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Abstract. The aim of the present study was to investigate the 
effects and mechanisms of calycosin‑7‑O‑β‑d‑glucoside (CG) 
on ischemia‑reperfusion (I/R) injury in vivo. Hemodynamic 
parameters, including ejection fraction (EF), fractional 
shortening (FS), left ventricular end‑systolic pressure (LVESP) 
and left ventricular end‑diastolic pressure (LVEDP) were moni-
tored using an ultrasound system, and infarct size was measured 
using Evans blue/tetrazolium chloride double staining. The 
activities of serum creatine kinase (CK), lactate dehydroge-
nase (LDH) and superoxide dismutase (SOD), and the levels 
of malondialdehyde (MDA) were determined to assess the 
degree of myocardial injury and oxidative stress‑induced 
damage. The protein expression levels of cleaved‑caspase‑3, 
cleaved‑caspase‑9, phosphorylated (p)‑phosphatidylinositol 
3‑kinase (PI3K) p85, PI3K p85, p‑Akt and Akt were determined 
using western blotting. The results demonstrated that pretreat-
ment with high dose (H)‑CG markedly improved cardiac 
function, as evidenced by upregulated EF, FS and LVESP, 
and downregulated LVEDP. In addition, administration of CG 
resulted in significant decreases in infarct size in the I/R+low 
dose‑CG and I/R+H‑CG groups, compared with the I/R group. 
The activities of CK and LDH, and the levels of MDA in the 
I/R+H‑CG group were reduced, compared with those in the 
I/R group, whereas SOD activity was elevated. Treatment 
with CG inhibited the cleavage and activity of caspase‑3 and 
caspase‑9, and enhanced the phosphorylation of PI3K p85 and 
Akt. Notably, administration of the PI3K inhibitor, LY294002, 
markedly lowered the levels of p‑PI3K p85/p‑Akt, and eradi-
cated the inhibitory effects of H‑CG on infarct size, myocardial 

injury and oxidative stress‑induced damage. Taken together, the 
results suggested that CG may alleviate I/R injury by activating 
the PI3K/Akt signaling pathway.

Introduction

Acute myocardial infarction (AMI) is associated with high 
mortality rates worldwide (1). AMI often occurs due to rupture 
of an atherosclerotic plaque in a coronary artery, which may 
induce thrombosis and artery occlusion, resulting in loss of 
blood supply to the affected area and necrosis. Annually, 
over 3,000,000 individuals suffer from acute ST‑elevation 
myocardial infarction, and over 4,000,000 individuals suffer 
from non‑ST‑elevation myocardial infarction (2). Currently, the 
therapeutic strategies considered most effective are mechanical 
revascularization by percutaneous coronary intervention (3), 
thrombolytic therapy (4), primary angioplasty (5), coronary 
artery bypass grafting and antithrombotic therapy combined 
with timely reperfusion  (6). However, these treatments are 
unable to improve cardiac function  (7). In addition, tissue 
ischemia followed by reperfusion initiates systemic inflam-
mation, which may aggravate local injury and induce remote 
multi‑organ dysfunction  (8). Therefore, the development of 
a safer, more effective strategy for reducing I/R injury and 
improving postoperative survival rates is required.

Astragali Radix (AR), the root of Astragalus membranaceus 
and Astragalus membranaceus var. mongholicus (9), is a tradi-
tional Chinese medicine (10). AR exerts various bioactivities, 
including antioxidation, enhancement of cardiovascular function, 
hepatoprotection, immunostimulation and myocardial protection 
in diabetic nephropathy (11). AR has also been reported to reduce 
myocardial ischemic injury (12), and AR extracts efficiently 
protect MRC‑5 cells from H2O2‑induced oxidative damage via 
the inhibition of superoxide dismutase (SOD) and catalase (13). 
A previous clinical report indicated that AR may be a prom-
ising agent in the treatment of acute cerebral infarction (14). AR 
contains various active components, including polysaccharides, 
flavonoids, astragalosides I‑VII (saponins), amino acids and 
trace elements (15,16). Calycosin‑7‑O‑β‑d‑glucoside (CG) is a 
predominant flavonoid of AR (17‑19), which is known to possess 
anti‑inflammatory (20) and anti‑osteoarthritic properties (21). A 
previous study has shown that CG significantly reduces cerebral 
infarct size and histological damage in a rat model of I/R. In 
addition, CG protects blood‑brain barrier integrity by inhibiting 
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the activities of matrix metalloproteinases, scavenging nitric 
oxide and promoting the expression of caveolin‑1 (22). However, 
the effects of CG on myocardial I/R injury and the underlying 
mechanisms remain to be fully elucidated.

