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Abstract. The present study aimed to investigate the neuro-
protective effect of lycopene in a mouse model of bilateral 
common carotid artery occlusion (BCCAO) and the role 
of the Nrf2/HO‑1 signaling pathway. A total of 60  male 
C57BL/6 mice, aged 12 weeks and weighing 20‑24 g, were used 
in the present study. The mice were randomly assigned to three 
groups: Control, BCCAO and BCCAO + lycopene. The neuro-
logical score was assessed 24, 48 or 72 h following BCCAO. 
Hematoxylin and eosin staining, and terminal deoxynucleotidyl 
transferase dUTP nick end labeling (TUNEL) were performed 
to detect neuronal death and survival. The production of gluta-
thione (GSH) and reactive oxygen species were detected to 
investigate the oxidative stress. The expression levels of nuclear 
factor erythroid 2‑related factor (Nrf2) and Heme oxygenase‑1 
(HO‑1) were determined by western blotting. Lycopene signifi-
cantly improved the neurological score in the BCCAO mice. 
It attenuated neuronal apoptosis, as indicated by TUNEL 
staining, and attenuated the oxidative stress induced by global 
ischemia. Lycopene increased the expression levels of Nrf2 and 
HO‑1, indicating that the Nrf2/HO‑1 signaling pathway may be 
involved in the neuroprotective effect of lycopene. The present 
study revealed that lycopene protects the brain from global isch-
emic injury, which is associated with its antiapoptotic effect and 
the activation of the Nrf2/HO‑1 signaling pathway.

Introduction

Ischemic stroke is currently a leading cause of cerebrovas-
cular disease worldwide, and exhibits a high morbidity and 

mortality among patients (1). Ischemic stroke is induced by 
a transient or permanent occlusion in the cerebral vessel, 
resulting in neuronal death and associated behavioral defi-
cits, including sensorimotor dysfunction, spatial orientation 
disorder, and learning and memory impairment  (2‑4). In 
addition, the mechanisms underlying stroke include oxidative 
stress, blood‑brain barrier dysfunction, neuronal apoptosis and 
inflammation (5,6). Although tissue‑type plasminogen acti-
vator is used clinically and remains the only FDA‑approved 
treatment for ischemic stroke, it is not so effective for all 
patients and only a small number of patients recover as a result 
of the reperfusion injury and a narrow 3 h time‑window for 
safe administration (7). Therefore, other effective therapeutic 
agents are required to assist the patients with their diseases.

Lycopene, a member of the carotenoid family, is found 
predominantly in tomatoes and other red colored fruits (8). 
It has been previously reported that lycopene has several 
biological functions in various diseases. Lycopene protects the 
cell from lipid peroxidation and oxidative DNA damage as a 
highly efficient antioxidant (8,9). In addition, lycopene exhibits 
other properties, including antiapoptosis (10), anti‑inflamma-
tion (11,12), antiamyloid (13), anti‑ischemia (14), and antitumor 
properties (15). Since lycopene has a high liposolubility, it can 
cross the blood‑brain barrier (16). It has also been demon-
strated that lycopene is beneficial for certain neurological 
disorders, including Alzheimer's disease (17,18). Therefore, 
lycopene is potentially beneficial in other brain diseases and 
the present study set out to investigate this.

Oxidative stress is important in ischemic stroke, character-
ized by a dramatic increase in reactive oxygen species (19). 
In normal cells, the antioxidant system protects cells from 
various oxidative stresses. Antioxidant/electrophile response 
element (ARE)‑regulated phase II detoxifying enzymes and 
antioxidants are one of the predominant antioxidant pathways 
involved in attenuating increased oxidative stress and main-
taining the redox status in several tissues and organs  (20). 
Heme oxygenase‑1 (HO‑1) is an ARE‑regulated enzyme and 
antioxidant, which is regulated by the redox‑sensitive transcrip-
tion factor, nuclear factor erythroid 2‑related factor (Nrf2) (21). 
The function of HO‑1 is to catalyze heme to biliverdin, carbon 
monoxide and iron. It has been previously reported that Nrf‑2 
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activation protects the neurons from ischemia (22). Under physi-
ological conditions, Nrf2 is located in the cytosol and binds to 
Kelch‑like ECH‑associated protein 1 (Keap1). In response to 
oxidative stress, Nrf2 dislocates from Keap1 and translocates to 
the nucleus (23,24), where it forms a heterodimer with its obliga-
tory partner, Maf, and binds to the ARE sequence to activate 
the transcription of numerous antioxidative and electrophile 
detoxification genes, including HO‑1, NAD(P)H:quinine oxido-
reductase 1 and glutamate‑cysteine ligase (25).

