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Abstract. As one of the most serious types of primary bone 
tumor, osteosarcoma (OSA) features metastatic lesions, and 
resistance to chemotherapy is common. The underlying mech-
anisms of these characteristics may account for the failure of 
treatments and the poor prognosis of patients with OSA. It has 
been reported that inhibition of Cyr61 suppresses OSA cell 
proliferation as it represents a target of statins. In addition to 
cystein‑rich protein 61 (Cyr61)��������������������������� and nephroblastoma overex-
pression, connective tissue growth factor (CTGF) is a member 
of the CCN family and may therefore exhibit effects on human 
OSA cells similar to those of Cyr61. In the current study, 
acridine orange/ethidium bromide staining were used to deter-
mine the rate of apoptosis. The present study demonstrated 
that small interfering RNA‑mediated silencing of CTGF 
promoted cell death and suppressed OSA cell migration and 
invasion, as indicated by wound healing and Transwell assays, 
while lentivirus‑mediated overexpression of CTGF reversed 
these effects. Furthermore, a colorimetric caspase assay 
demonstrated that CTGF knockdown enhanced the efficacy 
of chemotherapeutic drugs. The results of the present study 

provided a novel molecular target which may be utilized for 
the treatment of metastatic OSA.

Introduction

Osteosarcoma (OSA) is globally one of the most common 
types of primary bone tumor and is predominantly observed 
in children and adolescents (<20 years old) (1). Patients with 
localized disease have a five‑year recurrence‑free survival rate 
of 80%; however, the prognosis of OSA is poor in metastatic 
osteosarcoma. In spite of OSA occurring in any type of bone 
in the body, the metaphyseal (actively growing) regions of the 
distal femur, proximal tibia and proximal humerus are the 
most frequent origins of the primary tumor and the sites with 
the highest probability of metastasis are the lungs and distant 
bones (2).

It has been reported that several genes are able to regu-
late cell proliferation and differentiation; these genes carry 
numerous mutations associated with significant neoplasmic 
abnormalities in OSA  (3‑9). Of note, mutations in tumor 
suppressor genes, including p53, MDM2 and riboblastoma 
protein have been reported to have major roles in the tumori-
genesis of OSA (3,4). OSA is also associated with the aberrant 
expression of certain transcription factors expressed in bones, 
including c‑fos, whose overexpression has been shown to 
result in OSA in the bones of mice (5), as well as osteoblast 
differentiation factor osterix (6,7). In OSA cell lines, Runx2 
was found to be downregulated or dysfunctional (8), and in 
high‑grade pediatric OSA, genomic aberrations in the Twist 
have been reported (9).

Resistance to conventional chemotherapy is one of the 
characteristics of metastatic OSA and represents a consider-
able obstacle for its clinical treatment (10). However, only a 
small number of genes, including HES1 (11‑13) and Ezrin (10) 
have been implicated in the progression and metastasis of 
OSA.

It has been reported that statins exert anti‑tumoral effects 
on OSA cells  (13‑15). Cystein‑rich protein  61 (Cyr61), 
a member of the Cyr61/connective tissue growth factor 
(CTGF)/nephroblastoma overexpressed (NOV) (CCN) 
family of secreted proteins, was among the factors downreg-
ulated by statins. This CCN protein family comprises Cyr61, 
CTGF, NOV and Wnt‑induced secreted proteins (WISP)1, ‑2 
and ‑3 (16). As a member of the CCN family, CTGF was 
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hypothesized have effects on osteocarcinoma similar to those 
of statins. The present study therefore assessed the effects of 
CTGF knockdown or lentivirus‑mediated overexpression of 
CTGF as well as statin treatment on the biological properties 
of OSA cells.

Materials and methods

Cell lines and culture. The SaOS2, U2OS, MG63, OHS4 
and CAL72 cell lines (American Type Culture Collection, 
Manassas, VA, USA) were cultured in Dulbecco's modi-
fied Eagle's medium (Invitrogen; Thermo Fisher Scientific, 
Waltham, MA, USA) supplemented with 10% fetal calf serum 
(FCS; Thermo Fisher Scientific) at 37˚C in a humidified atmo-
sphere containing 5% CO2 in air.

