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Abstract. Diabetic nephropathy (DN) is not only an important 
chronic complication of diabetes, but is also one of the predomi-
nant cause of renal failure. Previous studies have indicated that 
the process termed ‘epithelial-mesenchymal transition’ (EMT) 
results in fibrosis of renal tubular epithelial cells, and is key 
in DN. As an antioxidant, procyanidin B2 can inhibit cardiac 
fibrosis; however, whether it has an effect on the inhibition 
of renal fibrosis remains to be elucidated. The present study 
demonstrated that high glucose levels were able to activate 
EMT-associated changes, including the loss of E-cadherin and 
increase in α-smooth muscle actin (α-SMA), as determined by 
western blotting and immunofluorescence. Pre‑treatment with 
procyanidin B2 reversed the high glucose-induced morpho-
logical changes, upregulated the expression of E-cadherin and 
downregulated the expression levels of vimentin and α-SMA. 
Furthermore, procyanidin B2 decreased the phosphorylation 
of small mothers against decapentaplegic (Smad)2, Smad3 and 
P38, and upregulated the expression of phosphorylated-Smad7. 
In conclusion, the results of the present study suggested that 

procyanidin B2 inhibited high glucose-induced EMT through 
the inhibition of transforming growth factor‑β/Smad and 
mitogen‑activated protein kinase/P38 signaling pathways.

Introduction

Diabetic nephropathy (DN) is a chronic microvascular 
complication, which affects patients with diabetes. One 
of the most common characteristics of DN is diabetic 
glomerulosclerosis (1). A previous study demonstrated that 
the epithelial‑mesenchymal transition (EMT)‑like changes 
observed in podocytes are associated with podocyte detach-
ment, which may result in focal glomerulosclerosis (2). Several 
studies have suggested that EMT, a process by which differ-
entiated epithelial cells undergo a phenotypic conversion that 
gives rise to matrix‑producing fibroblasts and myofibroblasts, 
may be important in the pathogenesis of diabetic kidney 
disease (3,4). The high glucose (HG)-induced EMT of renal 
tubular epithelial cells is a key process in glomerulosclerosis 
and, mediated by factors, including E-cadherin and α-smooth 
muscle actin (α-SMA), epithelial cells may lose their epithelial 
characteristics and gain mesenchymal cell properties (5,6). 
However, the process of HG‑induced EMT remains to be fully 
elucidated.

Procyanidins are the most abundant polyphenols present in 
red wine, and they are also present in cereals, fruits, chocolate 
and tea (7). Several epidemiological studies have demon-
strated that procyanidin B2 can inhibit hepatic and cardiac 
fibrosis (8,9). Based on the possible anti‑fibrotic activity of 
procyanidins, the present study investigated whether procy-
anidins inhibit HG-induced EMT in the early stage of diabetic 
kidney glomerulosclerosis.

The transforming growth factor (TGF)‑β/small  
mothers against decapentaplegic (Smad) and mitogen-activated 
protein kinase (MAPK)/P38 signaling pathways are involved 
in promoting EMT and are associated with the development of 
DN (10,11). The aim of the present study was to determine the 
role of the MAPK/P38 and TGF-β/Smad signaling pathways 
in HG‑induced EMT, and to examine the changes in the two 
pathways in HK‑2 cells cultured with procyanidin B2. The 
detailed investigation of this plant extract may provide a novel 
therapeutic strategy for the treatment of DN.
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Materials and methods

Reagents.  Dulbecco's  modi f ied Eagle's  medium 
(DMEM), penicillin-streptomycin (5,000 U/ml penicillin; 
5,000 U/ml streptomycin) and fetal bovine serum (FBS) 
were purchased from Gibco Life Technologies (Grand Island, 
NY, USA). D‑glucose (analytical grade) was purchased 
from Guanghua Chemical Factory Co., Ltd. (Guangdong, 
China). Procyanidin B2 and Triton X‑100 were purchased 
from Sigma-Aldrich (St. Louis, MO, USA). The anti-β-actin, 
anti-P38, anti-phosphorylated (p)-P38 and anti-p-Smad 2, 
3 and 7 antibodies were purchased from Santa Cruz 
Biotechnology, Inc. (Dallas, TX, USA). The anti‑fibronectin 
(FN), anti-α-SMA, anti-E-cadherin and anti-vimentin anti-
bodies were purchased from BD Biosciences (Franklin Lakes, 
NJ, USA). An enhanced chemiluminescence (ECL) kit was 
purchased from Pierce Biotechnology, Inc. (Rockford, IL, 
USA). All reagents used were trace element analytical grade 
and all water used was glass distilled.

