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Abstract. Medullary thyroid carcinoma (MTC), a neuroen-
docrine tumor originating from thyroid parafollicular cells, 
has been demonstrated to be associated with mutations in 
RET, HRAS, KRAS and NRAS. However, the role of other 
genes involved in the oncogenesis of neural crest tumors 
remains to be fully investigated in MTC. The current study 
aimed to investigate the presence of somatic mutations in 
BRAF, CDKN2A and PI3KCA in MTC, and to investigate 
the correlation with disease progression. DNA was isolated 
from paraffin‑embedded tumors and blood samples from 
patients with MTC, and the hotspot somatic mutations were 
sequenced. A total of 2 novel HRAS mutations, p.Asp33Asn 
and p.His94Tyr, and polymorphisms within the 3' untranslated 
region (UTR) of CDKN2A (rs11515 and rs3088440) were 
identified, however, no mutations were observed in other 
genes. It was suggested that somatic point mutations in BRAF, 
CDKN2A and PI3KCA do not participate in the oncogenesis 
of MTC. Further studies are required in order to clarify the 
contribution of the polymorphisms identified in the 3'UTR of 
CDKN2A in MTC.

Introduction

Medullary thyroid carcinoma (MTC), a neuroendocrine tumor 
originating from thyroid parafollicular cells, accounts for 
~4% of thyroid cancer cases  (1). The majority are sporadic 
cases, however, 20‑25% occur as a hereditary syndrome termed 
multiple endocrine neoplasia type 2 (MEN 2A and MEN 2B) 

and as familial MTC, both of which are associated with germ-
line mutations in the RET oncogene (2).

Mutations in the RET oncogene have previously been identi-
fied in the tumor tissue of up to 64% of sporadic MTC cases (3). 
In addition, RAS gene mutations are observed in 10%  of 
RET‑negative cases and are associated with a subset of tumors 
with less aggressive behavior (4). While certain studies identified 
that ~90% of sporadic MTCs exhibited mutually exclusive muta-
tions in RET, HRAS and KRAS (4‑8), Moura et al (3) reported 
the presence of the RAS mutation in one case with RET‑positive 
sporadic MTC and Rapa et al (9) identified no RAS mutations 
in 49 examined cases. Nevertheless, the clinical phenotype of 
sporadic and inherited MTCs is heterogeneous even in the pres-
ence of the same mutation; however the molecular mechanisms 
underlying the pathology remain to be fully elucidated.

In addition, it remains unclear whether there is a modula-
tory role in MTC tumor progression for additional genes such 
as BRAF, CDKN2A and PI3KCA. These genes participate in 
the tumorigenesis of several types of human malignancies such 
as tumors derived from neural crest cells, including melanoma, 
pheochromocytoma and paraganglioma (10‑12).

BRAF,  l ike RET and RAS,  is involved in the 
mitogen‑activated protein kinase pathway and has a 
well‑established role in the pathogenesis of malignancies such 
as melanoma and papillary thyroid cancer (13). Nevertheless, 
the contribution in the tumorigenesis of MTC remains contro-
versial. A previous study reported a high prevalence of the 
p.Val600Glu BRAF mutation in sporadic MTC cases  (14); 
however, subsequent studies did not confirm this observa-
tion (3,9,15,16).

An additional tumor suppressor gene, CDKN2A/p16INK4A, is 
involved in the G1/S transition in the cell cycle. Mutations and 
deletions have been identified in melanoma, and polymorphisms 
in its 3' untranslated region (UTR) have been associated with 
earlier progression from primary to metastatic disease (17). By 
contrast, polymorphisms in another tumor suppressor gene, 
CDKN1B, which is in the same CDKN family, are associated 
with improved outcomes (18).

Additionally, PI3KCA is a gene that serves an important 
role in signaling pathways and cell growth, and contributes to 
tumorigenesis in several types of human malignancy (19,20). 
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However, the role of this gene in the tumorigenesis of MTC 
remains to be fully understood.

Therefore, the current study aimed to verify the prevalence 
of somatic mutations in BRAF, CDKN2A and PI3KCA, which 
have already been described in other neural crest‑derived 
tumors, and to determine the possible supporting role of these 
genes in the tumorigenesis of MTC.