RNA extraction and reverse‑transcription quantitative poly‑
merase chain reaction (RT‑qPCR). TRIzol reagent (Invitrogen; 
Thermo Fisher Scientific) was used to isolate RNA according 
to the manufacturer's instructions, which was stored at ‑20˚C. 
cDNA was synthesized using 3 µg RNA, which was denatur-
ated and reverse‑transcribed by using 300 U Moloney murine 
leukemia virus reverse transcriptase, 15 mg oligo dT primers 
and 1 mM deoxynucleoside triphosphate (dNTP) (Promega, 
Madison, WI, USA) in a total volume of 30 µl. SYBR Green 
Master Mix kit (ABGen, Courtaboeuf, France) was used 
for qPCR. A total of 0.5 mM of each primer (Invitrogen; 
Thermo Fisher Scientific) was used with sequences as follows: 
Human CTGF, forward  5'‑CAG​GCT​AGA​GAA​GCA​GAG​
CC‑3' and reverse  5'‑GTA​ATG​GCA​GGC​ACA​GGT​CT‑3'; 
β‑actin, forward 5'‑CTC​CAT​CCT​GGC​CTC​GCT​GT‑3' and 
reverse 5'‑GCT​GTC​ACC​TTC​ACC​GTT​CC‑3'. Thermocycling 
was conducted using the ABI  7500 (Applied Biosystems; 
Thermo Fisher Scientific) and the cycling conditions were as 
follows: Initial denaturation at 95˚C for 15 min, followed by 
40 cycles of 20 sec at 95˚C, 15 sec at 58˚C and 15 sec at 72˚C, 
and final extension at 72˚C for 7 min. The 2‑ΔΔCt method was 
used to determine the relative quantities of RNA.

Plasmid transduction. In order to investigate the role of CTGF 
in OSA, cell lines were transduced with lentiviral vectors (LV) 
encoding either the full‑length sequence (LV‑CTGF) or a specific 
short hairpin (sh)RNA (sh‑CTGF). The full-length CTGF ORF 
(1047 base pairs; GenBank accession number, CR541759.1) was 
amplified from the pFLAG-CMV2-CTGF plasmid (Invitrogen; 
Thermo Fisher Scientific). The primer sequences were as 
follows: Forward, 5'‑TACTGGCGGCGGTATACCCG‑3' 
and reverse, 5'-TGCCATGTCTCCGTACAT-3'. The 
PCR product was inserted into the expression vector 
pcDNA3.1/myc-His(-)B-3X  FLAG-IRES-hrGFP, derived 
from pcDNATM3.1/myc-His(-)B (Invitrogen; Thermo 
Fisher Scientific). Cell transduction was performed using 
Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific) 
according to the manufacturer's instructions.

Proliferation assay. A bromodeoxyuridine (BrdU) incorpora-
tion assay was used to quantify cell replication. A previously 
described procedure was used in the present study (17). In 
brief, cells were cultured for 24 h in the presence of increasing 
concentrations of bisphosphonates (10‑9‑10‑4 M) and labeled 

with BrdU for the last 6 h (kit purchased from GE Healthcare 
Life Sciences, Roosendaal, The Netherlands).

Detection of apoptosis and necrosis. Double staining with 
ethidium bromide and acridine orange was performed to 
visualize and quantify the number of viable cells (green 
nuclei), apoptotic cells (nuclei condensed and colored orange), 
and necrotic cells (red nuclei). In briefly, 2 µl dye mixture 
(100 µg/ml acridine orange and 100 µg/ml ethidium bromide) 
was added to 20 µl cell suspension and immediately examined 
with the 40X oil immersion objective using a Leitz DMRB 
fluorescence microscope (green/red filter; 100 W lamp; Leica 
Microsystems GmbH, Wetzlar, Germany) equipped with a 
photometrics CCD camera and the Logikon image analysis 
system (Numeris Benelux SA, Ath, Belgium). Several fields, 
randomly chosen, were digitized and 600‑800 nuclei for each 
sample were counted and scored. Results were expressed as 
the relative percentages of viable, apoptotic and necrotic cells 
to the total number of cells scored.