In the present study, a rat model of myocardial I/R injury 
was treated with CG, and the underlying molecular mechanisms 
of CG on myocardial I/R injury were evaluated.

Materials and methods

Animals. Male Wistar rats (8‑week‑old) were purchased from 
Charles River Laboratories (Beijing, China). Experiments were 
performed according to the guidelines for the animal care and use 
of laboratory animal protocols, and were approved by the Ethics 
Committee of The Second Affiliated Hospital of Harbin Medical 
University (Harbin, China; approval no. SCXK‑2012‑0001). 
The rats were maintained in an air‑conditioned room with a 
constant temperature of 22˚C and an alternating 12 h light/12 h 
dark cycle. The rats were provided with access to water and a 
standard diet ad libitum.

In vivo myocardial I/R model and experimental groups. The 
rats were anesthetized with 10% chloral hydrate (3 ml/kg 
body weight; Sinopharm Medicine, Shenyang, China) by intra-
peritoneal injection. The rats were intubated, and mechanical 
ventilation was achieved by connecting the endotracheal tube 
to a scientific ventilator (HX‑300S; Chengdu Technology & 
Market Co., Ltd, Chengdu, China) at a respiratory rate of 
80 breaths/min with a tidal volume of 6‑8 ml/kg body weight. 
A left thoracotomy was performed, in order to expose the 
heart and the root of the large blood vessel. The left anterior 
descending (LAD) coronary artery was subsequently tran-
siently ligated with a nylon suture for a 45 min ischemic period. 
Microsurgical scissors were used to release the ligature, and 
the heart was reperfused for 3 h.

The rats were randomly divided into five groups (12 
animals per group). In the sham group, the rats underwent the 
described anesthetic and surgical procedures without liga-
tion of the LAD coronary artery; in the I/R group, the rats 
underwent myocardial ischemia for 45 min and reperfusion for 
3 h by ligation of the LAD coronary artery; in the I/R+H‑CG 
group, the rats were pretreated with a high dose of CG (H‑CG; 
30 mg/kg body weight; Dalian Meilun Biological Technology 
Co., Ltd., Dalian, China) via intravenous injection 30 min 
prior to ligation of the LAD coronary artery; in the I/R+L‑CG 
group, the rats were pretreated with a low dose of CG (L‑CG; 
15 mg/kg body weight) via intravenous injection 30 min prior 
to ligation of the LAD coronary artery; in the sham+H‑CG 
group, the rats were pretreated with H‑CG via intravenous 
injection, and then underwent the described anesthetic and 
surgical procedures without ligation of the LAD coronary 
artery.

Detection of cardiac function. Following reperfusion, an ultra-
sound system (IE33; Philips GmbH, Herrsching, Germany) 
was used to collect hemodynamic parameters, including 
ejection fraction (EF), fractional shortening (FS), left 
ventricular end‑systolic pressure (LVESP) and left ventricular 
end‑diastolic pressure (LVEDP). Blood samples were obtained 
for biochemical investigations and the hearts were removed for 

Evans blue/tetrazolium chloride (TTC) staining and western 
blotting.

