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Regulation of gene expression in rats with spinal cord injury
based on microarray data
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Abstract. The present study aimed to investigate the molec-
ular mechanisms of spinal cord injury (SCI) in rats. First,
the differentially expressed genes (DGEs) were screened
based on GSE45006 microarray data downloaded from
Gene Expression Omnibus using the significant analysis of
microarray (SAM) method. Screening was performed for
DEGs which were negatively or possibly correlated with time
and subsequently subjected to gene ontology (GO) functional
annotation. Furthermore, pathway enrichment analysis using
the Kyoto Encyclopedia of Genes and Genomes was also
performed. In addition, a protein-protein interaction (PPI)
network was constructed using the Search Tool for the Retrieval
of Interacting Genes/Proteins database. Finally, GeneCodis
was used to seek transcription factors and microRNAs that
are involved in the regulation of DEGs. A total of 806 DEGs
were upregulated and 549 DEGs were downregulated in the
rats with SCI. Cholesterol metabolism-associated genes (e.g.
HMGCSI, FDFTI and IDII) were negatively correlated with
time, while injury genes (e.g. SERPINGI, CIS and RAB27A)
were positively correlated with time after SCI. PCNA, MCM2,
JUN and SNAP25 were the hub proteins of the PPI network.
The transcription factors LEF1 and SP1 were observed to
be associated with the regulation of two DEGs that were
involved in the cholesterol-associated metabolism as well
as injury responses. A number of microRNAs (e.g. miR210,
miR-487b and miR-16) were observed to target cholesterol
metabolism-associated DGEs. The hub genes PCNA, MCM?2,
JUN and SNAP25 presumably have critical roles in rats with
SCI, and the transcription factors LEF1 and SP1 may be
important for the regulation of cholesterol metabolism and
injury responses following SCI.
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Introduction

Spinal cord injury (SCI) refers to any injury to the spinal cord,
and the symptoms may vary widely, from pain to paralysis to
incontinence. The more serious and profound consequences
of SCI are microscopic events following initial tissue injury,
including inflammation, necrosis, apoptosis and glial scar
formation (1). Microarrays have been used to unveil the short-
and long-term responses to SCI at the molecular level, which
identified rapid expression of immediate early genes after SCI,
followed by genes associated with inflammation, oxidative
stress, DNA damage and cell cycle (2-6). Transcription factors,
particularly those involved in cell damage and death, including
nuclear factor kappa B, c-JUN and suppressor of cytokine
signaling 3 were also observed to be upregulated (7). Several
of the above findings have been proven by using experimental
methods (8-10); thus, data from DNA microarray analysis can
be reliable and useful for discovering novel targets for neuro-
protective or restorative therapeutic approaches.

In addition, microRNAs (miRNAs) that can post-tran-
scriptionally regulate the entire set of genes exhibited altered
expression following traumatic SCI (11). Previous studies
have suggested that miRNAs may act as mediators of neural
plasticity (12) and possibly be involvement in neurodegenera-
tion (13).

In the present study, microarray data (GSE45006) were
used to screen differentially expressed genes (DEGs). Based
on the screened DEGs, protein-protein interaction (PPI)
network was then constructed and the roles of transcription
factors and miRNAs in the regulation of DEGs were further
investigated with the objective to expand the current knowlege
on the molecular mechanisms of SCI.

Materials and methods

Microarray data. The raw microarray data (GSE45006) were
downloaded from the Gene Expression Omnibus database
(GEO; http://www.ncbi.nlm.nih.gov/geo/). The platform was
GPL1355 [Rat230_2] Affymetrix Rat Genome 230 2.0 Array.
Data from a total of 24 tissue samples from the epicenter area
of normal (n=4) and injured (n=20) rat thoracic spinal cords
(T7) were used, and the latter contained four samples from rats
with spinal cord injury after one day, three days as well as 1,2
and 8 weeks, respectively.
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Microarray data pre-processing and screening of DEGs. First,
the extracted expression microarray data were standardized
using the Robust Multiarray Averaging (RMA) method (14).
Using the Bayesian model-based method provided by the
Linear Models for Microarray (LIMMA) data package of
R/Bioconductor (15), gene expression values in the experi-
mental groups at the five time-points after spinal cord injury
were compared with those in the normal samples. Genes with
llog2 fold changel>1 and P<0.05 were regarded as DEGs.
Subsequently, with reference to Zhang et al (16), DEGs that
were significantly differentially expressed by at least two-fold
were selected as the spinal cord injury tag genes (referred
to as up-regulated genes and down-regulated genes below).
The screened DEGs were submitted to the Database for
Annotation, Visualization and Integrated Discovery (DAVID)
for Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis using the module functional
chart (P<0.05) (17).