Caspase activity. Effector caspase activity was performed as 
previously described (14,15). In brief, cells were treated with 
10 mM atorvastatin (Adooq BioScience LLC, Irvine, CA, 
USA) or the solvent for 24 h then the caspase activity was 
determined. Cellular extracts (50 µg) were incubated with 
0.2 mM acetyl‑Asp‑Glu‑Val‑Asp‑p‑nitroanilide (caspases‑3, 
‑6 and ‑7; Enzo Life Sciences, Inc., Farmingdale, NY, USA), 
Ac‑LEHD‑pNA (caspase‑9; Enzo Life Sciences, Inc.) or 
Ac‑IETD‑pNA (caspase‑8; Enzo Life Sciences, Inc.) as the 
substrates for the previously reported times (14,15) at 37˚C 
in the presence or the absence of the specific caspase inhibi-
tors Ac‑DEVD‑CHO, Ac‑LEHD‑CHO and Ac‑IETD‑CHO 
(10 µM). The specific activity (nmol of pNA/min/mg protein) 
was expressed as treated over control ratios.

Migration and invasion assays. A wound‑healing assay was 
performed following the manufacturer's instructions (ibidi 
GmbH, Martinsried, Germany). A Transwell migration and 
invasion assay as performed as described previously (14). In 
brief, the cells (50,000 cells/insert) were incubated 2 h with 
or without statin and/or z‑VAD‑fmk prior to seeding into the 
inserts and incubation for a further 22 h. The cells that did 
not migrate through the filter were removed from the upper 
surface of the membrane using cotton‑tipped swabs. The cells 
migrated to the underside were fixed in 3.7% paraformaldehyde 
in phosphate‑buffered saline (PBS) at 4˚C and stained with 
crystal violet (Amresco, Solon, OH, USA). The membranes 
were then cut from the insert and observed under a micro-
scope (Axioplan 2 Imaging Mot Microscope System; Zeiss, 
Oberkochen, Germany). Five fields were randomly selected 
and counted and each assay was performed in duplicate.

Western blot analysis. A protocol of a previous study was used 
for the preparation of cell lysates (14) In brief, the proteins 
(30 µg) were resolved using 12% sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS‑PAGE; Protogel, Atlanta, 
GA, USA) and transferred onto polyvinylidene difluoride 
nitrocellulose membranes (EMD Millipore, Billerica, MA, 
USA). The filters were incubated at room temperature for 
2 h in 50 mm Tris‑HCl (pH 7.4), 150 mm NaCl, 0.1% (v/v) 
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Tween 20, 0.5% (w/v) bovine serum albumin (TBST/BSA) 
and then overnight at 4˚C on a shaker with the rabbit mono-
clonal anti‑GAPDH (ab181602) and anti‑CTGF (ab6992) 
antibodies (1:1,000 in TBST/BSA; Abcam, Cambridge, 
UK). The membranes were washed twice with TBST and 
incubated for 2 h with the horseradish peroxidase‑conjugated 
secondary antibody (1:20,000 in TBST/BSA). Following 
the final washes, the signals were visualized with Enhanced 
Chemiluminescence Western Blotting Detection Reagent (GE 
Healthcare Life Sciences) and autoradiographic film (X‑Omat 
AR; Kodak, Rochester, NY, USA). Densitometric analysis 
using ImageQuant software was performed following digital 
scanning (Odyssey® Fc; Agfa‑Gevaert, Mortsel, Belgium).

Immunoblot analysis. A protocol of a previous study was 
used for the preparation of cell lysates  (14,15). Incubation 
with rabbit monoclonal anti-GAPDH (ab181602; 1:200) and 
rabbit polyclonal anti-CTGF (ab6992; 1:200) antibodies was 
conducted at 4˚C overnight. Cell extracts were collected in 
2X loading lysis buffer [50 mM Tris‑HCl (pH 6.8), 2% SDS, 
10% 2-mercaptoethanol, 10% glycerol and protease inhibitor 
cocktail; Sigma‑Aldrich, St.  Louis, MO, USA]. The total 
cellular proteins were separated using 8% SDS–PAGE and 
trans- ferred to Hybond-C nitrocellulose membranes (GE 
Healthcare Life Sciences, Chalfont, UK). Subsequent to 
blocking with PBS containing 5% BSA or nonfat milk, the 
membranes were incubated with the primary antibodies, 
followed by incubation with IRDye 800CW or 680RD 
secondary antibodies (1:10,000; LI‑COR Biosciences, Lincoln, 
NE, USA). The protein bands were detected using the Odyssey 
Infrared Imaging System (Li-COR Biosciences).

