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Abstract. Paeoniflorin is one of the active ingredients of 
the commonly used herbal medicine derived from Paeonia, 
which exhibits anticancer properties. MicroRNA‑16 (miR‑16) 
is upregulated in CD133- cells, but downregulated in CD133+ 
cells from glioma tissue. Matrix metalloproteinase‑9 (MMP‑9) 
expression in glioma tissue samples is significantly higher than 
that in healthy brain tissue samples. Therefore, miR‑16 and 
MMP‑9 expression may be associated with glioma pathogen-
esis. In the present study, the effects of paeoniflorin on glioma 
were analyzed. U87 cells were treated with paeoniflorin at 0, 
5, 10 and 20 µΜ concentrations. The results suggested that 
paeoniflorin inhibited U87 cell proliferation and accelerated 
cell apoptosis. In the present study paeoniflorin treatment 
increased miR‑16 expression and reduced MMP‑9 protein 
expression in U87 cells. Additionally, the results of the present 
study suggested that miR‑16 may regulate MMP‑9 expression 
in miR‑16‑transfected U87 cells. Furthermore, anti‑miR‑16 
antibodies were used in order to investigate the apoptotic 
effects of paeoniflorin on U87 cells. The results demonstrated 
that paeoniflorin inhibits proliferation and induces apoptosis 
of human glial cells, via miR‑16 upregulation and MMP‑9 
downregulation.

Introduction

Glioma is the most common type of intracranial neuroepithe-
lial tumor and the most aggressive primary tumor, exhibiting 
rapid growth rates (1). Furthermore, the 2‑year survival rate for 

patients with poorly differentiated glioma is only 10% (2,3). 
Glioma accounts for 44.6% of tumors in the central nervous 
system, with high recurrence and mortality rates (4). Survival 
times are low and mortality rates are high in patients with 
glioma, and the disease is associated with poor prognosis (5). 
Furthermore, the outcomes of radiotherapy treatment combined 
with chemotherapy do not improve patient prognosis (6).

Expression profiling analysis is an effective method 
used to demonstrate abnormalities in miRNA expression 
patterns  (7). Glioma exhibits a unique miRNA expression 
profile, which distinguishes it from the surrounding healthy 
brain tissue. Furthermore, miRNA expression profiles vary 
between the different stages of glioma (8). Compared with 
healthy brain tissue, 17 miRNAs, including miR‑21, ‑221, ‑222, 
‑125b and ‑10b, are overexpressed in glial cells, whereas 33 
miRNAs, including miR‑181a/b/c, ‑124, ‑137, ‑7 and ‑128, are 
downregulated in glial cells (9). Furthermore, six miRNAs 
(miR‑16, ‑107, ‑185, ‑425, ‑451 and ‑486) are upregulated in 
CD133- cells, but downregulated in tumorous glial stem cells 
(CD133+). Research has demonstrated that miR‑16 expression 
is markedly decreased in glioma cell lines compared with 
healthy cells and that the upregulation of miR‑16 may suppress 
glioma growth and invasiveness (10,11).

Transcription and expression levels of matrix metallo-
proteinase (MMP)‑2 and ‑9 are associated with the degree of 
malignancy in glioma (12). MMP‑2 and ‑9 may be used as an 
indicator of malignant human brain glioma (13). MMP expres-
sion predominantly modulates the local invasiveness of glial 
cells. Therefore, MMP‑2 and ‑9 expression may reflect the 
degradation of glima matrix (14). Studies have demonstrated 
that U251 multiform glioblastoma expresses MMP‑9 during 
cancer cell invasion (15,16). In addition, MMP tissue inhibitor 
treatment is capable of decreasing percentage cell invasion 
from 42 to 10% (17).

Paeoniflorin is an active ingredient of the commonly used 
herbal medicine derived from Paeonia (18). Pharmacological 
studies have demonstrated that paeoniflorin prevents free 
radical damage, inhibits intracellular calcium‑overload 
and exhibits anticancer activities, as well as exhibiting a 
number of biological effects, such as inhibiting cancer cell 
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proliferation, improving microcirculation, an prevents oxidi-
zation and convulsion (19). Paeoniflorin treatment induces 
human cervical cancer cell apoptosis via the upregulation of 
the pro‑apoptotic genes, Bax and caspase‑3, and the down-
regulation of the anti‑apoptotic gene, Bcl‑2 (20). Paeoniflorin 
inhibits H2O2‑induced apoptosis in SH‑SY5Y cells, reducing 
H2O2‑induced MMP expression changes. Paeoniflorin treat-
ment inhibits cluster of differentiation  147 expression in 
THP‑1 cells and reduces MMP‑9 secretion. In a previous 
study, the levels of transforming growth factor β1 and 
thymidylate synthetase were significantly higher in healthy 
samples compared with paeoniflorin‑treated samples, which 
corresponded with an improvement in sample histology. By 
contrast, MMP‑2 and ‑9 expression levels demonstrated the 
opposite results (21).

