRE)‑binding transcription factor (MTF)‑1 (21,22), 
upstream stimulatory factor (USF)‑1 (23) and nuclear factor 
(NF)1 (24). Since a number of reviews summarize the details 
of the positive regulation of MT genes (18‑20), the present 
review describes the above essential factors.

The MTF‑1 gene is a central regulator of the metal‑inducible 
expression levels of MT‑1 and MT‑2. In addition to zinc, other 
heavy metals (e.g. cadmium), hypoxia, oxidative stress, stress 
hormones (glucocorticoids), nitric oxide and high tempera-
ture induce the transcriptional activity of MTF‑1  (25‑28). 
Andrews et al (23) reported that MTF‑1 is essential for the 
upregulation of the gene expression of MT‑1 in visceral endo-
derm cells and that optimal expression is dependent upon the 
interactions of the basic helix‑loop‑helix transcription factor, 
USF ‑1, with an E‑box‑1 containing sequence at ‑223 bp in the 
MT‑1 promoter (23).

NF1 is a protein expressed ubiquitously in higher eukary-
otes, and distinct highly conserved genes encode four isoforms 
of the NF1 protein (NF1‑A, NF1‑B, NF1‑C and NF1‑X) (29‑31). 
NF1 binding sites were identified in various MT promoters, with 
the exception of MT‑IB (19). LaRochelle et al (24) previously 
demonstrated that NF1 binds to the mouse MT‑1 promoter 
in vivo and this binding is zinc inducible and MTF‑1 dependent. 
It was revealed by transient transfection assays into HepG2 
cells, that NF1 activates the mouse MT‑1 promoter. The authors 
demonstrated that NF1 and MTF‑1 synergistically activate 
the mouse MT‑1 gene in response to metal ions (24). However, 
Majumder  et  al  (32,33) previously demonstrated that NF1 
isoforms inhibit the activity of the MT‑1 promoter in HepG2 
cells. This is contradictory to the earlier study (24), however, 
this result may be due to the experimental condition in which 
Majumder et al have used extremely high expression levels of 
the NF1 vector, ~30‑ to 1000‑fold more vector compared with 
the earlier study (24). LaRochelle et al demonstrated that the 
expression levels of the transcriptionally active mutant of NF1 
reduced the zinc‑induced MT‑1 promoter by up to 50%, in a 
dose‑dependent manner and may also indicate that NF1 is a 
positive regulator of the gene expression of MT‑1 (24).

3. Negative regulators of MT genes

To date, several factors are reported to regulate the suppression 
of MT genes, including PZ120 (34), DNA methyltransferase 
(Dnmt) 3a with Mbd3 and Brg1 complex (35), C/EBP α (36), 
Ku protein (37) and PU.1 (16,17).

Tang et al (34), reported the cloning of a novel zinc finger 
protein with a molecular mass of 120 kDa (PZ120), through 
Southwestern cloning, which interacts specifically with the 
human gene transcription initiation site of MT‑2A. PZ120 is 
a ubiquitously expressed protein and possesses a conserved 
poxvirus and zinc finger (POZ) motif, which is a structure 
existing in several transcriptional repressors. This protein 
has been revealed to repress the transcription of the MT‑2A 
promoter (34).

Datta  et  al  (35) purified DNA methyltransferase 
(Dnmt) 3a from mouse lymphosarcoma cells and revealed 
that Dnmt 3a‑associated polypeptides identified the methyl 
CpG binding protein, Mbd3, histone deacetylase  1 and 
components of the Brg1 complex (35). A chromatin immuno-
precipitation assay reveled that Dnmt 3a, Mbd3 and Brg1 are 
associated with a transcriptionally silent methylated MT‑1 
promoter in the mouse lymphosarcoma cells. The authors 
further clarified that the catalytic activity of Dnmt3a was 
not important for the repression of the MT‑1 gene; however, 
ATP‑dependent chromatin remodeling of Brg1 was (35). It 
was also revealed that methylated and unmethylated MT‑1 
promoters are differentially regulated by several methyl 
CpG binding proteins, including methyl CpG binding protein 
(MeCP) 2 and Mbd1, 2 and 4 (38). 

CCAAT enhancer binding protein (C/EBP) is important 
in the terminal differentiation of cells, particularly in myeloid 
cells and adipose cells (39). Yin et al (36) demonstrated that 
forced expression of C/EBPα decreased the expression levels 
of the MT isoforms 1A, B, F and H, and 2A and 3 in prostate 
cancer cells, and that this suppression is mediated through 
its promoter activity. Furthermore, it was revealed that the 
forced expression of C/EBPα led to an increased cytotox-
icity of zinc in prostate cancer cells (36). However, in human 
hepatocellular carcinoma cells, the inactivation of C/EBPα 
through the activation of phosphatidylinositol 3‑kinase led 
to the downregulation of the expression of MT (4). Therefore, 
the role of C/EBPα in the gene regulation of MT may differ 
among tissues.

It was previously reported that the large subunit (p80) 
of the Ku protein contained repressor activity for the MT‑1 
promoter (37). Additionally, it was revealed that this repres-
sion is due to the hypermethylation of a CpG island in the 
MT‑1 promoter (40).