Screening of SCl-induced time-associated genes and func-
tional annotation. Changes in gene expression levels reflected
by the microarray may be caused by either biological factors
or the background noise (4). To exclude the influence of
background as far as possible, the standard deviation of the
expression value of each gene was calculated. Assuming
that a larger standard deviation cannot be solely caused by
abiotic factors such as background noise, genes were screened
according to the value of standard deviation by retaining those
with top 30% standard deviations. Through comparing several
times, screening the top 10, 15, 20 and 30% DEGs, it was
confirmed that this threshold was able to sufficiently balance
the specificity and sensitivity.

The Pearson correlation coefficient between the expression
levels of screened gense and the time after spinal cord injury
was calculated using R/Bioconductor software, with P=0.01
defined as the significant correlation level. As the sample size
was 24 in the present study, the correlation coefficient was
approximated to be >0.5 or <-0.5 at this significance level.
Positively and negatively DEGs meeting this criterion were
submitted to DAVID to analyze the enriched gene ontology
(GO) biological processes.

Construction of a protein-protein interaction (PPI) network.
To elucidate the interaction of the DEGs, the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) data-
base was utilized to build an interaction network of encoding
products of DEGs (18). A STRING score of 0.4 was set as
the reliability threshold. The obtained results were drawn into
a network by Cytoscape software, version 2.8 (Institute of
Systems Biology, Seattle, WA, USA). The degree of interaction
of each gene in the network was calculated.

Prediction of regulatory factors of DEGs. The DEGs were
submitted to GeneCodis (19) to evaluate which transcription
factors have binding sites to DEGs (data source, Transfac) at
the significance level using the Fisher's exact test, in order
to predict whether the corresponding transcription factor is
in an activated or suppressed state, taking the value of 0.05
divided by the number of tested transcription factors as the
significance threshold. Similarly, Fisher's exact test was used
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to evaluate which miRNAs enrich down-regulated DEGs to
speculate which function they have in SCI, taking the value of
0.05 divided by the number of tested miRNAs as the signifi-
cance threshold.

Results

Screening and biological pathway enrichment analysis of
DEGs. In total, 806 upregulated DEGs and 549 downregu-
lated DEGs were screened. According to the KEGG biological
pathway enrichment analysis, it was found that the upregulated
DEGs were significantly enriched in 13 pathways (P<0.05),
including lysosome, complement and coagulation cascades
and extracellular matrix-receptor interaction (Table I).
However, none of the downregulated DEGs were enriched in
any pathways.

Gene expression over time after SCI. Correlation analysis
revealed that the levels of 314 DEGs were enhanced with
increasing time after SCI (correlation coefficient >0.5), while
the expression levels of 253 DEGs were decreased over time
(correlation coefficient <-0.5).

Through GO annotation, it was found that DEGs with
expression levels negatively correlated with time after SCI were
mainly cholesterol metabolism-associated genes (Table ITA),
including CYP51, EBP, HMGCR, DHCR7, HMGCSI, MVK,
IDII and FDFTI, whereas those with expression levels posi-
tively correlating with time were mainly involved in injury
response (Table IIB), including SERPINGI, CI1S, ENTPD2
and RAB27A. According to the heatmap (Fig. 1), it was found
that the expression levels of cholesterol metabolism-associated
DEGs peaked on day three after injury and then dropped
constantly, while the injury response-associated DEGs were
gradually upregulated after injury and peaked at the 8th week
(Fig. 2).

Construction of a PPI network. According to the constructed
PPI network, there were at least two sub-networks, and most
proteins in the two sub-networks were upregulated. JUN and
SNAP25 as well as PCNA and MCM?2 were the hubs of the
two sub-networks, respectively (Figs. 3 and 4). Among them,
SNAP25 was downregulated, while JUN, PCNA and MCM
were upregulated.