Cell culture. The HK‑2 human renal proximal tubular epithe-
lial cell line (CRL‑2190; American Type Culture Collection, 
Danvers, MA, USA) was cultured at a density of 1x105 cells/ml 
in DMEM supplemented with 5.5 mmol/l D-glucose (normal 
glucose; NG) and 10% FBS at 37˚C in a humidified atmo-
sphere containing 5% CO2. The cells were subcultured every 
3 days using 0.2% trypsin (Sigma-Aldrich) with 0.02% EDTA 
(Sigma-Aldrich). The near confluent HK‑2 cells (80%) were 
subsequently transferred into serum-free DMEM for over-
night starvation prior to each experiment. In order to induce 
EMT, the cells were cultured in high glucose (HG) medium 
containing 60 mmol/l D‑glucose for 48 h at 37˚C. The concen-
tration was selected based on previous studies (12,13). To study 
the protective effects of procyanidin B2, HK‑2 cells were 
incubated with 10 µM procyanidin B2 at 37˚C in a humidified 
atmosphere for 48 h.

ELISA. The protein expression levels of TGF-β were measured 
using a TGF-β ELISA kit (R&D Systems, Minneapolis, MN, 
USA). Briefly, the HK‑2 cells were seeded at a density of 
4x105 cells/well into a 6‑well plate and cultured for 24 h at 
37˚C. The supernatants were collected from the HK‑2 cell 
cultures for ELISA. The secreted protein concentration of 
TGF-β per 105 cells was measured and calculated from the 
standard curve using the ELISA kit. Briefly, 100 µl samples 
were added to sample diluent and incubated for 1 h at 37˚C 
with agitation, following washing with washing buffer 
(Sigma-Aldrich). Enzyme‑conjugated secondary antibody was 
added to the wells and incubated for 2 h at 37˚C prior to addi-
tion of the substrate solution. Absorbance was measured using 
an ELISA reader (Multiskan MK3; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) at a wavelength of 450 nm.

Western blot analysis. The cells were collected and washed 
with phosphate‑buffered saline (PBS) prior to being lysed 
on ice for 30 min in lysis buffer (Beyotime Institute of 
Biotechnology, Haimen, China) containing 50 mM Tris 
(pH 8.1), 1% SDS, sodium pyrophosphate, β-glycerophosphate, 
sodium orthovanadate, sodium fluoride, EDTA, and leupeptin, 
and centrifuged at 15,000 x g for 30 min at room temperature. 

The supernatants were collected, and the protein concentra-
tion was determined using a Bicinchoninic Acid Protein Assay 
kit (Pierce Biotechnology, Inc.). The protein were boiled for 
5 min and 10 µg total protein was loaded into the appro-
priate well to be separated by 10% SDS‑PAGE (Beyotime 
Institute of Biotechnology). The proteins on the gel were 
then transferred onto a nitrocellulose membranes (EMD 
Millipore, Billerica, MA, USA) using a Bio-Rad A101441 
apparatus (Bio-Rad Laboratories, Inc., Hercules, CA, USA) 
for 2 h at 4˚C and 100 V. The protein‑bound membranes were 
then blocked and washed in Tris‑buffered saline with 20% 
Tween 20 (Sigma‑Aldrich). The nitrocellulose membranes 
were cut according to the molecular weight of the protein, 
and were incubated with antibodies. The following primary 
antibodies were used: Anti‑β-actin mouse monoclonal IgG1 
(1:400; cat. no. sc‑8432; Santa Cruz Biotechnology, Inc.; 24 h 
incubation at 4˚C), anti-α‑SMA goat polyclonal IgG (1:400; 
cat. no. sc-324317; Santa Cruz Biotechnology, Inc.; 24 h 
incubation at 4˚C), anti-E-cadherin mouse monoclonal IgG1 
(1:400; cat. no. sc‑52327; Santa Cruz Biotechnology, Inc.; 
24 h incubation at 4˚C), anti-FN mouse monoclonal IgG1 
(1:400; cat. no. sc‑52331; Santa Cruz Biotechnology, Inc.; 24 h 
incubation at 4˚C), anti-vimentin mouse monoclonal IgG1 
(1:400; cat. no. sc‑373717; Santa Cruz Biotechnology, Inc.; 
24 h incubation at 4˚C), anti-P38 mouse monoclonal IgG1 
(1:400; cat. no. sc‑33688; Santa Cruz Biotechnology, Inc.; 24 h 
incubation at 4˚C), anti-p-P38 mouse monoclonal IgG1 (1:400; 
cat. no. sc‑7973; Santa Cruz Biotechnology, Inc.; 24 h incuba-
tion at 4˚C), anti-p-Smad 2 mouse monoclonal IgG1 (1:400; 
cat. no. sc‑393312; Santa Cruz Biotechnology, Inc.; 24 h 
incubation at 4˚C), anti-p-Smad 3 mouse monoclonal IgG1 
(1:400; cat. no. sc‑101154; Santa Cruz Biotechnology, Inc.; 
24 h incubation at 4˚C) and anti-p-Smad 7 mouse monoclonal 
IgG1 (1:400; cat. no. sc‑365846; Santa Cruz Biotechnology, 
Inc.; 24 h incubation at 4˚C). The membranes were then incu-
bated with goat anti-mouse IgG2a-B peroxidase-conjugated 
secondary antibodies (1:400; cat. no. sc-2073; Santa Cruz 
Biotechnology, Inc.; 24 h incubation at 4˚C). The blots were 
visualized using an ECL kit (Pierce Biotechnology, Inc.) and 
the relative quantities of the proteins were analyzed. The 
results were quantified using Quantity One software V4.62 
(Bio-Rad Laboratories, Inc.).

