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Abstract. Neurodegenerative diseases are frequently asso-
ciated with the loss of synapses and neurons. Senegenin, 
extracted from the Chinese herb Polygala tenuifolia Willd, 
was previously found to promote neurite outgrowth and 
neuronal survival in primary cultured rat cortical neurons. 
The aim of the present study was to investigate the underlying 
mechanisms of senegenin‑induced neurotrophic effects on rat 
cortical neurons. Primary cortical rat neurons were treated 
with various pharmacological antagonists and with or without 
senegenin, and subjected to MTT and western blot analysis 
to explore the effects of senegenin on cell survival as well as 
the activation of signaling pathways. Neurite outgrowth and 
neuronal survival induced by senegenin were significantly 
inhibited by A2A receptor antagonist ZM241385 and specific 
phosphoinositide‑3 kinase (PI3K) inhibitor LY294002, but not 
by tropomyosin receptor kinase A receptor inhibitor K252a, 
mitogen‑activated protein kinase kinase inhibitor PD98059 or 
protein kinase C inhibitor GÖ6976. Furthermore, senegenin 
enhanced the phosphorylation of Akt, which was blocked 
by LY294002. The present study revealed that the PI3K/Akt 
signaling pathway may be involved in the neurotrophic effects 
of senegenin.

Introduction

Excessive neuronal cell loss through synapse loss and neurite 
damage is a common characteristic of numerous brain 
diseases, particularly of neurodegenerative diseases, including 
Alzheimer's, Parkinson's and Huntington's disease (1). Studies 
have shown that several endogenous neurotrophic factors 
(NTFs), including brain‑derived neurotrophic factor (BDNF), 
nerve growth factor (NGF) as well as neurotrophin‑3, ‑4 and 
‑5 have critical roles in neuronal survival, process outgrowth, 
synaptic connectivity and nervous system plasticity  (2,3). 
Thus, NTFs are likely to have a potential role in ameliorating 
neurodegeneration. However, due to their peptidyl properties 
and their resulting inability to cross the blood‑brain barrier 
as well as their fast metabolic breakdown, the clinical use of 
NTFs is impossible (4). Identification of small molecules with 
similar functions to those of NTFs may provide novel thera-
peutics for neurodegenerative diseases. Of note, numerous 
compounds, including 4‑O‑methylhonokiol, magnolol and 
macranthol, have been identified to promote neurite process 
outgrowth and neuronal survival due to their similar functions 
to those of NTFs in vitro (5‑8).

Senegenin is a compound extracted from the Chinese herb 
Polygala tenuifolia Willd and has been shown to exert a range 
of biological activities, including neuroprotective and anti-
oxidant effects (9,10). A pharmacological study showed that 
Polygala tenuifolia Willd extracts improve cognitive function 
and have neuroprotective properties (11). Previous studies by 
our group revealed that senegenin promoted neurite outgrowth 
and upregulated the mRNA expression of microtubule‑associ-
ated protein 2 (MAP2) and brain‑derived neurotrophic factor 
in cultured cortical neurons (12,13). The present study further 
investigated the neurotrophic effects of senegenin as well as 
the underlying mechanisms.

Materials and methods

Materials. Senegenin was purchased from Guangdong 
Institute for Drug Control (Guangzhou, China). Dulbecco's 
modified Eagle's medium (DMEM)/F12 and B27 supplement 
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were from Gibco (Thermo Fisher Scientific, Waltham, MA, 
USA). K252a, GÖ6976, PD98059, LY294002 and MAP2 
antibody were purchased from Sigma‑Aldrich (St. Louis, MO, 
USA). ZM241385 was purchased from Tocris Bioscience Co. 
Ltd. (Bristol, UK). Paraformaldehyde was purchased from 
Guangzhou Chemical Reagent Factory (Guangzhou, China). 
Trypsin was purchased from Amresco, LLC (Solon, OH, USA). 
The cell strainer was obtained from Dingguo Biotechnology 
Co., Ltd. (Beijing, China). Gibco goat serum was purchased 
from Thermo Fisher Scientific, Inc. The Hoechst stain, lysis 
buffer components, and electrochemiluminescence reagent 
(ECL; cat no. P0018) were purchased from Beyotime Institute 
of Biotechnology (Shanghai, China). Polyvinylidene fluoride 
(PVDF) membranes and bicinchoninic acid (BCA) assay 
were purchased from Sigma‑Aldrich. The anti‑MAP2 mouse 
monoclonal antibody (cat no. M9942) was purchased from 
Sigma‑Aldrich. Anti‑Akt (pan) rabbit monoclonal antibody 
(cat no. C67E7) and anti‑phospho‑Akt monoclonal antibody 
(Ser473) rabbit monoclonal antibody (cat  no.  4060) were 
purchased from Cell Signaling Technology, Inc. (Danvers, 
MA, USA). Cy3 Affini Pure goat anti‑mouse polyclonal IgG 
(H+L; (cat no. 115‑095‑003) was purchased from Jackson 
ImmunoResearch Laboratories, Inc. (West Grove, PA, USA). 
Rabbit GAPDH polyclonal antibody (cat no. 10494-1-AP) was 
purchased from Proteintech Group, Inc. (Chicago, IL, USA). 
Horseradish peroxidase (HRP)‑conjugated goat anti‑rabbit 
IgG secondary antibody (H+L; cat no. A0208) was purchased 
from Beyotime Institute of Biotechnology, Inc.