Statistical analysis. Values are expressed as the mean ± stan-
dard deviation. Two‑factor analysis of variance was used 
to compare values between groups, using SPSS software, 
version 19.0 (IBM SPSS, Armonk, NY, USA). P<0.05 was 
considered to indicate a statistically significant difference 
between values.

Results

CTGF expression is reduced by atorvastatin (statin) in OSA 
cells. RT‑qPCR analysis of CTGF was performed in the 

SaOS2, U2OS, CAL72, MG63 and OHS4 human OSA cell 
lines, revealing that CTGF mRNA was expressed in all cell 
lines, particularly in SaOS2 cells (Fig.  1A). Furthermore, 
the effect of statin treatment on the expression of CTGF was 
assessed in the OSA cell lines. CTGF mRNA expression in 
the panel of OSA cell lines was markedly decreased following 
treatment with statin (10 mM) (P<0.05 vs. untreated) (Fig. 1B). 
In addition, the effect of statin (10 mM) on the protein levels of 
CTGF in the panel of cell lines was assessed by immunoblot 
analysis, revealing that the protein levels of CTGF were 
decreased following statin (Fig. 1C). Collectively, these results 
indicated that statin treatment led to the downregulation of 
CTGF in human OSA cells. As the SaOS2 and U2OS cell lines 
expressed the highest and lowest levels of CTGF, respectively, 
they were selected to be used in the subsequent experiments.

CTGF expression does not affect OSA cell proliferation. A 
BrdU incorporation assay were used to determine the prolif-
erative rates of transduced and parental cells, revealing that 
these were not affected by plasmid transduction (Fig. 2A). 
The results therefore indicated that CTGF had no significant 
effects on OSA‑cell proliferation in human cell lines.

Evasion of apoptosis by OSA cells is dependent on CTGF 
expression. The present study investigated the effects of 
CTGF on OSA cell death. As shown in Fig. 2B, apoptotic and 
necrotic indices of sh‑CTGF‑transduced cells were higher 
than those of parental cells. By contrast, LV‑CTGF‑transduced 
cells displayed lower apoptotic and necrotic indices compared 
with those of parental cells. Furthermore, it was revealed 
that sh‑CTGF‑transduced cells exhibited increased caspase 
activity and an elevated Bax/Bcl2 ratio compared with 
those of parental cells. By contrast, caspase activity and the 
Bax/Bcl2 ratio were reduced in CTGF‑overexpressing OSA 
cells compared with those in parental cells (Fig. 2C and D). 
These results indicated that CTGF expression was associated 
with the evasion of apoptosis by OSA cells.

The dose‑dependent cytotoxic effects of doxorubicin, 
cisplatin and methotrexate on OSA cell viability are utilized 
for the chemotherapeutic treatment of OSA (14). The present 
study revealed that CTGF silencing significantly enhanced 
the caspase activity in SaOS2 cells following treatment with 
doxorubicin, cisplatin or methotrexate, whereas LV‑CTGF 

Figure 1. CTGF expression levels in osteosarcoma cell lines are reduced by atorvastatin. (A) RT‑qPCR was performed to evaluate CTGF mRNA expression 
in several human OSA cell lines. Expression was normalized to β‑actin. (B) Human OSA cell lines were treated with 10 mM atorvastatin for 24 h and 
RT‑qPCR was used to evaluate mRNA levels of CTGF. Relative expression levels compared with those in untreated cells are shown. Values are expressed as 
the mean ± standard deviation (n=3). *P<0.05 vs. A. (C) Immunoblot analysis was used to assess protein levels of CTGF in human OSA cell lines treated with 
10 mM atorvastatin for 24 h. Ratios of protein expression compared with those of untreated cells are presented, as an average of three blots. Statin, atorvastatin; 
CTGF, connective tissue growth factor; A.U., arbitrary units; RT‑qPCR reverse‑transcription quantitative polymerase chain reaction.