Fluorescence microscopy. The cells (1x105 cells/ml) were 
washed once with ice‑cold PBS and fixed with 4% parafor-
maldehyde (Sigma-Aldrich) for 30 min at 4˚C. Following 
being washed three times with PBS, the cells were incubated 
with 1% Triton X‑100 for 10 min. The cells were blocked 
at nonspecific antibody binding sites by incubating in PBS 
containing 0.3% Triton X‑100 and 0.5% bovine serum albumin 
(Sigma-Aldrich) for 30 min at room temperature. The cells were 
subsequently incubated with an antibody targeting E‑cadherin 
or α-SMA (1:200) overnight at room temperature. Subsequently, 
the cells were incubated with a fluorescein isothiocyanate‑ or 
tetramethylrhodamine-conjugated immunoglobulin G antibody 
(1:100 in PBS) for 0.5 h at room temperature. Hoechst 33342 
(10 µg/ml; Sigma-Aldrich) was then added to the cells for 
15 min at room temperature. Following three washes with 
PBS, the cells were visualized under a fluorescence microscope 
(Olympus SZ51; Olympus Corporation, Tokyo, Japan).
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Statistical analysis. Data are expressed as the mean ± standard 
error of the mean. Variance was homogenous enabling use of 
the standard one‑way analysis of variance (ANOVA) meth-
odology. On establishment of statistical significance using 
ANOVA, individual comparisons were made using Tukey's 
multiple comparison test. P<0.05 was considered to indicate 
a statistically significant difference. Statistical analyses were 
performed using SPSS version 18 (SPSS, Inc., Chicago, IL, 
USA).

Results

HG induces HK‑2 cells to undergo EMT. To determine 
whether HG induced EMT, the HK‑2 cells were incubated 
in NG (5.5 mmol/l D-glucose) or HG (60 mmol/l D-glucose) 

conditions. Initially, exposure of the HK‑2 cells to HG for 48 h 
decreased the protein expression levels of E-cadherin and 
increased the expression levels of α-SMA, compared with the 
NG group, determined by immunofluorescence (Fig. 1A). In 
addition, HG‑induced EMT was confirmed by western blot-
ting, which indicated the upregulation of α-SMA, FN and 
vimentin and the downregulation of E‑cadherin (Fig. 1B). 
These results suggested that an HG environment activated the 
EMT process in the HK‑2 cells.

Effects of procyanidin B2 on the expression of EMT‑associated 
proteins in HG‑induced HK‑2 cells. To determine the effects 
of procyanidin B2 in EMT, the HK‑2 cells were treated with 
or without 60 mmol/l D-glucose for 48 h, in the presence 
or absence of procyanidin B2. The expression levels of FN, 

Figure 1. HG promotes epithelial‑to‑mesenchymal transition in HK‑2 cells. (A) HK‑2 cells were incubated in NG or HG conditions for 48 h, and the expression 
levels of E-ca and (α‑SMA) were detected using immunofluorescence. (B) Cells were treated, as described, and the expression levels of E‑ca, α-SMA, FN and 
vimentin were detected using western blotting. The results are representative of three independent experiments. β‑actin was used as a loading control. Data 
are expressed as the mean ± standard error of the mean. **P<0.01, vs. NG group. HG, high glucose; NG, normal glucose; E‑ca, E‑cadherin; α-SMA, α-smooth 
muscle actin; FN, fibronectin.