It is hypothesized that paeoniflorin may be useful for 
the treatment of glioma. The present study investigated the 
molecular mechanisms underlying the effects of paeoniflorin 
on glial cells. In order to test this hypothesis, the effects of 
different concentrations of paeoniflorin treatment on human 
glioma cells were analyzed.

Materials and methods

Primary reagents. The chemical structure of paeoniflorin 
is indicated in  Fig.  1. Paeoniflorin (98%; Sigma‑Aldrich, 
St. Louis, MO, USA) was dissolved in physiological saline 
solution. Dulbecco's modified Eagle's medium (DMEM), 
fetal calf serum and Lipofectamine 2000® were purchased 
from Invitrogen Life Technologies (Carlsbad, CA, USA). 
3‑[4,5‑dimethylthiazol‑2‑thiazolyl]‑2,5-diphenyl‑tetrazolium 
bromide (MTT) was purchased from Beyotime Institute of 
Biotechnology (Haimen, China).

Cancer cell lines. The U87 glioma cell line was purchased from 
the cell bank of the Chinese academy of sciences (Shanghai, 
China). U87 cells were cultured in DMEM, supplemented 
with 10% fetal calf serum, 100 U/ml penicillin and 100 mg/ml 
streptomycin at 37˚C and 5% CO2.

MTT viability assay. U87  cells (5.0x103  cells/well) were 
seeded in 96‑well culture clusters and incubated at 37˚C and 
5% CO2 in a humidified incubator, for 24 h. Following treat-
ment with different concentrations of paeoniflorin (0, 5, 10 and 
20 µΜ), cell viability was measured using an MTT assay. MTT 
(~10‑µl; 10 mg/ml) was added into each well and the wells 
were incubated at 37˚C and 5% CO2, for 4 h. Subsequently, 
200 µl dimethylsulfoxide was added to each well. The wells 
were then agitated for 10 min at room temperature. Viable 
cells were detected using an enzyme‑linked immunosorbent 
assay reader (SpectraMax® M5e, BioTek, USA) at 570 nm.

Caspase‑3 activity measurement. U87 cells (5.0x103 cells/well) 
were seeded in 96‑well culture clusters and incubated at 37˚C 
and 5% CO2 in a humidified incubator for 24 h. Following 
treatment with paeoniflorin, A549 cells (Cell Bank of the 
Chinese Academy of Sciences, Shanghai, China) were centri-
fuged at 16,000 x g for 15 min at 4˚C. Caspase‑3 activity of 
cells was measured using a colorimetric caspase‑3 assay 
kit (Beyotime Institute of Biotechnology). Protein extracts 

(50‑µg) were obtained from U87 cells and were incubated and 
added to a reaction buffer (Tianjin Hualida Biotechnology Co., 
Ltd., Tianjin, China), containing 85 µl assay buffer and 10 µl 
caspase‑3 substrate (Ac‑DEVD‑pNA) at 37˚C for 4‑6 h. The 
change was calculated at 405 nm using a microplate spectro-
photometer (BioTek Instruments, Inc., Winooski, VT, USA).

Apoptosis assay. Flow cytometry (BD Biosciences, Franklin 
Lakes, NJ, USA) was conducted in order to investigate 
whether paeoniflorin treatment induced U87 cell apoptosis. 
Following treatment with paeoniflorin, A549  cells were 
collected and washed twice with phosphate‑buffered saline 
(PBS). Annexin V‑fluorescein isothiocyanate (FITC; 5 µl; BD 
Pharmingen, San Diago, CA, USA) was added to the A549 cells 
and stained using a binding buffer for 30 min in the dark 
according to the manufacturer's instructions. Subsequently, 
10 µl propidium iodide (PI) was added to the cells and incu-
bated for 15 min at room temperature in the dark. Samples 
were then analyzed using flow cytometry (FACS Calibur; BD 
Biosciences).