Regulation of DEGs screened in rats with SCI. Transcription
factors were observed to participate in the up- and downregu-
lation of DEGs. A total of 185 and 1,215 transcription factors
were screened for the up- and downregulated DEGs, respec-
tively. Among them, the top three transcription factors with
affinity for binding sites in the upregulated DEGs were SP1
(102 target DEGs, P=5.22477x10"%), MAZ (87 target DEGs,
P=1.36x10""") and LEF1 (81 target DEGs, P=5.58x10""),
respectively. The top three transcription factors with affinity
for binding sites in the downregulated DEGs were LEF1
(87 target DEGs, P=6.05x10"%?), E12 (85 target DEGs,
P=1.14x10"%), and MAZ (79 target DEGs, P=2.89x102"),
respectively. LEF1 and SP1 were observed to have target DEGs
that were involved in cholesterol-associated metabolism (e.g.
FDFTI and HMGCS]I) and in injury responses (e.g. C1S and
RAB27A). Further transcription factors, NFAT, AP4, SREBP1
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Figure 1. Expression profiles of injury-associated genes. The horizontal axis represents the time after spinal injury, and the vertical axis represents a specific
gene (a darker red indicates a stronger upregulation in expression and a darker blue indicates a stronger downregulation in expression).
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Figure 2. Expression profiles of cholesterol metabolism-associated genes. The horizontal axis represents time following spinal injury, and the vertical axis
represents a specific gene (a darker red indicates a stronger upregulation in expression and a darker blue indicates a stronger downregulation in expression).
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Figure 3. Sub-network of protein-protein interaction. The red circles represent upregulated proteins and the blue circles represent downregulated proteins. The

size of a protein is determined by the degree of its connection to other proteins.

and STATS5B, were also observed to target upregulated DEGs
that were involved in injury responses, and NFY, TATA and
MEISI1 were observed to target downregulated DEGs that
were involved in cholesterol metabolism.

In addition, 151 miRNAs were predicted for the down-
regulated DEGs. miR-429 was indicated to regulate 26
downregulated DEGs (P=1.52x10"""), and miR-200a and
miR-141 regulated 23 downregulated DEGs each, with P-values
of 8.7x10® and 1.4x10°8, respectively. In addition, a number of
miRNAs, including miR-16, miR-210, miR-15b, miR300-3p,
miR-540, miR-325-5p and miR-487b, were observed to have
target DEGs involved in cholesterol-associated metabolism,
e.g. IDII and FDFTI.

Discussion

In the present study, JUN, SNAP25, PCNA and MCM?2 were
the hub nodes in the constructed PPI network. The JUN family
protein members c-JUN, JUNB and JUND are necessary for
the assembly of the AP-1 (20) transcription factor complex.
The major component, c-JUN, is highly induced in response
to neuronal injury, which is mediated by C-JUN N-terminal
kinase 1 (JNK) via phosphorylation (21,22). This explains

for the upregulation of JUN observed in the present study,
confirming the neuronal injury after SCI. SNAP25 is a compo-
nent of the trans-SNARE complex, relating to membrane
fusion (23), which has been reported to ameliorate the sensory
deficit in rats with SCI (24). The downregulation of SNAP25
expression in the present study may therefore be associated
with the sensory deficit after SCI.

PCNA is a DNA clamp that acts as a processivity
factor for DNA polymerase delta with the help of RFC in
eukaryotic cells; thus, it is essential for DNA replication and
repair (25-27). PCNA was observed to be upregulated in the
present study, which is consistent with the results of previous
studies by Ding et al (28) and Di Giovanni et al (6) who have
reported an upregulation in PCNA expression after SCI by
using western-blot and RT-qPCR analyses. Mini-chromosome
maintenance protein 2 (MCM2) protein is one of the highly
conserved MCMs, which form the hexameric protein
complex that is involved in the initiation and the elongation
of eukaryotic genome replication, particularly the formation
and elongation of the replication fork (29,30). The upregula-
tion of PCNA and MCM?2, two DNA replication-associated
factors, indicates the effort of cells to repair DNA and regen-
erate themselves, further demonstrating neuronal damage
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Figure 4. Sub-network of protein-protein interaction. The red circles represent upregulated proteins and the blue circles represent downregulated proteins. The

size of a protein is determined by the degree of its connection to other proteins.

and death after SCI. Di Giovanni et al (6) have proven that
PCNA, together with other cell cycle-associated genes, is
involved in the neuronal damage and subsequent cell death
after SCI.