The present study aimed to investigate whether lycopene 
exerts a neuroprotective effect on the ischemic brain in a 
bilateral common carotid artery occlusion (BCCAO) model. If 
so, the present study aimed to determine whether it regulates 
Nrf2/HO‑1 signaling in this ischemic model.

Materials and methods

Animals. A total of 60 C57BL/6 mice, aged 12 weeks and 
weighing 20‑24 g, were used in the experiments and were 
provided by the Experimental Animal Center of the Tianjin 
Medical University (Tianjin, China). The mice were main-
tained in cages under a controlled‑light environment (12 h 
light/dark cycles) and were allowed free access to a rodent diet 
and tap water. The present study was approved by the Ethics 
Committee of Tianjin Medical University. All animals used 
in this study were cared for in accordance with the Guidance 
for the Care and Use of Laboratory Animals published by the 
United States National Institute of Health.

Establishment of global cerebral ischemia. BCCAO was used as 
a model of global cerebral ischemia, as previously reported (26). 
Surgical operation was performed by an individual in a blinded 
manner. The mice were anesthetized with 3% isoflurane (Baxter, 
Deerfield, IL, USA). Following induction, the concentration of 
isoflurane was maintained at 1.5%. Isoflurane was administered 
via a face mask, which was constructed to fit over the animals' 
frontal area. A midline incision was made to the region between 
the neck and sternum to expose the trachea. The right and left 
common carotid arteries were located lateral to the sternoclei-
domastoid and were carefully separated. Cerebral ischemia was 
induced by clamping each of the arteries with two miniature 
artery clips. Following 20 min of cerebral ischemia, the clips 
were removed from each artery to allow for the reperfusion of 
blood through the carotid arteries. Sham‑operated mice under-
went the identical surgical procedure without artery occlusion. 
During the surgical procedure, the pericranial temperature 
was monitored using a temperature probe and maintained at 
37.0‑37.5˚C using a heating pad. Following surgery, the animals 
were placed in a warm environment (30‑33˚C) to avoid biased 
results due to hypothermia. 

Drug administration. For the BCCAO + lycopene group, lyco-
pene was intraperitoneally administered at a dose of 20 mg/kg 
for seven consecutive days prior to surgery. The mice in the 
sham group and BCCAO group were injected solely with an 
equal concentration of dimethyl sulfoxide (DMSO). Lycopene 
was dissolved in 2% DMSO.

Neurological tests. The treated mice were allowed to recover 
for 24 h prior to subsequent tests. The mice were subjected 

to a modified neurological examination designed to detect 
motor deficits. Briefly, the mice were placed on a 10‑20 cm 
screen (grid size 0.2x0.2 cm), which can be rotated from 0˚ 
(horizontal) to 90˚ (vertical). The mice were placed on this 
screen, which was in a horizontal position, and the screen 
was then rotated into the vertical plane. The duration for 
which each mouse was able to hold on to the vertical screen 
was recorded up to a maximum of 15 sec (corresponding to a 
maximum of three points). Next, the mouse was placed at the 
center of a horizontal wooden rod (diameter, 1.5 cm), and the 
duration that the mouse was able to remain balanced on the 
rod was recorded up to a maximum of 30 sec (corresponding 
to a maximum of three points). Finally, a prehensile traction 
test was performed. The duration that the mouse was able 
to cling to a horizontal rope was recorded up to a maximum 
of 5  sec (corresponding to a maximum of three points). 
From these tests, a total motor score (TMS; nine possible 
points) was calculated. The neurological assessments were 
performed at 24, 48 or 72 h post‑reperfusion by an observer 
in a blinded manner. The TMS has been shown previously to 
be an accurate method for evaluating global cerebral isch-
emic injury in mice (27).