Patients and methods

Patients and tissue samples. From 128 patients with MTC 
assessed at the Multiple Endocrine Neoplasia outpatient 
clinic at the Universidade Federal de Sao Paulo (Sao Paulo, 
Brazil) between February 2007 and June 2013, formalin‑fixed 
paraffin‑embedded (FFPE) tumor tissues were selected from 
31 patients on the basis of the availability of tumor tissues, 
with no other selection criteria. DNA extraction was subse-
quently performed, using an in‑house method as previously 
described (21). Subsequent to DNA extraction, 20 samples 
(from 13 males and 7 females; mean age, 40.55±16.74 years) 
provided the appropriate quantity and quality of DNA. The study 
was approved by the Ethics and Research Committee of the  
Un iver sidade   Federa l   de   Sao   Pau lo  (p rotocol 
number 1945/10), and all patients provided informed consent. 
Additionally, 1,092 genotypes of variant frequencies (single 
nucleotide polymorphisms; SNPs) were obtained from the 
1000 Genomes database (http://www.1000genomes.org/) as a 
population genetics control.

DNA extraction and genotyping. DNA from peripheral 
blood and somatic DNA from 10‑µm sections of FFPE 
MTC tissues was extracted using an in‑house method as 
previously described (21). Polymerase chain reaction (PCR) 
was performed to amplify DNA corresponding to hotspot 
exons 2, 3 and 4 of HRAS; 2, 3 and 4 of KRAS; 2 and 3 of 
NRAS; 15 of BRAF; 9 and 20 of PI3KCA; and exons 2, 3 and 

the 3'UTR of the CDKN2A gene. The sequences of the 
primers are listed in Table I. The reactions were performed 
using 10  pM of each specific primer, 2.5  µl  PCR  buffer, 
200 µM dNTP, 1.5 µM MgCl2 and 0.2 units Taq DNA poly-
merase (Invitrogen; Thermo Fisher Scientific, Waltham, MA, 
USA) in a 25‑µl  total reaction volume. The cycling condi-
tions were as follows: 5 min at 95˚C, 38 cycles of 45 sec at 
95˚C, 45 sec for annealing and 1 min at 72˚C, and a final 
elongation for 10 min at 72˚C. The PCR products were puri-
fied using the Illustra GFX PCR DNA and Gel Purification kit 
(GE Healthcare Life Sciences, Chalfont, UK) and were subject 
to sequencing using the Sanger method, with the Big Dye™ 
Terminator Cycle Sequencing Ready Reaction kit and the 
ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems; 
Thermo Fisher Scientific). Gel electrophoresis of the PCR 
products was performed to analyze product quality and yield 
using a 1.8% agarose gel and a DNA ladder.

In silico analysis of HRAS mutations and CDKN2A polymor-
phisms. Mutational analysis of HRAS was performed by the 
use of Project HOPE to obtain structural information from the 
analysis of PDB‑file 1CTQ (22). The in silico analysis for the 
CDKN2A polymorphisms was performed using the Functional 
Single Nucleotide Polymorphism database (http://compbio.
cs.queensu.ca/F‑SNP/) as previously described  (23). This 
database provides information regarding potential deleterious 
effects of SNPs with respect to splicing, transcription, transla-
tion and post‑translation based on SNP functional significance 
(FS). The FS score for neutral SNPs is 0.1764, whereas the FS 
score for disease‑associated SNPs is in the range of 0.5‑1.

Statistical analysis. The allele and genotype frequencies were 
compared between patients with MTC and the 1000 Genomes 
database controls using a χ2 test. The clinicopathological features 
of patients carrying each of the polymorphisms rs11515 and 
rs3088440 were compared with those of patients without such 

Table I. Primers used in the present study.