Several studies have reported the disturbed cholesterol
metabolism in spinal cord-injured patients (31,32). In the
present study, the downregulation of cholesterol metabo-
lism-associated genes over time was observed following
SCI. Previous studies have reported the regulatory role of
miRNAs in lipid and cholesterol metabolism, particularly
miR-33 (33,34). According to the present study, several
miRNAs were observed to target cholesterol metabolism-asso-
ciated DEGs, including miR210, miR300-3p, miR-325-5p,
miR-487b and miR-16. A common target DEG of the former
four was IDI1, and that of the latter was FDFTI, which are
cholesterol biosynthetic enzyme genes that have also been
reported to be expressed at reduced levels in the stroke-prone
hypertensive rat (SHRSP) with lower total cholesterol levels
in the serum. Therefore, these miRNAs are also indicated
to have important roles in the regulation of cholesterol and
sterol biosynthesis after SCI, which requires further experi-
mental verification. miR-429, miR-141 and miR-200a belong
to the same miR-200 family. Benoit et al (35) have reported
the upregulation of rno-miR-200a in rats on a high-fat diet.
Thus, it is presumed that there may be a certain correlation
between rno-miR-200a and the downregulation of cholesterol
metabolism-associated genes over time. However, no targets of

miR-200a, miR-429 and miR-141 were observed in the choles-
terol metabolism-associated DEGs observed in the present
study, which may be attributed to the small sample size of the
microarray used. Hence, whether this miRNA family may
have a regulatory role in lipid metabolism, particularly in the
cholesterol/sterol metabolism, requires further investigation.
The transcription factors LEF1 and SP1 were observed
to be associated with the regulation of the DEGs that were
involved in cholesterol-associated metabolism and in injury
responses; thus, it may be presumed that these two transcrip-
tion factors have critical regulatory roles in gene expression
after SCI. SP1 is a ubiquitous transcription factor. It has been
reported to activate the LCAT promoter, which modulates
the transportation rate of cholesteryl ester to the liver (36).
Furthermore, it was observed that one of the target DEGs of
SP1 was RAB27A, which is involved in the injury response,
suggesting its role in the regulation of injury-associated
DEGs after SCI. This agrees with the finding that SP1
or SPl-associated proteins are involved in regulating the
expression of peripherin intermediate filament gene, which is
activated after nerve injury via binding to the intron 1 site (37).
Thus, whether SP1 functions in the same way in regulating
injury-associated genes after SCI should be further validated.
LEF1 is a member of the LEF-1/TCF family of transcrip-
tion factors, which functions by interacting with cytosolic
[-catenin to form a transcription complex that activates the
Wnat signaling pathway (38). Functional TCF/LEF1 signaling
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has been reported to regulate lipid metabolism (39). In the
present study, LEF1 was observed to downregulate DGEs that
were involved in cholesterol-associated metabolism; thus, it
is consistent with the previous finding that the Wnt signaling
pathway is attenuated after SCI (40). In addition, LEF1, which
participates in the Wnt signaling pathway, is highly expressed
in the oligodendrocyte precursor cells (OPCs) after neonatal
brain injury (41). In the present study, one of the target DEGs
of LEFI1, CIS, which is involved in complement systems,
was observed to be upregulated, confirming its role in injury
responses after SCI.

In conclusion, the present study revealed that expression of
cholesterol metabolism-associated DEGs was downregulated
over time, while injury-associated DEGs were upregulated
over time after SCI. Furthermore, the hub genes PCNA,
MCM?2, JUN and SNAP25 presumably have critical roles in
rats with SCI, and the transcription factors LEF1 and SP1 may
be important for the regulation of cholesterol metabolism and
injury responses after SCI.
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