Tissue staining. The LAD coronary artery was religated 
following I/R and 2‑3 ml 2% Evans blue solution (Wokai, 
Shanghai, China) was transcardially perfused. The rats were 
administered with KCl solution via a marginal ear vein, and 
the heart was stopped in diastole. The heart was subsequently 
removed, washed with saline, and maintained at ‑20˚C for 
30‑60 min, prior to being divided into six 2-mm sections. 
The sections were stained with 1% TTC (Beijing Solarbio 
Science  &  Technology Co., Ltd., Beijing, China) at 37˚C 
and images were captured using a digital camera (D3000; 
Nikon, Tokyo, Japan). The area at risk (AAR; red staining) 
indicating the ischemic area, the infarct area (IA; white 
staining) and non‑ischemic area (blue staining) were analyzed 
using an Image Analysis system (Image Pro Plus 6.0; Media 
Cybernetics, Inc., Rockville, MD, USA). Infarct size was 
defined as a percentage of IA to AAR (%).

Detection of creatine kinase (CK), lactate dehydrogenase 
(LDH), SOD and malondialdehyde (MDA). Following reper-
fusion, blood samples (5-8 ml/mouse) were collected from 
the carotid artery and serum was obtained by centrifugation 
(1,111 x g, 10 min, 4˚C). Commercial assay kits (Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China) were 
used to detect the activities of CK (cat. no. A032), SOD (cat. 
no. A001-3), LDH (cat. no. A020-1) and MDA (cat. no. A003-1) 
in the serum, according to the manufacturer's protocol.

Western blot analysis. Total proteins were extracted from 
the AAR tissues using radioimmunoprecipitation assay lysis 
buffer (50 mM Tris, 150 mM NaCl, 1% Triton X-100, 1% 
sodium deoxycholate, 0.1% SDS, pH 7.4) (Beyotime Institute 
of Biotechnology, Haimen, China) and protein concentrations 
were determined using a Bichinchoninic Acid Protein Assay 
kit (Beyotime Institute of Biotechnology). Subsequently, 
40 µg protein was separated by 10 or 13% sodium dodecyl 
sulfate‑polyacrylamide gel electrophoresis and transferred 
onto polyvinylidene fluoride membranes (EMD Millipore, 
Bedford, MA, USA). The membranes were blocked with 
5%  nonfat milk or 1% bovine serum albumin (Amresco, 
Framingham, MA, USA), and then incubated with the 
following primary antibodies at 4˚C overnight: Rabbit anti-rat 
cleaved‑caspase‑3 polyclonal antibody (pAb) (1:1,000 dilu-
tion; cat. no. WL0146); rabbit anti-rat cleaved‑caspase‑9 pAb 
(1:1,000 dilution; cat. no. WL0191); rabbit anti-rat phosphati-
dylinositol 3-kinase (PI3K) p85 pAb (1:1,000 dilution; cat. no. 
WL0191); rabbit anti-rat phosphorylated (p)‑Akt pAb (1:1,000 
dilution; cat. no. WLP001); rabbit anti-rat Akt pAb (1:1,000 
dilution; cat. no. WL0003) (all Wanleibio, Shenyang, China) 
and rabbit anti-rat p-PI3K p85 pAb (1:500 dilution; cat. no. 
bs-5538R; Bioss, Beijing, China). The membranes were then 
washed with Tris‑buffered saline containing Tween 20 (Beijing 
Solarbio Science & Technology Co., Ltd.), and incubated with 
horseradish peroxidase‑conjugated goat anti‑rabbit immuno-
globulin G (1:5,000, Beyotime Institute of Biotechnology) at 
37˚C for 45 min. Band densities were analyzed using Gel‑Pro 
Analyzer software 4.0 (Media Cybernetics, Inc.) and normal-
ized to β‑actin.
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Detection of caspase‑3/9 activity. Caspase‑3/9 activity was 
measured using a Caspase Activity Assay kit (Beyotime 
Institute of Biotechnology), according to the manufac-
turer's protocol. Briefly, the total cellular proteins were 
quantified and reacted with the corresponding substrates: 
Ac‑DEVD‑ρNA or Ac‑LEHD‑ρNA. Caspase‑3/9 activity was 
subsequently measured as the optical density of the cleaved 
substrate ρNA at 405 nm using a microplate reader (ELX‑800; 
Bio‑Tek Instruments, Inc., Winooski, VT, USA).