Gene	 Forward primer	 Reverse primer

BRAF exon 15	 5'-AACTCAGCAGCATCTCAGGG-3'	 5'-CTTCATAATGCTTGCTCTGATAG-3'
CDKN2A exon 1	 5'-ACCCTGGCTCTGACCATTC-3'	 5'-CAGGTCACGGGCAGAC-3'
CDKN2A exon 2	 5'-GACCTCAGGTTTCTAACGCC-3'	 5'-CATATATCTACGTTAAAAGGCAGGAC-3'
PI3KCA exon 9	 5'-TGGCAGTCAAACCTTCTCTC-3'	 5'-GAGAAAGTATCTACCTAAATCCACAGA-3'
PI3KCA exon 20	 5'-AAATGTTTTGGTGTTCTTAATTTATTC-3'	 5'-GCAGCCAGAACTCTTTATTTTG-3'
C-kit exon 9	 5'-GCCAGGGCTTTTGTTTTCTT-3'	 5'-AGCCTAAACATCCCCTTAAATTG-3'
C-kit exon 11	 5'-AACCATTTATTTGTTCTCTCTCCA-3'	 5'-CCACTGGAGTTCCTTAAAGTCA-3'
C-kit exon 17	 5'-TGGTTTTCTTTTCTCCTCCAAC-3'	 5'-GGACTGTCAAGCAGAGAATGG-3'
HRAS exon 2 	 5'-GGCAGGAGACCCTGTAGGAG-3'	 5'-AGCTGCTGGCACCTGGAC-3'
HRAS exon 3	 5'-GTCCCTGAGCCCTGTCCTC-3'	 5'-CAGCCTCACGGGGTTCAC-3'
HRAS exon 4	 5'-CTCTCGCTTTCCACCTCTCA-3'	 5'-GGGTGGAGAGCTGCCTCA-3'
KRAS exon 2	 5'-TTAACCTTATGTGTGACATGTTCTAA-3'	 5'-GGTCCTGCACCAGTAATATGC-3'
KRAS exon 3	 5'-AGACTGTGTTTCTCCCTTCTCA-3'	 5'-TGGCATTAGCAAAGACTCAAA-3'
KRAS exon 4	 5'-GATATTTGTGTTACTAATGACTGTGCT-3'	 5'-TTATGATTTTGCAGAAAACAGATC-3'
NRAS exon 2	 5'-TCGCCAATTAACCCTGATTAC-3'	 5'-TCCGACAAGTGAGAGACAGG-3'
NRAS exon 3	 5'-TGGGCTTGAATAGTTAGATGC-3'	 5'-AGTGTGGTAACCTCATTTCCC-3'
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polymorphisms using the χ2 test or the Student's unpaired t‑test 
as appropriate. P<0.05 was considered to indicate a statistically 
significant difference, and the Hardy‑Weinberg equilibrium 
was evaluated. Statistical analyses were performed using SPSS, 
version 22.0 (IBM SPSS, Armonk, NY, USA) and GraphPad 
Prism, version 3.0 (GraphPad Software, Inc., La Jolla, CA, USA).

Results

Screening of the RET, HRAS, KRAS and NRAS genes. 
Mutational screening of the RET gene was performed 
on all 20 patients. A total of 10 cases were identified to be 
familial tumors as confirmed by the presence of a germline 
mutation. In total, 30% of the sporadic cases (3/10) presented 
with a RET somatic mutation. The clinicopathological features 
and molecular analysis, including tumor staging based on the 
American Joint Committee in Cancer staging system (24), are 
summarized in Table II.

To investigate exclusive causative mutations in cases of 
sporadic MTC other than RET mutations, HRAS, KRAS 
and NRAS were screened for somatic mutations in the hotspots. 
The majority of these patients had been previously analyzed 
for RET germline mutations as part of our routine evalua-
tion, and for RET somatic mutations in a previous study (25) 
Two novel HRAS mutations, p.Asp33Asn and p.His94Tyr, were 
detected in RET‑negative MTC tumors. Mutational analysis 
using Project HOPE suggests that the p.His94Tyr mutation is 
deleterious, and that the p.Asp33Asn mutation is likely to be 

damaging (Fig. 1). No differences in the clinical presentation 
or histological observations were noted between patients with 
MTC that had a mutation in the RAS gene (Table II).

No somatic mutations were identified in exon 15 of BRAF 
or in exons 9 and 20 of PI3KCA. Patient 9 was not analyzed for 
somatic mutations in PI3KCA due to an insufficient number of 
tumor samples.

