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Abstract. The present study reported the presence of a hepa-
titis B virus (HBV) major integration site (MIS) chr16: 51320015 
and discussed the significance of quantitative measurement of 
this site. A total of 30 hepatitis B e antigen (HBeAg) positive 
(+) and 30 HBeAg negative (‑) patients with chronic hepatitis B 
(CHB) were enrolled in the present study, and the levels of 
intrahepatic (IH) covalently closed circular DNA (cccDNA), 
serum HBV DNA and hepatitis B surface antigen (HBsAg) 
were detected. Conventional reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR) and Sanger sequencing 
were designed to verify the chr16: 51320015 integration site, and 
the copy numbers of this site were measured using molecular 
clone and SYBR Green I RT‑qPCR. This site was found to be 
present in the hepatocytes of all the enrolled patients, and the 
average number of copies was 1.46x10‑2±4.94x10‑2 copies/cell 
(3.48x10‑5‑0.212 copies/cell). No significant difference in the 
copy numbers of this site were observed between the HBeAg (+) 
(1.43±9.79x10‑1 copies/cell) and HBeAg  (‑) patients 
(6.58x10‑2±2.47x10‑2 copies/cell; P>0.05), which were posi-
tively correlated with the levels of serum HBsAg (P=0.0038), 
but were not correlated with the levels of IH cccDNA 
(P=0.7785). In conclusion, the chr16:51320015 integration site 
may be a novel site, which persists in a several patients with 
HBV infection, and may accumulate in the hepatocytes due to 
clonal expansion. The diagnostic and therapeutic values of this 
site require further investigation.

Introduction

In total, ~400,000,000 individuals are infected by hepatitis B 
virus (HBV) worldwide, which is a leading risk factor for 
hepatocellular carcinoma (HCC). During the process of 
HBV infection, certain HBV DNA molecules may enter the 
nuclei and integrate into the host chromosomal DNA, which 
is suspected to be one of the major etiological events in 
HBV‑induced HCC. Conventional polymerase chain reaction 
(PCR)‑based methods, including Alu‑PCR and inverse PCR, 
have technological limitations in detecting the presence of 
viral integration, resulting in only a small subset of inser-
tions, or only the insertions close to the targeted human or 
viral sequences being efficiently detected (1‑3). As a result, 
few HBV integration breakpoints have been found through 
these methods, and these findings may be of little oncogenic 
annotation.

With the rapid development of parallel sequencing tech-
nology, whole genome sequencing (WGS) has provided novel 
insight into HBV integration breakpoints in the HCC genome. 
Recently, through the application of WGS, several studies have 
reported a substantial number of unbiased and unprecedented 
HBV integrations, and a few frequently targeted genes in HCC 
including hTERT, MLL4 and CCNE1, have been identified 
simultaneously  (4,5). According to a previous study using 
WGS (6), the major integration site (MIS) (3), chr16: 51320015, 
was identified, and the present study aimed to detect the pres-
ence of this site in the hepatocytes of patients infected with 
chronic hepatitis B (CHB). Furthermore, the present study 
aimed to examine the significance of quantitative measure-
ments of chr16:51320015 in these patients.

Patients and methods

Patients and samples. In the present study, 30 hepatitis B e 
antigen (HBeAg)‑positive (+) and 30 HBeAg‑negative  (‑) 
patients with CHB were recruited from the Department of 
Infectious Diseases, Remin Hospital, Hubei University of 
Medicine (Shiyan, China). CHB was documented by the pres-
ence of HBV DNA in the serum for >6 months and a serum 
alanine aminotransferase level greater than twice the normal 
range (7). All patients were treatment‑naive. Patients who were 
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co‑infected with hepatitis D, hepatitis C or human immunode-
ficiency virus, or those with Wilson's disease, primary biliary 
cirrhosis or with a substantial daily alcohol intake (20 g/day 
for females; 30  g/day for males) were excluded from the 
investigation. Each patient signed an informed consent docu-
ment and the study was approved by the Ethics Committee of 
Remin Hospital. Following collection, liver biopsy specimens 
(~10 mg) were frozen in liquid nitrogen and stored at ‑80˚C, 
serum were stored at ‑30˚C, respectively, until experimental 
analysis.