PI3K/Akt signaling pathway. The rats were randomly divided 
into three groups of 12: The I/R group, I/R+H‑CG group and 
I/R+H‑CG+LY294002 group. The PI3K inhibitor, LY294002, 
(0.3 mg/kg body weight; Sigma-Aldrich) was administered to 
the rats in the I/R+H‑CG+LY294002 group via intravenous 
injection 30 min prior to the administration of H‑CG. The 
rats were then subjected to I/R. Heart tissues from the AAR 
was lysed with lysis buffer and the expression levels of PI3K 
p85, p‑PI3K p85, Akt and p‑Akt were measured using western 
blot analysis. Infarct size was assessed using Evans blue/TTC 
double staining. The serum was obtained and levels of CK, 
SOD, LDH and MDA were analyzed using commercial kits 
(Nanjing Jiancheng Bioengineering Institute) as described 
above.

Statistical analysis. GraphPad Prism 5 software (GraphPad 
Software, Inc., La Jolla, CA, USA) was used for statistical 
analysis and image processing. Data are expressed as the 
mean ± standard deviation. Comparisons between the experi-
mental groups were conducted using one‑way analysis of 
variance, followed by a Bonferroni post‑hoc test. P<0.05 was 
considered to indicate a statistically significant difference.

Results

CG ameliorates I/R‑induced cardiac dysfunction. Ultrasound 
analysis was performed to detect cardiac function. As shown 
in Fig. 1, H‑CG had no effect on EF (Fig. 1A), FS (Fig. 1B), 
LVEDP (Fig. 1C) or LVESP (Fig. 1D), in the sham+H‑CG 
group, compared with the sham group. However, EF, FS and 
LVESP levels were markedly lower in the I/R group, compared 
with those in the sham group (P<0.01), whereas LVEDP was 
significantly higher, compared with the sham group (P<0.01). 
Following treatment with H‑CG, EF, FS and LVESP (P<0.05) 
were significantly increased, whereas the LVEDP was decreased 
(P<0.01).

CG reduces myocardial infarct size. To determine whether CG 
affected myocardial infarct size, the rats were pretreated with 
L‑CG or H‑CG, and then subjected to I/R. As shown in Fig. 2, 
no ischemic and necrotic areas were detected in the sham or 
the sham+H‑CG groups. I/R significantly increased the infarct 
size (29.98±5.28, vs. 0%; P<0.01). As expected, compared with 
the I/R group (29.98±5.28%), the infarct size was significantly 
smaller in the I/R+L‑CG group (22.74±4.00; P<0.05) and the 
I/R+H‑CG group (16.22±5.15%; P<0.01)

CG attenuates I/R‑induced myocardial injury and oxidative 
stress-induced damage. The effects of CG were also evaluated 
on I/R‑induced myocardial injury and damaged from oxidative 
stress. The activities of serum CK (Fig. 3A; P<0.01) and LDH 
(Fig. 3B; P<0.01) were markedly elevated in the I/R group, 
compared with those in the sham group. Following treatment 
with L‑CG, only CK activity was inhibited (P<0.01); however, 
treatment with H‑CG markedly inhibited the activities of the two 

Figure 1. Effects of CG on cardiac function. Following reperfusion, hemodynamic parameters including (A) EF, (B) FS, (C) LVEDP and (D) LVESP were 
detected, in order to determine cardiac function. Data are expressed as the mean ± standard deviation (n=6/group). *P<0.05 and **P<0.01, compared with the 
I/R group. ns, not significant; CG, calycosin‑7‑O‑β‑d‑glucoside; I/R, ischemia‑reperfusion; H‑CG, high dose CG; L‑CG, low dose CG; EF, ejection fraction; 
FS, fractional shortening; LVEDP, left ventricular end‑diastolic pressure; LVESP, left ventricular end‑systolic pressure.