Despite not having identified somatic mutations in 
CDKN2A hotspots, two polymorphisms in the 3'UTR regula-
tory region, 500 C→G (rs11515) and 540 C→T (rs3088440), 
were identified in the patients observed. The heterozygotic 
pattern of the two SNPs was observed in the same propor-
tion, 7/20 MTC (35%). The genotype distribution was identified 
to be in the Hardy‑Weinberg equilibrium and was not identi-
fied to exhibit linkage disequilibrium. To investigate whether 
the observed polymorphisms were limited to a somatic event, 
they were further analyzed in the peripheral blood, which 
confirmed germline inheritance. The in silico analysis 
demonstrated that the CDKN2A polymorphisms rs11515 and 
rs3088440 are located in the transcriptional regulatory region 
and that the nucleotide alterations may affect the binding of 
transcription factors.

In seven cases, it was possible to detect the presence of 
these polymorphisms in the secondary tumors in the lymph 
nodes (tumor metastases), however no differences between 
the genotypes of the primary and secondary tumors were 
observed, indicating that there was no additional somatic event 
in CDKN2A involved in the metastatic process. This analysis 

Table II. Summary of patient clinicopathological features and molecular analysis.

		  Age at		  Germline RET	 Somatic	 Somatic H‑, K‑, 	 Somatic
Patient	 Gender	 diagnosis (y)	 pTNMa	 allele	 RET allele	 NRAS allele	 CDKN2A

  1	 M	 28	 T2N1bMx	 WT	 WT	 HRAS_p.Asp33Asn	 rs11515
  2	 F	 25	 T3N1bMx	 WT	 p.Met918Thr	‑	  WT
  3	 M	 38	 T1N1aMx	 WT	 WT	 NA	 rs11515/rs3088440
  4	 M	 56	 T3N1bMx	 WT	 WT	 WT	 WT
  5	 F	 49	 T2NxMx	 WT	 p.Gln681Stop	‑	  WT
  6	 M	 69	 T2N0Mx	 WT	 WT	 HRAS_p.Gln61Arg	 rs3088440
  7	 M	 27	 T4N1Mx	 WT	 WT	 WT	 WT
  8	 M	 51	 T3N1bMx	 WT	 p.Met918Thr	‑	  rs11515
  9	 F	 56	 T1N1bMx	 WT	 WT	 HRAS_p.Asp33Asn	 WT
10	 M	 41	 T4N1bMx	 WT	 WT	 HRAS_p.His94Tyr	 WT
11	 M	 27	 T1N1aMx	 p.Cys634Arg	‑	‑	   rs11515/rs3088440
12	 F	 21	 T1N1aMx	 p.Gly533Cys	‑	‑	   rs11515
13	 M	 61	 T1N1aMx	 p.Gly533Cys	‑	‑	   WT
14	 F	 22	 T2N0Mx	 p.Cys634Arg	‑	‑	   rs11515/rs3088440
15	 M	 43	 T2N0Mx	 p.Cys634Arg	‑	‑	   rs11515
16	 M	 72	 T1N0Mx	 p.Cys634Arg	‑	‑	   WT
17	 M	 45	 T1N1aMx	 p.Cys634Arg	‑	‑	   rs3088440
18	 F	 31	 T1NxMx	 p.Cys634Arg	‑	‑	   rs3088440
19	 F	 15	 T1N1aMx	 p.Cys634Arg	‑	‑	   rs3088440
20	 M	 40	 T1N0Mx	 p.Gly533Cys	‑	‑	   WT

aTNM (Tumor, Node, Metastasis)/American Joint Committee on Cancer staging system. M, male; F, female; y, years; NA, not available; WT, 
wild‑type.
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was additionally performed for BRAF and PI3KCA in meta-
static tissues.

No associations between the polymorphisms and the clini-
copathological features observed were identified (Table III). 
In addition, the frequency of the SNPs was compared with 
a population genetics control, and there was no significant 
difference between the two populations (Table IV).

Discussion

The adjuvant role of additional genes in the tumorigenesis of 
MTC was investigated in the current study through analysis of 
tumor tissues from 20 patients. Screening in hotspot regions 
of BRAF, CDKN2A and PI3KCA did not identify any somatic 
mutations in the coding region. In addition, the results of the 
current study were not in agreement with the BRAF muta-
tion frequency of 68.2% observed by Goutas et al (14). This 
suggests that BRAF does not serve an important role in the 

tumorigenesis of MTC. The observations of the current study 
concerning MTC are consistent with a previous study that 
demonstrated that somatic mutations in genes other than RET 
and RAS are very rare or even absent (5). Notably, the present 
study identified two novel HRAS mutations.