IH HBV covalently closed circular DNA (cccDNA)  
quantification. DNA was extracted from biopsy specimens 
using a QIAamp® DNA Mini kit (Qiagen, Hilden, Germany). 
The levels of intrahepatic (IH) covalently closed circular DNA 
(cccDNA) were measured using reverse transcription‑quantita-
tive (RT‑q)PCR analysis, as described previously (8). β‑globin 
DNA (housekeeping gene) was detected using a LightCycler® 
Control kit DNA (Roche Diagnostics GmbH, Mannheim, 
Germany) in order to count the cell number in the biopsies and 
calculate the number of copies/cell.

Serum HBV DNA quantif ication. DNA was extracted 
from 200 µl serum using a QIAamp® DNA Blood Mini kit 
(Qiagen), and serum HBV DNA levels were measured using 
Cobas®TaqMan® RT‑qPCR, as described previously (Roche 
Diagnostics) (9).

Quantification of serum hepatitis B surface antigen (HBsAg). 
The levels of HBsAg were quantified using an enzyme immu-
noassay with the Abbott ARCHITECT platform (Abbott 
Laboratories, Abbott Park, IL, USA), according to the manu-
facturer's instructions. HBsAg >0.05 IU/ml was considered to 
indicate a positive result.

PCR and Sanger sequencing validation. Conventional 
PCR and Sanger sequencing were used to verify the chr16: 
51320015 integration site in the hepatocytes of the patients. 
PCR primers for a 305 bp fragment were designed based 
on WGS‑assembled sequences, in which one primer 
located in human genome and the other in HBV genome 
(forward 5'‑GTCTTGCCCAAGGTCTTA‑3' and reverse 
5'‑CAGATGGCGCACTAACAA‑3'). The PCR mix was 
prepared as follows: 1 µl DNA; 2 µl 10xTaq Buffer; 11.5 µl 
H2O; 2.5 µl dNTPs; 1 µl forward and reverse primers (10 µM, 
respectively); 1 µl hot start TaqTM enzyme (Takara Bio, Inc., 
Otsu, Japan). The following cycling conditions were used: 
Initial denaturation for 30 sec at 95˚C; 40 cycles of dena-
turation for 10 sec at 95˚C, annealing for 10 sec at 56˚C and 
extension for 14 sec at 72˚C, final extension for 7 min at 72˚C. 
The PCR products were electrophoresed through a 1% agarose 
gel, and then extracted and sequenced using Sanger sequencing 
(Shanghai Sangon Biology Engineering Technology and 
Service Co, Ltd., Shanghai, China). Finally the results of the 
sequencing were compared with HBV and the human genome 
using the Basic Local Alignment Search Tool (BLAST; http://
blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr).

Quantification of the chr16: 51320015 integration site. The 
PCR‑amplified fragment of the chr16: 51320015 integra-

tion site was retrieved from the 1% agarose gels (Biowest 
LLC, Kansas City, MO, USA) with 0.5  µg/ml ethidium 
bromide (Promega Corporation, Madison, WI, USA) using 
a QIAquick Gel Extraction kit (Qiagen) and inserted into a 
PMD 18‑T vector (Takara Bio, Inc.), which was electrotrans-
formed into Escherichia coli DH5α cells (Takara Bio, Inc.) 
successively, according to the manufacturer's instructions. 
Following proliferation in lysogeny broth culture medium 
containing 100  µg/ml Ampicillin at 37˚C for 16  h and 
blue‑white screening, the fragment containing the plasmid 
was extracted using a QIAfilter Plasmid Mini kit (Qiagen) 
and quantified using nanodrop  2000 spectrophotometry 
(Thermo Fisher Scientific, Waltham, MA, USA) at 260 nm. 
A series of quantification standards were made by diluting 
the plasmid in double distilled water. The standard dilu-
tions were 5x107, 5x105, 5x104, 5x103 and 5x102 copies/cell. 
Consequently, a 20 µl reaction volume was used, containing 
1 µl extracted DNA, 0.8 µl of the above‑mentioned forward 
and reverse primers (10 µM), 7.4 µl nuclease‑free water and 
10 µl 2X SYBR Green‑I (Takara Bio, Inc.). SYBR Green I 
RT‑qPCR was performed using a LightCyclerTM (Roche 
Diagnostics), and the fluorescence was determined at 72˚C. 
According to the measurement of β‑globin DNA, the numbers 
of chr16: 51320015 integration sites were detected and were 
compared as the number of copies/cell.