Rodent and human MT genes contain CpG islands in their 
promoter (19,41). It was first reported in 1981 that DNA meth-
ylation controls the inducibility of the mouse MT‑1 gene (42). 
Since then, >100 studies have been published demonstrating 
that the MT promoter is regulated by DNA methylation in 
its promoter region. Arriaga et al (43) demonstrated from 
the analysis of colorectal cancer, that the mRNA expression 
levels of five isoforms (MT‑1G, 1E, 1F, 1H and 1M) were 
lost during the transition from normal mucosa to tumor, 
whereas MT‑1X and MT‑2 were less downregulated and their 
expression was correlated with overall protein positivity. It 
was also demonstrated that hypermethylation of the MT‑1G 
gene occurred in cell lines and in 29% of tumor samples. 
Faller et al (44) analyzed specimens from patients with mela-
noma and demonstrated that in 1/17 (6%) of the benign naevi, 
16/43 (37%) primary tumors and 6/13 (46%) of metastases 
exhibited MT‑1E gene methylation. Peng et al (45) revealed 
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using quantitative pyrosequencing, unique DNA methylation 
profiles in the MT‑3 promoter region in esophageal adeno-
carcinomas (EACs). This previous study concluded that 
EACs are characterized by frequent epigenetic silencing of 
the MT‑3 gene. In addition, in colon cancer, not only DNA 
methylation (41,43), but the loss of heterozygosity (5) is also 
important in the downregulation of the MT genes (MT‑1F, 
MT‑1G, MT‑1X and MT‑2A).

4. PU.1‑a master hematopoietic transcription factor 
previously identified as a novel negative regulator of 
MT‑1s

A previous study revealed that MT‑1s genes are epigenetically 
suppressed by the activity of PU.1 (16). PU.1 is a hematopoi-
etic master transcription factor, predominantly expressed in 
immature myeloid cells and B cells, and downregulation of 
this factor is important in various hematological malignan-
cies (46,47). To identify downstream target genes of PU.1, 
the authors generated cell lines expressing reduced levels of 
PU.1 by stable transfection of PU.1 short inhibitory RNAs into 
K562 human myeloid leukemia cells (K562PU.1KD cells) and 
PU.1‑overexpressing K562 cells (K562PU.1OE cells). Dual 
microarray analyses were performed using these cell lines. 

Notably, the expression levels of all the functional MT isoforms 
expressed in humans (MT‑1A, ‑B, ‑E, ‑F, ‑G, ‑H and ‑X and 
MT‑2) were increased by varying degrees in the K562PU.1KD 
cells. Furthermore, there were negative correlations between 
the mRNA expression of PU.1 and the mRNA expression of 
the MT‑1s in 43 primary specimens from patients with acute 
myeloid leukemia (AML). Additionally, it was revealed that 
PU.1 directly binds and epigenetically suppresses the MT‑1s 
promoter, in concert with MeCP2, through the suppression 
of the enzymatic activities of HDAC and Dnmt. The propor-
tion of the methylated CpG sites is tightly associated with the 
expression levels in MT‑1s promoters (16). Next, the authors 
examined whether the expression levels of PU.1 and MT‑1A 
are indeed correlated with each other, and whether the expres-
sion of MT‑1A is regulated by PU.1 during TPA‑induced 
THP‑1 monocyte differentiation. As a result, it was revealed 
that the expression of MT‑1s is suppressed during monocytic 
differentiation in the THP‑1 cells (17). Chromatin immunopre-
cipitation analysis demonstrated that PU.1 and MeCP2 bind 
to the same region in the MT‑1A promoter, and the binding of 
these proteins to this promoter was increased during differen-
tiation. Consistently, the proportion of methylated CpG sites 
was markedly increased during differentiation (17). These 
results suggest that MT‑1s are repressed through the epigenetic 
activity of PU.1 in hematopoietic cells.

Figure 1. Schematic presentation of the negative and positive regulators of MT. Dotted line indicates a possible interaction. The indicated numbers in brackets 
are the references cited in this review. MT, metallothionein; Dnmt3a, DNA methyltransferase 3a; Mbd3, methyl‑CpG‑binding domain protein 3; PZ120, zinc 
finger protein with a molecular weight of 120 kDa; C/EBPα, CCAAT‑enhancer‑binding protein α; NF1, nuclear factor 1; MTF‑1, metal regulatory transcription 
factor 1; USF‑1, upstream transcription factor 1.



TAKAHASHI:  METALLOTHIONEIN GENE REGULATION798

5. Conclusion

The positive and negative regulators described in this review 
are summarized in Fig. 1. The consequences of these MT gene 
regulations have been reported to be through the normal physi-
ological aspects to disease, including inflammation, aging and 
malignancies (1,3,48,49). It was recently demonstrated that the 
overexpression of MT‑1G potently inhibited the retinoic acid 
induced myeloid differentiation of NB4 acute promyelocytic 
leukemia cells  (50). This is consistent with the literature, 
suggesting that the downregulation of PU.1 is the cause of 
AML (46) and results in the overexpression of MT, leading to 
the inhibition of differentiation, which is important in leuke-
mogenesis.

MTs are multifunctional proteins and exhibit different 
biological behavior in different tissues. Therefore, further 
clarifying the underlying mechanisms and the roles of MT, 
may lead to an improved understanding of the biology of 
normal physiology and malignancies from another aspects.
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