Additionally, two common polymorphisms in the 3'‑UTR 
non‑coding region of the gene CDKN2A were identi-
fied, rs11515 and rs3088440 (26). It is known that protein 
synthesis can be modulated by regulatory elements located 
in the 5'‑UTR and 3'‑UTR regions. The 3'‑UTR, the site of 
the polymorphisms identified in the current study, serves an 
important role in translation and mRNA stability. Alterations 
in this region may be associated with the onset or progression 
of disease (27).

These polymorphisms have been investigated in various 
tumor types including urinary bladder neoplasm  (28), 
esophageal adenocarcinoma (29) and cervical cancer (30) as 
presented in Table V. The two identified polymorphisms have 

Figure 1. Mutational analysis of the HRAS somatic mutations p.Asp33Asn and p.His94Tyr. Electropherogram of tumor tissues (A) 1 and (B) 10; (C and D) sequence 
alignment of human HRAS protein residues in which the position of the conserved amino acids are indicated (arrows); multiple sequence alignment was 
generated with Clustal Omega software (http://www.ebi.ac.uk/Tools/msa/clustalo/), *indicates that the residues in the column were identical in all sequences 
in the alignment; schematic structures of the (E) original and (F) mutant amino acids in the two HRAS mutations; (G and H) structure of the HRAS proteins in 
ribbon‑presentation; gray, protein; magenta, side chain of the mutation (p.Asp33Asn and p.His94Tyr).

  A   B

  C   D

  E   F

  G   H
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Table III. Correlation between CDKN2A SNPs and clinicopathological features in the patient cohort.

	 rs11515 (n=20)	 rs3088440 (n=20)
Clinicopathological	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
feature	 CC (n=13)	 CG (n=7)	 P‑value	 CC (n=13)	 CT (n=7)	 P‑value

Gender			   0.526			   0.474
  Male (n=13)	 8/13 (61.5%)	 5/7 (71.4%)		  9/13 (69.2%)	 4/7 (57.1%)
  Female (n=7)	 5/13 (38.5%)	 2/7 (28.6%)		  4/13 (30.7%)	 3/7 (42.9%)
Age at diagnosis			   0.088a			   0.272a

Mean ± SD (y)	 45.41±17.49	 31.53±11.36		  44.062±17.49	 31.53±11.36	
Tumor type			   0.500			   0.175
  Sporadic (n=10)	 7/13 (53.8%)	 3/7 (42.9%)		  8/13 (61.5%)	 2/7 (28.5%)	
  Familial (n=10)	 6/13 (46.1%)	 4/7 (57.1%)		  5/13 (38.5%)	 5/7 (62.5%)
T category			   0.464			   0.291
  T1	 7/13 (53.8%)	 2/7(28.5%)		  5/13 (38.5%)	 4/7 (57.1%)
  T2	 2/13 (15.3%)	 3/7 (42.9%)		  3/13 (23.1%)	 2/7 (28.5%)
  T3	 2/13 (15.3%)	 2/7 (28.5%)		  3/13 (23.1%)	 1/7 (14.4%)
  T4	 2/13 (15.3%)	 0/7 (0%)		  2/13 (15.3%)	 0/7 (0%)
Tumor size			   0.421a			   0.689a

Mean ± SD (cm)	 1.954±1.11	 2.34±1.03		  2.315±1.22	 1.671±0.59	
  <2	 8/13 (61.5%)	 2/7(28.6%)	 0.378	 7/13 (53.8%)	 4/7 (57.1%)	 0.339
  ≥2	 5/13 (38.5%)	 5/7 (71.4%)		  6/13 (46.1%)	 3/7 (42.9%)
Lymph node metastases			   0.742			   0.742
  N0	 4/13 (30.8%)	 5/7 (71.4%)		  3/13 (23.07%)	 3/7 (42.9%)
  N1	 9/13 (69.2%)	 2/7 (28.5%)		  10/13 (76.9%)	 4/7 (57.1%)
AJCC stage			   0.742			   0.742
  I and II	 4/13 (30.7%)	 2/7 (28.5%)		  4/13 (30.7%)	 2/7 (28.5%)
  III and IV	 9/13 (69.2%)	 5/7 (71.4%)		  9/13 (69.2%)	 5/7 (71.4%)

P‑values were obtained using the χ2 test; acontinuous variables analyzed with Student's t‑test. SNPs, single nucleotide polymorphisms; SD, 
standard deviation; y, years; AJCC, American Joint Committee on Cancer.