  A

  B
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Figure 3. Procyanidin B2 inhibits HG-induced epithelial-to-mesenchymal transition via the TGF-β/Smads signaling pathway in HK‑2 cells. (A) HK‑2 cells 
were incubated in NG or HG conditions in the presence or absence of procyanidin B2 for 48 h, and the protein expression levels of TGF‑β were measured 
using ELISA. The results are representative of three independent experiments. **P<0.01, vs. NG group;  #P<0.01, HG vs. HG+procyanidin B2 group. (B) Cells 
were treated, as described, and the expression levels of p‑Smad2, 3 and 7 were detected using western blotting. (C‑E) Results are representative of three 
independent experiments. β‑actin was used as a loading control. **P<0.01, vs. NG group; #P<0.01, HG vs. HG+procyanidin B2 group. Data are expressed as the 
mean ± standard error of the mean. HG, high glucose; NG, normal glucose; TGF, transforming growth factor; Smad, small mothers against decapentaplegic; 
p-, phosphorylated.

Figure 2. Procyanidin B2 inhibits HG‑induced epithelial‑to‑mesenchymal transition in HK‑2 cells. (A) HK‑2 cells were incubated in NG or HG conditions 
in the presence or absence of procyanidin B2 for 48 h, and the expression levels of E-ca, α‑SMA, FN and vimentin were detected using western blotting. 
(B) Results are representative of three independent experiments. β‑actin was used as a loading control. Data are expressed as the mean ± standard error of 
the mean (**P<0.01, vs. NG group; #P<0.01, HG vs. HG+procyanidin B2 group). HG, high glucose; NG, normal glucose; E‑ca, E‑cadherin; α-SMA, α-smooth 
muscle actin; FN,  ibronectin.

  A   B

  A   B
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E-cadherin, vimentin and α‑SMA were detected using western 
blotting. As shown in Fig. 2, exposure of the HK‑2 cells to HG 
for 48 h decreased the protein expression levels of E-cadherin 
and increased the expression levels of FN, α-SMA and 
vimentin, compared with the NG group. However, HG‑induced 
EMT was attenuated when the HK‑2 cells were pre-treated 
with 10 µM procyanidin B2, which was indicated by the 
reduced expression levels of FN, α-SMA and vimentin, and the 
increased expression of E-cadherin (Fig. 2). The concentration 
of procyanidin B2 was selected based on a previous study (14). 
These results suggested that procyanidin B2 supplementation 
reversed HG‑induced EMT in the HK‑2 cells.

Effects of procyanidin B2 on the expression of TGF‑β/Smad in 
HK‑2 cells. The TGF-β/Smads signaling pathway is considered 
to contribute to the development of DN by increasing glomeru-
losclerosis and inducing EMT (15,16). To determine the effects 
of procyanidin B2 on the expression of TGF-β in HG-treated 
HK‑2 cells, the protein expression of TGF‑β was measured 
using ELISA (Fig. 3A). Compared with the NG group, the 
expression of TGF-β was significantly higher in the HG‑treated 
group; however, treatment with procyanidin B2 reduced the 
HG-induced expression of TGF-β. Furthermore, the effects of 
procyanidin B2 on HG-induced expression of Smads in the 
HK‑2 cells were examined using western blotting. HG treat-
ment resulted in a substantial increase in the expression levels 
of p-Smad2 and p-Smad3, and decreased the protein expres-
sion of p‑Smad7 in the HK‑2 cells. However, procyanidin B2 

pre‑treatment significantly attenuated HG‑induced expression 
of p-Smad2 and p-Smad3, and increased the expression of 
p-Smad7 in the HK‑2 cells (Fig. 3B‑E). These results indi-
cated that procyanidin B2 inhibited HG-induced EMT via the 
TGF-β/Smads signaling pathway.

Effects of procyanidin B2 on the expression of MAPK/P38 in 
HK‑2 cells. The MAPK/P38 signaling pathway has previously 
been reported to be involved in EMT (17); however, whether 
procyanidin B2 exerts its effect on EMT in HK‑2 cells via 
this pathway remains to be elucidated. Therefore, the present 
study examined the effect of procyanidin B2 supplementation 
on the MAPK/P38 pathway. Compared with the NG group, 
the expression of p‑P38 was upregulated by HG, whereas the 
expression levels of total P38 were not significantly altered. 
Notably, pre‑treatment of the HK‑2 cells with procyanidin B2 
significantly inhibited the HG‑induced expression of p‑P38. 
However, no significant difference was observed in the expres-
sion of total P38 in the HG+procyanidin B2 group, compared 
with the HG group (Fig. 4). These results suggested that procy-
anidin B2 may be involved in HG-induced EMT via regulation 
of the MAPK/P38 pathway.