Statistical analysis. Statistical analyses were performed using 
SPSS 13.0 statistical software (SPSS, Inc., Chicago, IL, USA). 
Continuous variables are expressed as the mean  ± standard 
error of the mean and were analyzed using non‑paired 
Student's t‑tests. The levels of serum HBsAg (IU/ml) and HBV 
DNA (copies/ml) were logarithmically transformed prior to 
analysis. Categorical variables were compared using Pearson's 
χ2 test. Correlations were analyzed using Pearson's correlation 
coefficient. Two‑sided P<0.05 was considered to indicate a 
statistically significant difference.

Results

Baseline characteristics. The clinical, virological and sero-
logical characteristics of the patient groups used in the present 
study are listed in Table I. The HBeAg (+) patients, comprising 
26 males and four females) were aged between 12 and 59 years 
(35.4±7.4 years), and the HBeAg (‑) patients (23 males and seven 
females) were aged between 13 and 51 years (31.6±6.8 years; 
P>0.05). Serum HBV DNA levels were significantly lower in 
the HBeAg (‑) patients, compared with those in the HBeAg 
(+) patients (P=0.001), and the serum levels of HBsAg in the 
HBeAg (‑) patients were lower than those in the HBeAg (+) 
patients, although this was not a statistically significant differ-
ence (P>0.05).

IH cccDNA quantification. The lower limit of detection for IH 
cccDNA was 2.4x10‑4 copies/cell. The levels of IH cccDNA 
were detectable in 26 of the HBeAg (‑) patients and in all 
30 of the HBeAg (+) patients enrolled in the present study, 
and the number of copies was significantly higher in the 
HBeAg (+) patients (1.43±9.79x10‑1 copies/cell), compared 
with the HBeAg (‑) patients (6.58x10‑2±2.47x10‑2 copies/cell; 
P<0.0001; Fig. 1).
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Quantification of the chr16: 51320015 integration site. 
According to the results of the conventional RT‑qPCR 
and Sanger sequencing, the chr16: 51320015 integration 
site was present in the hepatocytes of all the patients 
enrolled in the presents study, the fragments of which were 
located in the 1,631‑1,807 nt of the HBV sequence and the 
51,320,015‑51,319,900 nt of the human sequence, respec-
tively (Figs.  2 and 3). The average level of this site was 
1.21x10‑2±3.07x10‑2 copies/cell (4.16x10‑5‑0.212 copies/cell). 
No significant difference was observed between The HBeAg 
(+) patients (1.05x10‑2±3.60x10‑3  copies/cell) and the 

HBeAg (‑) patients (1.37x10‑2±7.14x10‑3 copies/cell; P>0.05; 
Fig. 1).

Correlation analysis. The number of copies of the chr16: 
51320015 integration site were positively correlated with the 
serum levels of HBsAg (P=0.0038), but not with the serum 
levels of HBV DNA or IH cccDNA (P=0.7041 and P=0.7785, 
respectively). A weak correlation was observed between 
the levels of IH cccDNA and the serum levels of HBsAg 
(P=0.0048; Fig. 4).

Discussion

Following the process of early or persistent HBV infection, 
relaxed‑circle DNA (rcDNA) is transferred to the nucleus of 
hepatocytes, where it forms cccDNA, the virus transcriptional 
template  (10,11). Within infected cells, pregenomic RNA 
and is then transcribed from the cccDNA and is transported 
to the cytoplasm, where the mature capsids of the rcDNA 
are reverse transcribed and either secreted from the cells or 
returned to the nucleus to form the cccDNA pool. During the 
formation of cccDNA, linear HBV DNA, including double 
linear DNA and single‑stranded DNA, produced through 
illegitimate replication and deficient HBV transcription, may 
integrate into the host chromosomal DNA (12). According to 
previous studies involving the application of WGS (13,14), at 
least two promulgated mechanisms may be involved in the 
oncogenicity of HBV integration: (i) HBV DNA insertion into 
the host genome altering the function of endogenous genes, 

Figure 1. Copy numbers of the (A) chr16: 51320015 integration site and (B) levels of IH cccDNA in one hepatocyte from patients with CHB. Group 1, 
HBeAg+patients; group 2, HBeAg‑patients. ***P<0.001. CHB; chronic hepatitis B; IH, intrahepatic; cccDNA, covalently closed circular DNA. 