Table IV. Comparative analysis of the frequency of the non‑coding CDKN2A germ line single nucleotide polymorphisms in 
patients with MTC and the control.

A, rs11515

		  Genotype frequency			   Allele frequency	
	 ------------------------------------------------------------------------	 -----------------------------------------------------
Population	 CC	 CG	 GG	 C (32)	 G (8)	 P‑value

MTC	 0.60	 0.40	‑	  0.80	 0.20	 0.25
1,000 genomesa	 0.79	 0.19	 0.02	 0.88	 0.12

B, rs3088440

	 Genotype frequency		  Allele frequency		
	 ------------------------------------------------------------------------	 -----------------------------------------------------
Population	 CC	 CT	 TT	 C (31)	 T (9)	 P‑value

MTC	 0.55	 0.45	‑	  0.78	 0.22	 0.65
1,000 genomesa	 0.73	 0.24	 0.03	 0.85	 0.15

aSequences obtained from the 1000 Genomes database used as a population control. MTC, medullary thyroid carcinoma. The numbers in 
parentheses represent the frequency of each allele type in this locus in the studied cohort.
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been previously associated with an earlier progression from 
primary to metastatic disease in the case of melanoma (17), 
and rs3088440 was associated with the mechanism of tumor 
invasion in bladder cancer (28). Controversially, this poly-
morphism has been previously associated with a sub‑group 
with reduced vertical growth of melanoma and a favorable 
outcome (31). However, additional studies have not identified 
a clinical correlation with tumor behavior (30,32,33).

Using in silico analysis, the current study identified 
that the polymorphisms rs11515 and rs3088440 are located 
within a transcriptional regulatory region, and the alteration 
of nucleotides can affect the binding of potential transcrip-
tional factors. For example, the presence of the C allele in 
rs3088440 favors the binding of the transcription factor 
c‑Myb, which potentially results in the transcriptional 
repression of the CDKN2A gene, compromising its normal 
function in cell cycle control (42). However, no association 
was identified between this polymorphism and the clinico-
pathological parameters investigated in the cohort studied 
(Table III).

In conclusion, it is suggested that BRAF, CDKN2A and 
PI3KCA, listed as potential adjuvants in the tumorigenesis 
of MTC, do not participate through somatic mutations as 
modulators of oncogenesis. To the best of our knowledge, the 
current study is the first to investigate these two CDKN2A 

polymorphisms in the pathophysiology of MTC. Therefore, 
CDKN2A and its regulatory regions and the additional genes 
involved in tumorigenesis warrant further investigation in 
MTC.
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Thakur et al, 2012 (37)	 13.64	‑	  Cervical	 150	 Fresh tissue	 PCR‑RFLP
Zhang et al, 2011 (38)	‑	  17.0	 SCCHN	 1,287	 Blood	 PCR‑RFLP
Zhang et al, 2013 (39)	‑	  20.5	 DTC	 303	 Blood	 PCR‑RFLP
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Nascimento et al, 2015a	 35	 35	 MTC	 20	 FFPE tissue + blood	 Sequencing

aIndicates the current study. ADC, gastric and esophageal adenocarcinomas; EAC, esophageal adenocarcinoma; ESCC, esophageal squamous 
cell carcinoma; GBM, glioblastoma multiforme; SCCHN, squamous cell carcinoma of the head and neck; SGC, salivary gland carcinoma; 
DTC, differentiated thyroid carcinoma; PTC, papillary thyroid cancer; HNSCC, head and neck squamous cell carcinoma; SCCOP, squamous 
cell carcinoma of the oropharynx; FFPE, formalin‑fixed paraffin‑embedded; PCR; polymerase chain reaction; SSCP, single‑strand conforma-
tion polymorphism; RFLP, restriction fragment length polymorphism.
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