  A   B   C



HUANG et al:  DOWNREGULATION OF CTGF INHIBITS OSA CELL MIGRATION AND INVASION 1891

slighly decreased caspase levels compared with those in native 
SaOS2 cells treated with the chemotherapeutics (Fig. 3A‑C). 
It is therefore concluded that silencing of CTGF enhanced the 
efficacy of chemotherapeutic drugs against OSA.

Cell migration and invasion are dependent on CTGF expression 
in vitro. The present study further investigated the invasiveness 
and migratory potential of transduced OSA cell lines, which 
represent the main characteristics of OSA progression and 
the development of metastasis. The results showed that CTGF 
silencing inhibited wound healing in sh‑CTGF‑transduced 

cells compared with that in parental cells, while CTGF over-
expression enhanced wound healing (Fig. 4A). In addition, 
CTGF overexpression enhanced the migratory potential in 
a Transwell assay (Fig. 4B). The observed inhibition of the 
migratory potential by statin was not able to be rescued by 
overexpression of CTGF (Fig. 4C). Furthermore, a Transwell 
assay using Matrigel‑coated inserts revealed that silencing of 
CTGF inhibited the invasive capacity of OSA cells, while cell 
invasiveness was promoted by CTGF overexpression (Fig. 4D). 
All of these results implied that CTGF had positive effects on 
cell migration and invasiveness in vitro, whereas invasion and 
migration were reduced in CTGF‑silenced OSA cells. It can be 
concluded that CTGF expression is associated with the aggres-
siveness and metastatic potential of OSA cells.

Discussion

Conserved cysteine residues covalently bound to isoprenoids 
can be post‑translationlly modified by prenylation, which is 
essential for the pro‑tumorigenic activity of certain guanosine 
triphosphatases, including Ras and Rho‑like proteins (18,19). 
Synthetic bisphosphonates with inhibitory activities on geranyl-
geranyltransferase type and farnesyltransferase can be utilized 

Figure 3. Efficacy of chemotherapeutics in OSA cells is enhanced by CTGF 
knockdown. Transduced SaOS2 cells were incubated with various doses of 
(A) doxorubicin, (B) cisplatin or (C) methotrexate. A colorimetric assay was 
used to evaluate caspase activity. *P<0.05 vs control. Values are expressed as 
the mean ± standard deviation (n=3). LV, lentivirus; Sh, short‑hairpin RNA; 
CTGF, connective tissue growth factor; T/C, treatment/control.

  A

  B

  C

Figure 2. Osteosarcoma cell viability is modulated by CTGF expression. 
(A) Following 48 h of BrdU incorporation, cell proliferation was evalu-
ated. (B) Acridine orange/ethidium bromide staining were performed and 
staining intensity was scored to determine the numbers of viable, apoptotic 
and necrotic cells. Necrotic and apoptotic cells are expressed as a percentage 
of the total cell population. (C) A colorimetric assay was used to evaluate 
caspase activity. (D) Immunoblot analysis was used to assess levels of apop-
tosis‑associated proteins Bcl‑2 and Bax in cell lysates. Blots were quantified 
to determine the Bax/Bcl2 ratio. *P<0.05 versus parental cells. Values are 
expressed as the mean ± standard deviation (n=3). Bcl2, B‑cell lymphoma 2; 
Bax, Bcl‑2‑associated X protein; LV, lentivirus; Sh, short‑hairpin RNA; 
BrdU, bromodeoxyuridine; CTGF, connective tissue growth factor; T/C, 
treatment/control.

  A

  B
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as anti‑cancer drugs which partly block prenylation through 
inhibition of farnesyl pyrophosphate (FPP) synthase activity; 
this approach is a novel therapeutic strategy for several cancer 
types, including OSA and bone metastases (20‑25). Statins 
act as hypocholesterolemic agents with inhibitory effects 
on the activity of 3‑hydroxy‑3‑methylglutaryl‑coenzyme A 
reductase (26) and represent another class of drug which acts 
through depleting downstream isoprenoid residues, including 
such as geranylgeranylpyrophosphate or FPP. Previous studies 
on OSA reported that statins not only induced apoptosis but 
also reduced cell migration and invasion, and potentiated 
the effects of chemotherapeutic agents (13‑15). However, the 
anti‑cancer efficacy of statins in vivo remains to be clarified. 
Previous clinical studies indicated that statins, apart from 
exhibiting anti‑cancer effects, may also be associated with an 
increased risk for the development of cancer de novo (27‑29). 