Primary culture of cortical neurons. Neonatal Sprague‑Dawley 
(SD) rats (<24  h after birth) obtained from the Medical 
Laboratory Animal Center of Guangdong province [license 
no.   CXK (Yue) 2008‑0002] were used for the prepara-
tion of the primary culture of cortical neurons as described 
previously (14). Briefly, after neonatal SD rats were decapi-
tated under anesthesia (diethyl ether; Beyotime Institute of 
Biotechnology), the brains were placed into petri dishes 
containing ice‑cold D‑Hank's balanced salt solution. Cortices 
were separated and minced into small pieces. The cells were 
dissociated by digestion with 0.125% (w/v) trypsin for 10 min 
at 37˚C followed by passing through a 74‑µm cell strainer 
and centrifugation for 5 min at 1,000 x g. The cell pellet was 
re‑suspended to the desired concentration with DMEM/F12 
supplemented with 0.4% (v/v) B27. Freshly isolated cells were 
cultured in poly‑l‑lysine‑coated 24‑/96‑well plates. These cells 
were cultured at 37˚C in a humidified atmosphere containing 
5% CO2. After three days of culture, cells were collected 
for subsequent experiments. The study was approved by the 
ethics committee of the Medical School of Jinan University 
(Guangzhou, China).

Immunocytochemistry assay. Cortical neurons were identified 
by immunostaining for MAP2, which is a specific neuronal 
marker. After 3 days of culture, cells were fixed with 4% 
(w/v) paraformaldehyde at room temperature for 20  min 
and subsequently incubated with 0.1% (v/v) Triton X‑100 in 
phosphate‑buffered saline (PBS) containing 10% (v/v) normal 
goat serum for 30 min. Cells were then incubated with mouse 
anti‑MAP2 monoclonal antibody (1:200 dilution) overnight at 
4˚C followed by staining with Cy3 AffiniPure goat anti‑mouse 

IgG (1:500 dilution) for 1 h and Hoechst 33258 for 5 min. After 
each incubation step, the cells were washed three times with 
PBS for 5 min each. Images of randomly selected fields of 
view of stained neurons were captured using an Olympus IX71 
microscope (Olympus Corp., Tokyo, Japan).

Morphological analysis. Cortical neurons were cultured in 
24‑well plates at a density of 2.0x104 cells/cm2 and treated for 
three days with or without senegenin (2 µM), K252a (50 nM), 
ZM241385 (10 nM), GÖ6976 (100 nM), PD98059 (10 µM) or 
LY294002 (10 µM) as described previously (15‑18). Neurons 
were fixed and stained with MAP2 antibody to observe the 
morphology of cortical neurons. Images of randomly selected 
fields of view of stained neurons were captured using an 
Olympus IX71 microscope (Olympus Corp.) at x400 magni-
fication and the average length of neurite outgrowth in each 
group was measured using Image Pro Plus 6.0 software (Media 
Cybernetics, Rockville, MD, USA) by evaluating 200 neurons 
in a randomly selected field of view.