MMP‑9 expression. Gelatin zymography assays were used 
in order to investigate whether paeoniflorin inhibits MMP‑9 
expression in U87 cells. Following treatment with paeoni-
florin, U87 cells were harvested and MMP‑9 protein was 
electrophoresed on a 10% SDS‑PAGE, containing 1% gelatin. 
Following gel electrophoresis, the gel was washed in 1.5% 
Triton X‑100 (Shanghai Biological Co., Ltd., Shanghai, China) 
for 0.5‑1 h and then washed in water. Gels were incubated in 
buffer (pH 8.0) at 37˚C for 12 h. Gels were then stained with 
0.2% Coomassie Brilliant Blue R‑250 dye (Qingdao Jacob 
Chemical Reagent Sales Co., Ltd., Shandong, China) for 
1 h. MMP‑9 protein expression was then quantified using a 
MiniBis system (DNR Bio‑Imaging Systems Ltd., Jerusalem, 
Israel) and prestained SDS‑PAGE standards (Hou‑Bio Tech. 
Ltd., Shandong, China).

Reverse transcription-quantitative polymerase chain reac‑
tion (RT‑qPCR) of miR‑16 expression. RT‑qPCR was used in 
order to investigate whether paeoniflorin treatment induced 
miR‑16 expression in U87 cells. Following treatment with 
paeoniflorin, total RNA was extracted from the cells using 
TRIzol® reagent according to manufacturer's instructions 
(Invitrogen Life Technologies). SuperScript® III Reverse 
Transcriptase (Invitrogen Life Technologies) was used to 

Figure 1. Chemical structure of paeoniflorin.
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analyze cDNA. and subsequently, SYBR® Green PCR Master 
mix (Life Technologies, Grand Island, NY, USA) was used 
to obtain the final cDNA. miR‑16 mRNA expression was 
quantified using an RT‑PCR kit (Invitrogen Life Technologies) 
according to the manufacturer's instructions and an 7900HT 
Real‑time PCR detection system. The following primers 
were used: 5'‑TAGCAGCACGTAAATATTGGC‑3' for 
miR‑16; 5'‑TGGTGTCGTGGAGTCG‑3' for β‑actin; U6, 
forward 5'-CGCTTCGGCACATATACTA-3' and reverse 
5'-CGCTTCACGAATTTGCGTGTCA-3'. The cycling condi-
tions were as follows: 94˚C for 10 min, 35 cycles of 94˚C for 
30 sec, 60˚C for 30 sec and 72˚C for 30 sec, followed by 73˚C 
for 5 min.

miR‑16 expression and anti‑miR‑16 transfection. miR‑16 
precursor and anti‑miR‑16 (Ambion Life Technologies, 
Carlsbad, CA, USA) were obtained from Sangon Biotech 
Co., Ltd. (Shanghai, China). U87  cells (5x105  cells/well) 
were cultured in 6 well plates and transfected with miR‑16 
precursor/anti‑miR‑16 (Ambion Life Technologies) using 

Lipofectamine 2000 (Invitrogen Life Technologies, Carlsbad, 
CA, USA) for 6 h, following treatment with 10 µM peaoni-
florin for 24 h. Subsequently, the transfection medium was 
replaced with DMEM containing 10% fetal bovine serum 
without antibiotic (Beijing Genetic Company, Beijing, China) 
in a humidified atmosphere at 37˚C with 5% CO2 for 18 h.

Statistical analysis. Experiments were performed at least three 
times and data are provided as the mean ± standard error. Data 
were analyzed by Student's t‑test using SPSS 17.0 software 
(SPSS, Inc,. Chicago, IL, USA). P<0.05 was considered to 
indicate a statistically significant difference.

Results

MTT analysis and caspase‑3 activity. In order to determine 
the effects of paeoniflorin on U87 cells, U87 cell viability was 
analyzed following treatment with paeoniflorin (0, 5, 10 and 
20 µΜ), using MTT assays. As shown in Fig. 2A, treatment with 
10 and 20 µΜ paeoniflorin for 24 or 36 h significantly reduced 

Figure 3. Flow cytometric analysis of cell apoptosis. (A) U87 cell apoptosis increased following paeoniflorin treatment for 24 h in a dose‑dependent manner, 
according to Annexin V-fluorescein isothiocyanate/PI and (B) U87 cell apoptosis following paeoniflorin treatment. *P<0.05 compared with the 0 µM paeoni-
florin treatment group. PI, propidium iodide.

  A

  B

Figure 2. 3‑(4,5‑Dimethylthiazol‑2‑thiazolyl)‑2,5‑diphenyl‑tetrazolium bromide analysis and caspase-3 activity. (A) Paeoniflorin treatment inhibited U87 cell 
growth in a dose-dependent manner and (B) paeoniflorin treatment led to a significant increase in caspase-3 activity. *P<0.05 compared with the 0 µM 
paeoniflorin treatment group.