Figure 2. Chimeric fragment of the Chr16: 51320015 integration site (305 bp), 
1, HBeAg+patients; 2, HBeAg‑patients; M, DNA Marker (DL 100 bp).

Table I. Clinical, virological and serological parameters of HBeAg positive (+) patients and HBeAg negative (‑) patients.

Parameter	 HBeAg (+)	 HBeAg (‑)	 P‑value

Age (years)	 35.42 (12‑59)	 31.64 (13‑51)	 0.171
Gender (M/F)	 26/4	 23/7	 0.317
HBsAg (log10 IU/ml)	 2.70 (‑1.15‑4.27)	 1.66 (‑2‑4.58)	 0.060
HBV DNA (log10 copies/ml)	 5.45 (2.71‑8.13)	 4.10 (2.43‑5.29)	 0.001

Data are presented as n or the mean (range). HBV, hepatitis B virus; HBsAg, hepatitis B surface antigen; HBeAg, hepatitis B e antigen; M, 
male; F, female. aNon‑paired Student's t‑test. bx2 test.

  A   B
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and inducing chromosomal instability and changes in copy 
numbers; (ii) expression of C‑terminal truncated HBx or HBs 
protein, which may modulate cell proliferation and viability. 
In addition, the immune response against virally‑infected cells 
may be induced by the protein transcribed from integrated 
DNA, for example, the x gene. Thus, it is very important to 
effectively recognize and eradicate hepatocytes with inte-
grated DNA in the treatment of CHB (6).

Early reports stated that HBV integration events may be 
randomly distributed across the whole genome (2,3). However, 
increasing evidence has indicated that several genes may 
be preferentially integrated by the viral DNA, for example, 
chromosomes 10 and 17 (5,6). The present study demonstrated 
that chr16: 51320015 may also be favorably integrated, and 

this junction was found to occrr in the hepatocytes of all the 
patients with CHB enrolled in the present study. The junc-
tion of its inserted viral fragment was at 1,807 nt, within the 
DR2‑DR1 region of the HBV genome (1,590‑1,834 nt). The 
DR2 and DR1 sites represent the ends of the partially duplex 
HBV DNA and can provide DNA termini for non‑homologous 
end joining (NHEJ). Consequently these sites are more likely 
to be the initiation break points for HBV integration (15). 
However, in human chromatin HBV, integration events are 
more likely to occur in regions which are characterized by 
either looser secondary structures or open chromatin configu-
ration, which facilitate breakage and provide DNA termini 
for NHEJ with HBV DNA (16). At present, it is difficult to 
recognize and eradicate hepatocytes with viral integration of 

Figure 4. Correlation analysis between the (A) copy numbers of the chr16: 51320015 integration site and levels of IH cccDNA. (B) Copy numbers of the 
chr16:51320015 integration site and serum levels of HBsAg. (C) Levels of IH cccDNA and serum HBsAg, and (D) copy numbers of the chr16: 51320015 
integration site and serum levels of HBV DNA. HBV, hepatitis B virus; IH, intrahepatic; cccDNA, covalently closed circular DNA; HBsAg, hepatitis B surface 
antigen.

Figure 3. Flanking sequence of the hepatitis B virus Chr16: 51320015 integration site. Red indicates the viral sequence (1,631‑1,807 nt) and black indicates the 
human sequence (51,320,015‑51,3199,00 nt).

  A   B

  C   D
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patients with CHB, however, the above findings may provide 
a novel perspective on either the diagnostic or therapeutic 
strategies of HBV integration, for example, chimeric antigen 
receptor therapy (17-19).