Western blot analysis. Cortical neurons were cultured in a 
six‑well plate at a density of 2.5x105 cells/cm2 and treated with 
or without senegenin and 10 µM LY294002 for three days. 
Following washing with 1  ml ice‑cold PBS, cells were 
lysed in 100 µl lysis buffer [115 mM Tris‑HCl (pH 6.8), 4% 
(w/v) SDS, 10% (v/v) glycerol, 10  mM dithiothreitol and 
2.5 mg/ml bromophenol blue]. Protein was quantified using 
a BCA Protein Quantification kit. Equivalent amounts of 
protein (10  µg) were subjected to 12% SDS‑PAGE and 
transferred onto a PVDF membrane, followed by incubation 
of the membrane with antibodies against phospho (p)‑Akt 
(1:2,000 dilution), Akt (1:1,000 dilution) and GAPDH (1:1,000 
dilution). Subsequently, membranes were incubated with the 
HRP‑conjugated secondary antibody (1:3,000 dilution). The 
non‑phosphorylated form of Akt from the same cell lysates was 
quantified by immunoblotting to ensure that phosphorylated 
Akt was detected in an identical amount of protein. The blots 
were visualized using ECL reagent. The autoradiograms were 
scanned and the protein level was quantified by densitometry 
using an image analysis system. using a Versa Doc™ Imaging 
system (Model 4000; Bio‑Rad Laboratories, Inc., Hercules, 
CA, USA) and the intensity of the protein bands were analyzed 
using Quantity One 1‑D Analysis Software v.4.6.6 (Bio‑Rad 
Laboratories, Inc.).

Statistical analysis. Values are expressed as the mean ± stan-
dard error of the mean. Statistical significance among groups 
was determined by one‑way analysis of variance with 
Bonferroni's post hoc test. Statistical analyses were conducted 
using SPSS 16.0 (SPSS, Inc., Chicago, IL, USA). P<0.05 was 
considered to indicate a statistically significant difference 
between values.

Results

Morphology and phenotype of cultured cortical neurons. 
Neonatal rat cortical neurons were cultured in serum‑free 
DMEM/F12 supplemented with 0.4% (v/v) B27 to prevent the 
proliferation of gliocytes. MAP2 is a neuron‑specific cytoskel-
etal protein that is enriched in the cell body and dendrites (19). 



MOLECULAR MEDICINE REPORTS  13:  1257-1262,  2016 1259

Figure 1. Identification of neuronal cells using immunofluorescence staining for MAP2. (A) Neuronal cells; (B) neuronal cells stained with MAP2 antibody; 
(C) neuronal cells stained with Hoechst 33258; (D) Merged image of MAP2 immunostaining and Hoechst 33258 nuclear stain in neuronal cells (scale bar, 
50 µm). All cells were cultured for three days. The staining revealed that ~95% of the cultured cells were neurons.

Figure 2. Effects of ZM241385 and LY294002 on senegenin‑induced neurite outgrowth in cultured cortical neurons. (A) Vehicle control; (B) 2 µM senegenin; 
(C) 10 nM ZM241385; (D) 10 nM ZM241385 + 2 µM senegenin; (E) 10 mM LY294002; (F) 10 mM LY294002 + 2 µM senegenin (scale bar, 50 µm). 
Morphological observation revealed that ZM241385 and LY294002 inhibited senegenin‑induced neurite outgrowth. DMSO, dimethyl sulfoxide.
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MAP2 staining can distinguish neurons from other cells. After 
cortical neurons were cultured for three days, MAP2 immuno-
fluorescence staining was performed. MAP2 immunostaining 
revealed that ~95% of the cultured cells were neurons (Fig. 1).

Senegenin promotes neurite outgrowth and neuronal survival, 
which is inhibited by ZM241385 and LY294002. As the 
phosphoinositide‑3 kinase (PI3K) and the mitogen‑activated 
protein kinase (MAPK) signaling pathways have been impli-
cated in neurite outgrowth and neuronal survival, which is 
mediated via tropomyosin receptor kinase (Trk) receptors (20), 
the present study assessed the effect of TrkA inhibitor K252a, 
A2A receptor antagonist ZM241385, PI3K inhibitor LY294002, 
protein kinase C inhibitor GÖ6976 and MAPK kinase inhib-
itor PD98059 on senegenin‑induced neurotrophic activity. The 
effects of senegenin on neurite outgrowth were assessed using 
immunostaining for MAP2. As shown in Figs. 2 and 3, the 
neurite outgrowth and neuronal survival induced by senegenin 
was prevented by treatment with ZM241385 and LY294002, 

but not by K252a, GÖ6976 and PD98059. These results indi-
cated that senegenin‑induced neurotrophic activity required a 
signaling pathway involving PI3K.

Senegenin promotes Akt phosphorylation. To further confirm 
the involvement of the PI3K/Akt signaling pathway in the 
neurotrophic effects of senegenin, the phosphorylation of Akt 
was investigated using western blot analysis (Fig. 4). The results 
demonstrated that senegenin significantly enhanced the phos-
phorylation of Akt as compared with that in the vehicle‑treated 
control group. However, the enhancing effect of senegenin on 
Akt phosphorylation was blocked by LY294002, a specific 
inhibitor of PI3K, suggesting that the neurotrophic activity of 
senegenin may be mediated via the PI3K/Akt signaling pathway.