These conflicting results indicate that the understanding of the 
mechanisms of action of statins is required to be expanded and 
refined, and that novel targets for cancer therapy require to be 
discovered.

Previous studies reported that Cyr61, which encodes a 
secreted protein known to modulate tumor development and 
progression, was downregulated by statins (30‑32) and that 
CTGF is also among the molecular targets of statins (33,34). 
CTGF is a matricellular protein of the CCN family of extra-
cellular matrix‑associated heparin‑binding proteins, which 
comprises Cyr61, CTGF, NOV and WISP1‑3 (35‑37). CTGF 
has important roles in numerous biological processes, including 
cell adhesion, migration, proliferation, angiogenesis, skeletal 
development and tissue wound repair, and is critically involved 
in fibrotic disease and several types of cancer  (33,34,38). 
Members of the CCN protein family have similar domains, 

Figure 4. OSA cell migration and invasion are affected by CTGF expression. SaOS2 cells were subjected to CTGF knockdown, plasmid‑mediated overexpres-
sion of GTGF and/or statin treatment. (A) A wound healing assay was used to assess the migratory potential of SaOS2 cells was assessed at one day one 
after wounding. Phase‑contrast microscopy images were captured on days 0 and 1 after wounding. (B and C) A 24‑h Transwell assay was used to assess the 
migratory capacity of SaOS2 cells. (D) The invasive capacity of SaOS2 cells was assessed using a 24‑h Transwell assay using Matrigel‑coated inserts. Values 
are expressed as the mean ± standard deviation determined from eight fields of view. Magnification, x40; stained with crystal violet. *P<0.05 vs. parental cells. 
Statin, atorvastatin; LV, lentivirus; Sh, short‑hairpin RNA; CTGF, connective tissue growth factor; T/C, treatment/control.
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indicating that CTGF may have the similar roles in OSA cells 
to those of Cyr61. 

The present study enhanced or silenced the expression of 
CTGF in human OSA cells to determine the role of CTGF in 
OSA development and progression. A BrdU incorporation assay 
did not reveal any significant effects of CTGF on the proliferation 
of human OSA cell lines. By contrast, CTGF silencing slightly 
increased OSA cell death and enhanced the anti‑neoplasic and 
pro‑apoptotic effects of the chemotherapeutics doxorubicin, 
cisplatin and methotrexate, which may represent a novel 
strategy to enhance the efficacy of OSA treatments. A positive 
combinatory effect of statins with chemotherapeutic drugs 
in OSA or other cancer types has been indicated by previous 
studies (13,39‑42). The present study focused on CTGF expres-
sion in OSA cells, independent of the presence of statins. As 
silencing of CTGF enhanced the anti‑tumoral effects chemo-
therapeutic drugs, it was indicated that CTGF knockdown may 
reduce the resistance of OSA cells to chemotherapy.

OSA bears the characteristics of rapid and frequent develop-
ment of metastatic lesions. In vitro experiments performed in 
the present study demonstrated that the migratory and invasive 
capacities of human OSA cells were reduced by CTGF silencing, 
whereas CTGF overexpression led to an increase in cell migra-
tion and invasion. By contrast, previous studies reported that 
silencing or inhibition of CTGF reduced the motility and 
invasiveness of breast and prostate cancer cells (43,44). Due to 
this discrepancy, the roles of CCN family proteins, particularly 
CTGF, in OSA require further study. In OSA cell lines, Nov was 
reported to be expressed at variable levels (45) and may be asso-
ciated with poor prognosis and an increased risk of developing 
metastases (46). The predictive value of CTGF expression levels 
with regard to the outcome and progression of human OSA 
requires to be investigated in future studies analyzing CTGF 
expression in primary and metastatic tumors.

In conclusion, the results of the present study revealed 
that OSA cell invasion and migration was regulated by 
CTGF in vitro. CTGF was indicated to have a critical role 
in the genesis and progression of human OSA, and to be 
involved in the evasion of apoptosis, aggressiveness and 
metastasis formation of OSA. Targeting of CTGF may be a 
strategy to enhance the efficacy of chemotherapeutics in the 
treatment of OSA as well as to reduce the aggressiveness of  
OSA cells.
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