Hematoxylin and eosin (HE) staining. Neuronal damage 
was assessed using HE staining (Beyotime Institute of 
Biotechnology, Shanghai, China). On day 3  following the 
induction of  ischemia, the animals were anesthetized 
with sodium pentobarbital  (50  mg/kg  intraperitoneally; 
Sigma‑Aldrich, St.  Louis, MO, USA) and transcardially 
perfused with  4%  phosphate‑buffered paraformaldehyde, 
following a flush with 0.1 M phosphate‑buffered saline (PBS). 
The brains were removed, post‑fixed at 4˚C in 4% paraformal-
dehyde overnight and then sectioned on a freezing microtome. 
The brains were sectioned backward from the optic chiasm 
into six consecutive sections (12 µm), which included the 
dorsal hippocampus, and were stained with HE. The pyra-
midal neurons of the CA1 region were examined.

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL). The tissue sections were placed on 
slides and incubated with TUNEL reaction mixture (Roche 
Diagnostics GmbH, Mannheim, Germany), including 
enzyme solution (terminal deoxynucleotidyl transferase) and 
tetramethylrhod‑amine‑labeled TUNEL‑positive nucleo-
tides, in a dark humidified chamber for 1 h at 37˚C, followed 
by a final wash for 3x10 min with PBS and then covered 
with water‑based mounting medium (National Diagnotics, 
Atlanta, GA, USA). The captured images were viewed and 
analyzed using laser scanning confocal microscopy (FV1000; 
Olympus, Tokyo, Japan).

Western blot analysis. Proteins were extracted following 
brain tissue homogenization in radioimmunoprecipitation 
acid buffer (EMD Millipore, Billerica, MA, USA). The total 
protein content was determined using a bicinchoninic acid 
protein assay. The protein samples (50 µg) were separated by 
electrophoresis on SDS‑PAGE gels (Beijing Solarbio Science 
& Technology Co., Ltd., Beijing, China) and were transferred 
onto polyvinylidene difluoride membranes (EMD Millipore). 
The membranes were blocked with 5% non‑fat milk at room 
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temperature for 2  h and were incubated overnight with 
the appropriate primary antibodies. The antibodies used 
were rabbit polyclonal anti‑Nrf2 (1:200; cat. no. sc‑13032; 
Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), rabbit 
polyclonal anti‑HO‑1 (1:200; cat. no. sc‑10789; Santa Cruz 
Biotechnology, Inc.), rabbit polyclonal anti‑Histone1 (1:1,000; 
cat.  no.  ab4270; Abcam, Cambridge, MA, USA), and 
mouse monoclonal anti‑β‑actin (1:5,000; cat. no. sc‑47778; 
Santa Cruz Biotechnology, Inc.). Following extensive rinsing 
with Tris‑buffered saline, containing  0.1%  Triton  X‑100 
buffer, the membranes were incubated with mouse anti‑rabbit 
(cat.  no.  sc‑2357) and goat anti‑mouse (cat.  no.  sc‑2005) 
horseradish peroxidase‑conjugated secondary antibodies 
(1:2,000; Santa Cruz Biotechnology, Inc.) for 1 h at room 
temperature. The membranes were developed and a bar 
graph was produced to depict the ratios of semi‑quantitative 
results obtained by scanning reactive bands and quantifying 
the optical density using Image Lab version 4.0 software 
(Bio‑Rad Laboratories, Hercules, CA, USA).

Statistical analysis. All statistical analyses were performed 
using SPSS  11.0  for Windows software (SPSS, Inc., 
Chicago, IL, USA). All values, with the exception of TMS, 
are presented as the mean ±  standard error of the mean, 
and were analyzed using a one‑way analysis of variance. 
Between‑groups, differences were detected based on post‑hoc 
Student‑Newman‑Keuls tests. The TMS are expressed as the 
medians and were analyzed using the Kruskal‑Wallis test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Neurological score. As shown in Fig. 1, the neurological score 
in the BCCAO group markedly decreased compared with that 
in the sham group (P<0.05) at 24, 48 and 72 h following the 
induction of ischemia. Lycopene treatment ameliorated the 
injury and the neurological score was increased compared 
with that in the BCCAO group (P<0.05).