Discussion

NTFs and numerous neurotrophic small molecules are regu-
lators of neuronal development, growth, survival, plasticity, 

Figure 3. Neurite outgrowth and neuronal survival were measured after the neurons were treated for three days. (A) Quantitative analysis of neurite length. 
(B) Cells with neurites equal to or longer than the diameter of the cell body were considered to have survived and counted to analyze the effect of senegenin 
on the neuronal survival rate. Values are expressed as the mean ± standard error (n=3). aP<0.01 compared with vehicle control.

Figure 4. Effects of senegenin on Akt phosphorylation in cultured cortical neurons. Values are expressed as the mean ± standard error of the mean (n=3). 
aP<0.01 compared with vehicle control. p‑Akt, phosphorylated Akt.
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and differentiation in the nervous system by activating Trk 
receptor tyrosine kinases (19-22). The results of the present 
study suggested that the neurotrophic effects of senegenin 
were counteracted with the antagonist ZM241385, an inhibitor 
of the A2A receptor, but not K252a, an inhibitor of Trk recep-
tors. This indicated that the A2A receptor may be involved 
in the neurotrophic effects of senegenin, whereas previous 
studies (19-22) demonstrated that neurotrophic effects were 
mediated by receptor tyrosine kinases. A2A receptors are a type 
of G protein‑coupled receptors, which are expressed in the 
neuropil of the striatum, the cortex, hippocampus, cerebellum, 
and olfactory striatum (23). Furthermore, the A2A receptor 
is involved in the induction of the MAPK/Erk or PI3K/Akt 
signaling pathway  (17), which regulate neuronal differen-
tiation, neurite outgrowth, and neuronal survival (24‑26), as 
well as neurotrophic effects (27). In addition, Liot et al (28) 
demonstrated that NT‑3 displayed an anti‑apoptotic effect 
on cultured cortical neurons via activation of the PI3K/Akt 
signaling pathway. To date, numerous previous studies have 
demonstrated that the PI3K/Akt signaling pathway has an 
important role in mediating the survival and/or neurite 
outgrowth processes. Ashcroft et al (29) demonstrated that 
the selective and inducible activation of endogenous PI3K 
in PC12 cells results in efficient NGF-mediated survival and 
neurite outgrowth. In addition, López-Carballo et  al  (30) 
showed that the PI3K/Akt signaling pathway is important in 
the regulation of RA-induced neuronal survival in SH-SY5Y 
human neuroblastoma cells. Zhang et al (31) showed that the 
PI3K/Akt signaling pathway contributed to neuronal survival 
and neurite outgrowth induced by methyl 3,4-dihydroxy-
benzoate. The results of the present study demonstrated that 
the PI3K inhibtor LY294002, but not the MEK inhibitor 
PD98059, prevented senegenin‑induced neurotrophic activity. 
Akt phosphorylation was enhanced in cortical neurons treated 
with senegenin but phosphorylation levels were attenuated by 
LY294002. Therefore, these results indicated that PI3K activa-
tion is essential for senegenin‑induced neurite outgrowth and 
neuronal survival in cortical neurons, and also suggested that 
Akt phosphorylation was enhanced in cortical neurons treated 
with senegenin, but could be attenuated by LY294002. The data 
also suggested that Akt phosphorylation has a role in neurite 
outgrowth and survival induced by senegenin. Senegenin may 
enhance Akt activity by activating A2A receptors in order to 
exert its neurotrophic activity. The neurotrophic effects may 
be important in the protection of neurons against damage. 
Honokio, magnolol and methyl 3,4‑dihydroxybenzoate exhibit 
neurotrophic effects, and these compounds are also known to 
protect neurons from various types of damage (32-34). Brain 
amyloid β (Aβ) aggregates into clumps called oligomers that 
can accumulate and form deposits called amyloid plaques, 
which are thought to be a pathological mechanism underlying 
Alzheimer's disease (35,36). Previous studies demonstrated 
that Aβ may cause neuronal death  (34,37). Future studies 
will clarify the neuroprotective effects of senegenin against 
Aβ‑induced apoptosis in rat primary cortical neurons.

In conclusion, the results of the present study demonstrated 
that the A2A/PI3K/Akt signaling cascade is involved in the 
neurotrophic effects of senegenin. These results provide novel 
insights for treating Alzheimer's disease and neurodegenerative 
diseases. Further studies are currently taking place to clarify 

which downstream proteins are activated by Akt, and which 
molecules in neurons are associated with senegenin‑induced 
neurotrophic activities.
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