  A   B
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U87 cell viability compared with control cells (P<0.05). Cell 
viability decreased in a time‑ and concentration‑dependent 
manner. Following paeoniflorin treatment  (0, 5, 10 and 
20 µΜ), caspase‑3 activity in U87 cells was analyzed using a 
caspase‑3 assay kit. As shown in Fig. 2B, treatment with 10 and 
20 µΜ paeoniflorin for 24 h significantly increased caspase‑3 
activity in U87 cells, compared with 0 µM treatment (P<0.05). 
Caspase‑3 activity increased in a concentration‑dependent 
manner in U87 cells.

Flow cytometric analysis and cell apoptosis. In order to inves-
tigate the effect of paeoniflorin on cell apoptosis, U87 cells 
were treated with different concentrations of paeoniflorin 
for 24 h. Flow cytometry assays demonstrated that paeoni-
florin exerted a dose dependent inhibitory effect on U87 cell 
growth (Fig. 3A). As demonstrated in Fig. 3B, treatment with 
10 and 20 µΜ paeoniflorin for 24 h significantly increased 
the U87  cell apoptosis compared with the 0  µM paeoni-
florin‑treated group (P<0.05).

Paeoniflorin‑induced inhibition of MMP‑9. In order to inves-
tigate the association between paeoniflorin‑induced U87 cell 
growth inhibition and MMP‑9 protein expression induc-
tion, gelatin zymography assays were conducted. As shown 
in Fig. 4A, the results of gelatin zymography assays suggested 
that paeoniflorin inhibited MMP‑9 protein expression in a 
dose‑dependent manner. As shown in Fig. 4B, treatment with 
10 and 20 µΜ paeoniflorin for 24 h significantly reduced the 
MMP‑9 protein expression in U87 cells compared with control 
cells (P<0.05).

Paeoniflorin induces miR‑16 expression. As shown in Fig. 5, 
paeoniflorin treatment promoted miR‑16 expression levels 
in a dose‑dependent manner. Treatment with 10 and 20 µΜ 
paeoniflorin for 24 h significantly increased miR‑16 expres-
sion levels in U87 cells, compared with control cells (P<0.05).

Overexpression of miR‑16 and MMP‑9 expression levels. In 
order to investigate the association between miR‑16 expres-
sion and paeoniflorin‑induced MMP‑9 protein expression, an 
miR‑16 precursor was transfected into U87 cells. As shown 
in Fig. 6A and B, miR‑16 upregulation led to significant inhibi-
tion of MMP‑9 protein expression.

Anti‑miR‑16 reverses the antitumor effects of paeoniflorin. An 
anti‑miR‑16 antibody was transfected into the U87 cells. The 

results indicated that miR‑16 expression was significantly lower 
in anti‑miR‑16‑transfected U87 cells compared with control 
cells (Fig. 7A). The anti‑miR‑16 antibody significantly reduced the 
anticancer effects of paeoniflorin treatment (10 µΜ) on U87 cell 
proliferation (Fig. 7B) and U87 cell apoptosis (Fig. 7C) at 24 h. 
The results of the present study suggested that anti‑miR‑29b 
may influence the anticancer effects of paeoniflorin (10 µΜ) via 
the downregulation of MMP‑9 expression (Fig. 7D).

Figure 5. Paeoniflorin activated miR-16 expression. Paeoniflorin treatment 
increased the expression of miR-16 in a dose-dependent manner. *P<0.05 
compared with the 0 µM paeoniflorin treatment group. miR, microRNA.

Figure 4. Paeoniflorin‑induced inhibition of MMP-9 expression. (A) According to gelatin zymography assays, MMP-9 activity was reduced in U87 cells 
following treatment with paeoniflorin for 24 h in a dose‑dependent manner. (B) MMP-9 protein expression. *P<0.05 compared with the 0 µM paeoniflorin 
treatment group. MMP‑9, matrix metalloproteinase‑9.

Figure  6. miR-16 overexpression and MMP-9 expression. (A)  miR-16 
precursor significantly elevated the expression of miR-16 and (B) transfec-
tion of miR-16 precursor led to a decrease in MMP-9 protein expression 
levels. *P<0.05 compared with the 0 µM paeoniflorin treatment group. miR, 
microRNA.
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Discussion

Malignant glioma is the most predominant type of primary 
brain tumor in adults with relatively high rates of recur-
rences  (22). Diffuse glioma cells are able to infiltrate the 
surrounding brain tissue, which is one of the most important 
characteristics of glioma (23). Therefore, novel approaches for 
glioma therapy are required.