HE staining. A total of 3 days following reperfusion, the 
number of viable neurons in the CA1 region was markedly 
decreased in the BCCAO group. Lycopene treatment signifi-
cantly reduced the neuronal degeneration in the CA1 region 
compared with that in the BCCAO group (Fig. 2).

TUNEL. As shown in Fig.  3, ischemia induced a marked 
neuronal apoptotic response compared with the sham group. 
The survival of the neurons was markedly increased when 
lycopene was administered, suggesting that lycopene treat-
ment attenuated the apoptosis of neurons, as indicated by the 
decrease in the number of TUNEL‑positive neurons in the 
CA1 region.

Oxidative stress. Global cerebral ischemia induced a dramatic 
decrease in the production of GSH and a significant increase 
in the production of reactive oxygen species (ROS). When 
lycopene was administrated, the production of GSH was 
increased (P<0.05) and the production of ROS was decreased 
(P<0.05), indicating that lycopene protects the ischemic brain 
from oxidative stress (Fig. 4).

Figure 1. Neurological scores of each animal recorded at (A) 24, (B) 48 or (C) 72 h following reperfusion. The total motor scores in the BCCAO + lycopene 
group were significantly improved compared with those in BCCAO groups at 24, 48 or 72 h following reperfusion (n=10; *P<0.05 vs. Sham group; #P<0.05 vs. 
BCCAO group). BCCAO, bilateral common carotid artery occlusion.

  A   B

  C
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Effect of lycopene on the expression of Nrf2 and HO‑1. As 
shown in Figs. 5 and 6, the expression levels of nuclear and 
total Nrf2 and HO‑1 in the hippocampus were detected by 
western blotting. The nuclear and total Nrf2 were markedly 
upregulated in the lycopene treatment group. In addition, lyco-
pene significantly upregulated the expression of HO‑1.

Discussion

The results of the present study demonstrated that lycopene 
preconditioning has a neuroprotective effect in cerebral 
ischemia‑reperfusion in mice. Lycopene preconditioning 
significantly improved the TMS and reduced neuronal death 

Figure 3. Resveratrol preconditioning significantly attenuates neuronal apoptosis in the hippocampal CA1 region. Representative images of TUNEL staining 
are shown. The results suggested that neuronal apoptosis was increased dramatically in the BCCAO group compared with the sham group, whereas lycopene 
treatment significantly attenuated neuronal apoptosis compared with the BCCAO group (Scale bar=50 µm; n=10). BCCAO, bilateral common carotid artery 
occlusion; DAPI, 4',6‑diamidino‑2‑phenylindole; TUNEL, terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling.

  A   B   C

  D

Figure 2. Lycopene treatment protects hippocampal CA1 neurons against ischemic injury. (A‑C) Representative microphotographs of hematoxylin‑eosin‑stained 
neurons in hippocampal CA1 regions at 72 h following reperfusion in mice. The (A) Sham, (B) BCCAO and (C) BCCAO + lycopene groups following 72 h 
experiments are shown. (D) Viable CA1 neurons were quantified and analyzed at 72 h following reperfusion. Viable neurons were significantly decreased in 
the CA1 region in the BCCAO group compared with those in the sham group, whereas viable neurons were significantly increased the BCCAO + lycopene 
group compared with those in the BCCAO group at 72 h following reperfusion (n=10; *P<0.05 vs. Sham group; #P<0.05 vs. BCCAO group). BCCAO, bilateral 
common carotid artery occlusion.
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following cerebral ischemia‑reperfusion. It was revealed that 
lycopene pretreatment induced an antiapoptotic effect and an 
antioxidative stress effect, which is demonstrated by its ability 
to increase the production of GSH and to decrease the produc-
tion of ROS. In addition, lycopene activated the expression of 
Nrf2 and HO‑1 in this global ischemic model.

Pyramidal neurons in the hippocampal CA1 region are 
particularly vulnerable to ischemia. This region undergoes 
delayed neuronal death, often reported as apoptosis in collabo-
ration with DNA fragmentation (28). In the present study, a 
model of BCCAO was established and it was subsequently 
determined that lycopene pretreatment protected the brain 
from the ischemic injury, which is associated with its anti-
apoptotic effect and its antioxidative stress effect.