  A   B

  C   D
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markers (P<0.01). The activity of SOD, (Fig. 3C; P<0.01) was 
significantly lower in the I/R group, compared with the sham 
group. By contrast, MDA content (Fig. 3D; P<0.01) was signifi-
cantly higher, compared with the sham group. Pretreatment with 
H‑CG effectively increased the activity of SOD (P<0.01) and 
decreased levels of MDA (P<0.01).

CG reduces the I/R‑induced increased expression levels and 
activities of pro‑apoptotic factors. The results of the present 
study demonstrated that caspase cleavage (Fig. 4A; P<0.01), 
and the activities of caspase‑3 (Fig. 4B; P<0.01) and caspase‑9 
(Fig. 4C; P<0.01) were enhanced in the I/R group, compared 

with those in the sham group. Treatment with L‑CG and 
H‑CG markedly downregulated the levels of cleaved‑caspase‑3 
(P<0.01) and cleaved‑caspase‑9 (L‑CG, P<0.05; H‑CG, P<0.01). 
In addition, caspase activity was significantly inhibited following 
treatment with L‑CG (caspase‑3, P<0.01; caspase‑9, P<0.05) or 
H‑CG (P<0.01).

CG increases the phosphorylation of PI3K p85 and Akt. The 
protein expression levels of p‑PI3K p85 (Fig.  5A; P<0.01) 
and p‑Akt (Fig. 5B, P<0.01) were downregulated in the I/R 
group, compared with the sham group, and were upregulated 
in the I/R+L‑CG group (p‑PI3K p85, P<0.05; p‑Akt, P>0.05) 

Figure 3. CG suppresses CK and LDH activities, and ameliorates oxidative stress. Following reperfusion, blood was collected and serum was obtained. 
Subsequently, the activities of (A) CK, (B) LDH and (C) SOD, and (D) MDA content were measured. Data are expressed as the mean ± standard deviation 
(n=6/group). **P<0.01, compared with the I/R group. ns, not significant; CG, calycosin‑7‑O‑β‑d‑glucoside; I/R, ischemia‑reperfusion; H‑CG, high dose CG; 
L‑CG, low dose CG; CK, creatine kinase; LDH, lactate dehydrogenase; SOD, superoxide dismutase; MDA, malondialdehyde.

  A   B

  C   D

Figure 2. Effects of CG on infarct size. Following 45 min ischemia and 3 h reperfusion, heart tissues were collected and stained with Evans blue/tetrazolium 
chloride staining. The AAR is characterized by red staining, indicating the ischemic area, the IA displays white staining and the non-ischemic area exhibits 
blue staining. Myocardial infarct size is expressed as a percentage of the IA to AAR. Data are expressed as the mean ± standard deviation (n=6/group). *P<0.05 
and **P<0.01, compared with the I/R group. CG, calycosin‑7‑O‑β‑d‑glucoside; I/R, ischemia‑reperfusion; H‑CG, high dose CG; L‑CG, low dose CG; IA, 
infarct area; AAR, area at risk.
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and I/R+H‑CG group (P<0.01). No statistical differences were 
observed between the groups in the expression levels of total 
PI3K p85 or total Akt.

LY294002 inhibits H‑CG‑induced activation of the PI3K/Akt 
pathway. To confirm that CG attenuated I/R injury in vivo 
via activation of the PI3K/Akt pathway, the PI3K inhibitor, 
LY294002, was administered to the rats prior to H‑CG. Treatment 
with H‑CG significantly increased the phosphorylation of 
PI3K and Akt (Fig. 6A; P<0.01); however, suppressing PI3K 

activity with LY294002 effectively inhibited H‑CG‑induced 
PI3K/Akt phosphorylation (P<0.01). Treatment with H‑CG 
significantly decreased infarct size, compared with the I/R 
group (15.67±3.28, vs. 35.46±5.33%, respectively; P<0.01), as 
shown in Fig. 6B, however, infarct size was significantly higher 
in the I/R+H‑CG+LY294002 group, compared with that in the 
I/R+H‑CG group (27.81±4.10, vs. 15.67±3.28%, respectively; 
P<0.01). Treatment with H‑CG significantly decreased CK 
activity (Fig. 6C; P<0.01), LDH activity (P<0.01) and MDA 
content (P<0.01), and significantly increased SOD activity 