Discussion

The pathogenesis of DN is the result of several factors, and 
insulin metabolism disorder as a result of long-term high 
blood sugar is considered the predominant cause of DN (18). 

Figure 4. Procyanidin B2 inhibits HG‑induced epithelial‑to‑mesenchymal transition via the mitogen‑activated protein kinase/P38 signaling pathway in HK‑2 
cells. (A) HK‑2 cells were incubated in NG or HG conditions in the presence or absence of procyanidin B2 for 48 h, and the expression levels of P38 and 
p‑P38 were detected using western blotting. (B and C) Results are representative of three independent experiments. β‑actin was used as a loading control. Data 
are expressed as the mean ± standard error of the mean. **P<0.01, vs. NG group; #P<0.01, HG vs. HG+procyanidin B2 group. HG, high glucose; NG, normal 
glucose; p‑, phosphorylated.
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Renal hemodynamic changes caused by high blood sugar, and 
the series of consequences of abnormal glucose metabolism 
are the basis of kidney disease (19). HG‑induced EMT is an 
important process, leading to glomerulosclerosis and tubuloin-
terstitial fibrosis (5). EMT is described as the loss of epithelial 
characteristics from epithelial cells, and the acquisition of 
properties typical of mesenchymal cells. EMT facilitates cell 
movement and the generation of novel tissue types during 
development, and also contributes to the pathogenesis of 
disease (20,21). The characteristics of EMT essential to wound 
healing also link EMT to organ fibrosis, including pulmonary, 
renal and hepatic fibrosis (20). A previous study demonstrated 
that tubular epithelium can transdifferentiate into fibroblasts 
via the process of EMT, which is regarded as an important 
event in the pathogenesis of tubulointerstitial fibrosis (22). 
The findings of the present study were consistent with these 
previous results. HG‑induced EMT was confirmed using 
western blotting, which detected the upregulation of α-SMA, 
FN and vimentin, and the downregulation of E‑cadherin, asso-
ciated with a transition from the epithelial phenotype of HK‑2 
cells to a myofibroblastic phenotype.

Proanthocyanidins are a class of substances, which are 
linked by catechin, epicatechin and gallate (23). Procyanidin B2 
is a biologically active component of grape seeds, which has 
been reported to possess various pharmacological and biochem-
ical effects (24). The effects of procyanidin B2 on various types 
of cancer have been reported (25,26); however, the effects of 
procyanidin B2 on EMT in human renal proximal tubular 
epithelial cells remain to be fully elucidated. The present study 
investigated the effects of procyanidin B2 on HG-induced EMT, 
and examined the underlying mechanisms. The occurrence of 
oxidative stress is key in EMT (27), and procyanidin B2, which 
is present in grape seeds, apples and cacao beans, has antioxi-
dant properties (28). Therefore, the present study hypothesized 
that procyanidin B2 may have an inhibitory effect on EMT. The 
results of the present study demonstrated that procyanidin B2 
treatment provided effective protection against HG-induced 
EMT, evidenced by a decrease in the upregulation of vimentin 
and α-SMA, and the amelioration of E-cadherin in the human 
renal proximal tubular epithelial cell line (Fig. 2).

TGF-β has been described as a ʻmaster switchʼ regulating 
EMT, and has been demonstrated to signal primarily via the 
Smad 2/3 pathway (29). Smad7 is crucial in antagonizing 
EMT induced by TGF-β signaling (30). The present study 
demonstrated that procyanidin B2 pre‑treatment significantly 
attenuated HG‑induced EMT by directly downregulating 
p‑Smad2 and 3, and indirectly upregulating p‑smad7; accom-
panied by a decrease in the upregulation of FN, α-SMA and 
vimentin, and an increase in the downregulation of E‑cadherin. 
The downstream effects of TGF‑β may not only be as a conse-
quence of the Smads signaling pathway, but may be the result 
of multiple signaling pathways, acting to modulate the effects 
of TGF-β signaling. Activation of the MAPK/P38 signaling 
pathway is not exclusive to TGF‑β and may be activated to 
induce EMT (31). The present study also demonstrated that 
procyanidin B2 significantly inhibited the HG‑induced expres-
sion of p‑P38 and weakened HG‑induced EMT.

In conclusion, the results of the present study demonstrated 
that procyanidin B2 inhibited HG‑induced EMT, most likely 
via inhibition of the expression of TGF-β, p-Smad2 and 3, as 

well as the P38/MAPK signaling pathway, in HK‑2 cells. The 
identification of procyanidin B2 as an inhibitor of HG‑induced 
EMT represents an important finding. Further investigations 
may examine this target for limiting EMT and for the treat-
ment of DN.
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