Neuronal apoptosis is an important pathological process of 
ischemic stroke (29,30). Rabuffetti et al (31) demonstrated that 
the inhibition of apoptosis reduces ischemic injury. Although 
two pathways of apoptosis, extrinsic and intrinsic, have been 
recognized (32), the final phase of apoptosis execution, which 

Figure 4. Production of (A) GSH and (B) ROS in each group. As shown, global cerebral ischemia led to a decrease in GSH and an increase in ROS. Lycopene 
treatment attenuated the production of ROS and enhanced the production of GSH (n=10; *P<0.05 vs. Sham group; #P<0.05 vs. BCCAO group). GSH, gluta-
thione; ROS, reactive oxygen species; BCCAO, bilateral common carotid artery occlusion.

  A   B

Figure 5. Lycopene treatment significantly upregulates the expression of nuclear and total Nrf2 in mice subjected to BCCAO. (A) A representative western blot, 
and the quantification of the data for (B) the nuclear Nrf2 measured against histone 1 and (C) the total Nrf2 measured against β‑actin (n=10; *P<0.05 vs. Sham 
group, #P<0.05 vs. BCCAO group). BCCAO, bilateral common carotid artery occlusion; Nrf2, nuclear factor erythroid 2‑related factor 2. 

  A

  B   C

Figure  6. Lycopene treatment significantly upregulates the expression 
of cytoplasmic HO‑1 in mice subjected to BCCAO. (A) A representative 
western blot and (B) the quantification of the data (n=10, *P<0.05 vs. Sham 
group, #P <0.05 vs. BCCAO group). β‑actin was used as an internal loading 
control. BCCAO, bilateral common carotid artery occlusion; HO‑1, heme 
oxygenase‑1. 

  A

  B
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includes activation of executioner caspases (e.g. caspase 3), is 
shared by each of these pathways (33). Lycopene, a member of 
the carotenoid family, is found predominantly in tomatoes and 
other red colored fruits (8). It has been reported that lycopene 
protects against apoptosis in hypoxia/reoxygenation‑induced 
H9C2 myocardioblast cells (34). In addition, He et al  (35) 
reported that lycopene attenuates inflammation and apoptosis 
in postmyocardial infarction remodeling. The protective 
effect of lycopene in retinal ischemia/reperfusion injury 
has been demonstrated. It has been suggested that lycopene 
reduces the apoptosis of cells in the ganglion cell layer (36). 
The present study is in agreement with these studies and the 
results suggested that lycopene attenuated neuronal apoptosis 
in global ischemic brain.

Oxidative stress is also significant in ischemic brain 
injury (37). In ischemia/reperfusion injury, ROS is markedly 
produced and the endogenous antioxidant system cannot elimi-
nate many of them. As a result, ROS leads to lipid peroxidation 
and DNA damage. It has been suggested that lycopene protects 
pancreatic acinar cells against severe acute pancreatitis (38). 
Additionally, lycopene prevents experimental priapism against 
oxidative damage, as reported previously (39), and attenuates 
oxidative stress in fructose‑drinking insulin resistant rats (40). 
Consistent with these studies, the present study suggested that 
lycopene attenuates oxidative stress induced by global isch-
emia in the brain.

HO‑1 is a rate‑limiting enzyme, catalyzing the degradation 
of heme into carbon monoxide, biliverdin and ferritin (41). HO‑1 
is regulated by the transcription factor Nrf2 at the transcrip-
tional level (42). Under physiological conditions, Nrf2 is located 
in the cytosol by binding to Keap1 (43). In the presence of ROS, 
Nrf2 is released from Keap1 and translocates into the nucleus, 
activating the transcription of HO‑1. In the present study, brain 
ischemia/reperfusion injury leads a dramatic increase in the 
generation of ROS. Consequently, nuclear Nrf2 was increased 
and HO‑1 was upregulated following ischemia‑reperfusion 
injury. In addition, lycopene pretreatment significantly induced 
an increase in the expression levels of Nrf2 and HO‑1.

In conclusion, these findings suggested that lycopene 
provided significant neuroprotection in mice subjected to 
global cerebral ischemia by inhibiting neuronal apoptosis 
and attenuating oxidative stress, which is associated with the 
activation of Nrf2/HO‑1 signaling.
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