Figure 5. Effects of CG on the expression levels of PI3K/Akt. Total proteins were extracted from the area at risk tissues, and the expression levels of (A) PI3K p85, 
p‑PI3K p85, (B) Akt and p‑Akt were detected using western blotting. Band density was measured and normalized to that of β‑actin. Data are expressed as 
the mean ± standard deviation (n=5/group). *P<0.05 and **P<0.01, compared with the I/R group. ns, not significant; CG, calycosin‑7‑O‑β‑d‑glucoside; I/R, 
ischemia‑reperfusion; H‑CG, high dose CG; L‑CG, low dose CG; PI3K, phosphatidylinositol 3‑kinase; p‑, phosphorylated.

  A   B

Figure 4. Effects of CG on the expression levels of apoptosis‑associated proteins. Total proteins were extracted from the area at risk tissues, and the expression 
levels of (A) cleaved‑caspase‑3 and cleaved‑caspase‑9 were detected using western blotting. Band density was measured and normalized to that of β‑actin. Data 
are expressed as the mean ± standard deviation (n=5/group). In addition, the activities of (B) caspase‑3 and (C) caspase‑9 were measured. Data are expressed as the 
mean ± standard deviation (n=6/group). *P<0.05 and **P<0.01, compared with the I/R group. CG, calycosin‑7‑O‑β‑d‑glucoside; I/R, ischemia‑reperfusion; H‑CG, 
high dose CG; L‑CG, low dose CG.

  A

  B   C
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(P<0.01). However, co‑treatment with LY294002 attenuated 
these effects (CK, P<0.01; LDH, P<0.05; MDA, P<0.05; SOD, 
P<0.05).

Discussion

AMI is a leading contributor to morbidity and mortality rates 
worldwide (23‑25). Reperfusion improves clinical symptoms 
in patients with AMI (26); however, restoration of blood flow 
following ischemia may result in I/R injury (27,28), which is 
involved in the development of myocardial necrosis, arrhythmia, 
myocardial stunning, endothelial dysfunction and microvascular 

complications (26,29). The present study demonstrated that CG 
may exert a cardioprotective effect in a rat model of I/R‑induced 
injury via the PI3K/Akt signaling pathway.

Previous studies have indicated that myocardial I/R injury 
alters hemodynamic parameters and affects cardiac func-
tion (30,31). In addition, levels of EF, FS (32,33) and LVSP are 
lower in I/R groups than in sham groups, whereas, LVEDP 
levels are higher (34,35), which is in agreement with the results 
of the present study. The present study also demonstrated that 
treatment with H‑CG significantly restored the I/R‑induced 
downregulation of EF, FS and LVESP, and markedly lowered 
the levels of LVEDP in the I/R+H‑CG group, compared with the 

  A

  B

  C

Figure 6. Inhibition of PI3K by LY294002 abrogates CG‑induced protection against I/R injury. LY294002 (0.3 mg/kg body weight) was administered to the 
rats 30 min prior to the administration of CG. Subsequently, the rats were subjected to I/R. Levels of (A) PI3K p85, p‑PI3K p85, Akt and p‑Akt were detected 
using western blotting. β‑actin was used as an internal control. (B) Infarct size was examined using Evans blue/tetrazolium chloride staining. (C) Activities of 
CK, LDH and SOD, and MDA content were detected using assay kits. Data are expressed as the mean ± standard deviation (n=6/group). **P<0.01, compared 
with the I/R group; &P<0.05 and &&P<0.01, compared with the I/R+H‑CG+LY294002 group. CG, calycosin‑7‑O‑β‑d‑glucoside; I/R, ischemia‑reperfusion; 
H‑CG, high dose of CG; PI3K, phosphatidylinositol 3‑kinase; p‑, phosphorylated; IA, infarct area; AAR, area at risk; CK, creatine kinase; LDH, lactate 
dehydrogenase; SOD, superoxide dismutase; MDA, malondialdehyde.
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I/R group. These results suggested that CG improved cardiac 
function in the rat model of I/R.