The liver is a closed, self‑renewing population of cells, 
in which hepatocytes are generally long lived with a lifetime 
reported to exceed 6  months  (20). During chronic HBV 
infection, hepatocyte transformation usually results from 
mutations that are caused by persistent inflammation, leading 
to cumulative oxidative damage to the host DNA (21). In 
addition, this environment provides the opportunity for the 
expansion of hepatocyte variants with a selective advantage, 
either in growth or survival (22). Although the basis of the 
clonal expansion in the hepatocytes remains to be fully 
elucidated, there are several explanations (23). A possible 
explanation involves cellular transformation leading to 
unregulated growth, however, this does not explain clones 
with no clear morphological transformation. A second 
explanation involves random death and regeneration within 
the entire hepatocyte population, however, is unlikely to 
explain the occurrence of very large clones of >104 hepato-
cytes. Another explanation for large clones of hepatocytes 
involves the resident stem/progenitor cells, however, this 
is not supported by the current knowledge (23). Finally, a 
model in which immune evasion caused by HBV integration 
is the basis for clonal expansions is favored, as although 
smaller cell clones may be the result of random turnover, 
the presence of copy clones of >105 cells requires alternative 
explanations (24).

Although HBV integration occurs at random sites in 
host DNA, and each integration event provides a unique 
genetic marker for the cells in which it occurred, the unique 
viral‑cell junctions of integrated DNA may be used to track 
clonal proliferation of hepatocytes (22). Traditionally, clonal 
expansion was detected by assaying for integrated HBV 
DNA using inverse PCR. However, the level of clonal expan-
sion may be underestimated using this technique, which 
is only suitable for detecting the integration of viral DNA 
close to particular restriction endonuclease cleavage sites 
in host DNA, and not all integrations can be detected using 
only a single enzyme (24). Thus, the present study aimed 
to investigate the clonal expansion of hepatocytes using 
quantitative measurements of the chr16: 51320015 integra-
tion site. The average level of this site was determined to be 
1.21x10‑2±3.07x10‑2 copies/cell (4.16x10‑5‑0.212 copies/cell), 
indicating that this integration site may have originated 
from clonal expansion, while high‑copy clones with detect-
able integrated DNA have been estimated at a frequency of 
>2x10‑6 copies/cell (22).

According to quantitative measurements of serum 
HBeAg, patients with CHB can be divided into HBeAg (+) 
patients and HBeAg (‑) patients, and HBeAg seroconver-
sion and loss usually signify that HBV replication has been 
effectively suppressed by the host immunity (25). However, 
in the present study, although the levels of IH cccDNA and 
serum HBV DNA were significantly higher in the HBeAg (+) 
patients, compared with those in the HBeAg (‑) patients, no 
significant differences in the number of copies of the chr16: 
51320015 integration site and serum levels of HBsAg were 
found between the two patient groups. The copy numbers of 

chr16: 51320015 integration site were positively correlated 
with serum levels of HBsAg, but not with the levels of IH 
cccDNA. These findings may be due to the different origins 
of IH cccDNA and HBV integration. While the accumulation 
of IH cccDNA may be due to rcDNA recurrently entering 
into the nucleus, those of the chr16: 51320015 integration 
site, as described above, may have originated from the 
clonal expansion of integrated hepatocytes. Furthermore, 
the production of HBsAg in the HBeAg (‑) patients, which 
is independent of HBV replication, was abundant and far 
exceeded that required for virion assembly. This may be 
partially produced from HBV integration (26-28), explaining 
the significant association between the copy numbers of 
the chr16: 51320015 integration site and serum levels of 
HBsAg, but weak association with the levels of IH cccDNA. 
Consequently, the present study hypothesized that, in patients 
with CHB, the accumulation of HBV integration may not be 
effectively suppressed, even when the production of HBV is 
completely controlled by host immunity. These findings are 
in agreement with the hypothesis that, in addition to severe 
liver damage, HBV integration may also be a prerequisite for 
HCC (29).

In conclusion, the present study demonstrated that 
the chr16: 51320015 integration site was present in the 
hepatocytes of all the patients with CHB, which may have 
accumulated according to clonal expansion. In addition, the 
number of copies of this site were positively correlated with 
the serum levels of HBsAg, but not with the levels of IH 
cccDNA. Whether this integration site occurs in the hepa-
tocytes of all patients infected with HBV requires further 
investigation, as does its mechanism. In addition, whether 
or not hepatocytes with HBV integration can be effectively 
recognized and eradicated by means of this integration site 
requires elucidation.
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