Paeoniflorin, an active compound derived from the 
medicinal herb Paeonia, has been shown to exhibit a variety 
of biological effects (24). Paeoniflorin treatment may increase 
superoxide dismutase (SOD) levels and reduce malondialdehyde 
(MDA) content in ischemic brain tissue. It has been suggested 
that paeoniflorin treatment, following cerebral ischemia, may 
inhibit the production of free radicals, improve SOD activity 
and decrease MDA content in the brain. Therefore, paeoniflorin 
treatment may protect the brain from secondary neuron injury 
in patients with cerebral ischemia (25). A study has reported 
that paeoniflorin may modulate multidrug resistance of the 
human gastric cancer cell line, via the inhibition of nuclear 
factor (NF)‑κB activation (26). Paeoniflorin treatment may 
decrease MMP‑9 expression levels in human liver carcinoma 
cells. It inhibits human liver carcinoma cell growth, metastasis 
and invasion (27). The results of the present study suggested 
that paeoniflorin may be an effective agent for the inhibition of 
proliferation and induction of apoptosis in U87 cells.

The upregulation of MMP‑9 expression and the down-
regulation of p16 expression in glioma may be associated with 
tumor invasiveness. MMP‑9 expression was shown to be lower 

in non‑malignant astrocytoma cells, than in anaplastic astro-
cytoma and glioblastoma multiforme cells exhibiting high 
levels of malignancy (28). High levels of MMP‑9 expression 
may reflect the degree of malignancy and invasiveness in brain 
glioma. High MMP‑9 expression and low phosphatase and 
tensin homolog expression levels are indicators of increased 
glioma invasiveness. The combination of the two indices may 
be used as an important reference for diagnosis and prognosis 
for patients with glioma (14,29). The results of the present 
study demonstrated that paeoniflorin is associated with the 
expression of MMP‑9 in U87 cells.

miRs are involved in the development of a number of 
diseases, including cancer. They are typically underexpressed 
in cancer tissues and the inhibition of the expression of certain 
miRs may lead to the occurrence of cancer. A small number 
of miRs are overexpressed in cancer tissues and are associated 
with tumor genes. However, the majority of miRs are underex-
pressed in tumor tissues, serving as tumor suppressor genes in 
cancer (30). A number of experiments have demonstrated the 
involvement of miR‑16 as a tumor suppressor gene in glioma 
growth, via the inhibition of Bcl2 and the NF‑κB1/MMP‑9 
signaling pathway (10).

In the present study, treatment of U87 cells with paeoni-
florin resulted in a significant increase in miR‑16 expression 
levels. The results of the present study suggested that upregu-
lation of miR‑16 promotes MMP‑9 expression in U87 cells. 
Paeoniflorin treatment exerted anticancer effects against 
human glioma cells via upregulating miR‑16 and downregu-
lating MMP‑9 expression.

Figure 7. Anti-miR-16 reverses the antitumor effects of paeoniflorin. (A) Anti-miR-16 could significantly diminish the expression of miR-16 in U87 cells; 
(B) following treatment with paeoniflorin (10 µM) for 24 h, anti-miR-29b promoted cell proliferation; (C) following treatment with 10 µM paeoniflorin for 24 h, 
anti-miR-29b inhibited U87 cell apoptosis; and (D) anti-miR-16 significantly increased MMP-9 activity in U87 cells following 10 µM paeoniflorin treatment 
at 24 h. *P<0.05 compared with the 0 µM paeoniflorin treatment group, and #P<0.01 compared with the paeoniflorin-treated group transfected with negative 
control. miR, microRNA.

  A   B
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In conclusion, paeoniflorin may be useful for the treat-
ment of human glioma. The results of the present study 
demonstrated that paeonif lorin treatment may lead to 
decreased proliferation and increased apoptosis of human 
glioma cells (31). To the best of our knowledge, the results 
of the present study support the hypothesis that paeoniflorin 
may be an effective antitumor agent for the treatment of 
human glioma (32). Paeoniflorin inhibited MMP‑9 protein 
expression and promoted miR‑16 expression in U87 cells. 
Upregulating miR‑16 inhibited MMP‑9 protein expres-
sion levels in anti‑miR‑16‑transfected U87 cells. Therefore, 
miR‑16 is associated with the downregulation of MMP‑9 
expression in U87 cells. Paeoniflorin treatment appeared 
to inhibit proliferation and accelerate apoptosis of human 
glioma cells via miR‑16 upregulation and MMP‑9 expression 
downregulation. To the best of our knowledge this is the first 
study to suggest that paeoniflorin may inhibit proliferation 
and accelerate apoptosis of human glioma cells via miR‑16 
upregulation and MMP‑9 downregulation.
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