Myocardial infarct size is an indicator of myocardial injury, 
and I/R has been reported to result in infarction in MI/R groups, 
compared with sham groups (36,37). Treatment with CG has 
been shown to significantly reduce infarct volume in a rat model 
of middle cerebral artery occlusion cerebral I/R injury (22). 
Consistently, the present study observed that L‑CG and H‑CG 
efficiently decreased infarct size.

LDH (38) and CK (39) are often elevated in MI, and are 
used to assess the degree of myocardial injury. Numerous 
evidence has demonstrated that I/R often induces the generation 
of reactive oxygen species (ROS) and oxidative stress (40-42). 
Subsequently, ROS interacts with cell membrane lipids and 
produces MDA, which impairs cardiac function and induces 
myocardial cell injury (43,44). Therefore, reducing oxidative 
stress is an advantageous strategy for the alleviation of I/R 
injury. In the present study, CK and LDH activity, and MDA 
content were increased in the I/R group, compared with in the 
sham group; however, SOD activity was decreased, which was 
consistent with the results of previous studies (37,45). These 
results indicated that CG exerted its cardioprotective effects by 
notably decreasing CK, LDH and MDA, and increasing SOD 
activity.

Apoptosis is important in development and tissue homeo-
stasis  (46), and caspases are considered the executioners 
of apoptosis  (47). Once cells receive apoptotic stimuli, the 
mitochondrial outer membrane becomes permeabilized and 
cytochrome  c is released from the mitochondria into the 
cytosol (48). Cytochrome c interacts with apoptotic protease 
activating factor 1 and procaspase‑9, which is cleaved into 
caspase‑9 and initiates the activation of caspase‑3, caspase‑6 and 
caspase‑7 (49). Previous studies have reported that I/R injury 
is associated with the apoptosis of cardiomyocytes  (50,51). 
The present study demonstrated that the expression levels of 
cleaved‑caspase‑3 and cleaved‑caspase‑9, and caspase activity 
were downregulated in the I/R+L‑CG and I/R+H‑CG groups, 
compared with in the I/R group. Therefore, CG may alleviate 
I/R injury by suppressing caspase activity and inhibiting cardio-
myocyte apoptosis.

PI3K consists of a catalytic subunit (p110) and a regulatory 
subunit (p85) (52,53). Akt is a serine‑threonine kinase and, 
following phosphorylation, performs its antiapoptotic effects 
via the activation of B‑cell lymphoma‑2‑associated death 
promoter and caspases (54). Previous studies have reported 
that the PI3K/Akt signaling pathway is crucial in protecting 
the myocardium from MI/R injury (55), and the activation of 
PI3K/Akt significantly reduces cardiomyocyte apoptosis (56). 
The present study examined the expression levels of PI3K p85, 
p‑PI3K p85, Akt and p‑Akt. Pretreatment with CG effectively 
activated and phosphorylated PI3K and Akt, whereas the levels 
of total PI3K p85 and Akt were not changed. The PI3K inhib-
itor, LY294002, was used to determine whether the PI3K/Akt 
pathway was involved in the CG‑mediated alleviation of I/R 
injury. Suppressing PI3K activity with LY294002 reversed 
the beneficial effects of CG. Based on the above results, it was 
hypothesized that CG alleviates I/R injury by activating the 
PI3K/Akt signaling pathway.

In conclusion, the results of the present study demonstrated 
that CG attenuated myocardial I/R injury in the rat model. 

The protective effects may be associated with activation of the 
PI3K/Akt pathway, and the inhibition of oxidative stress and 
pro‑apoptotic factors.
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