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Abstract. Acquired resistance to epidermal growth factor 
inhibitors has been reported to be associated with cross-resis-
tance to radiation. Paris Saponins (PSs) exert a wide range 
of pharmacological activities, including cell apoptosis 
induction, multidrug resistance inhibition, angiogenesis 
inhibition and tumor cell migration by modulating various 
signaling pathways. The present study aimed to investigate 
the radiosensitization effects of PSII, PSVI and PSVII in a 
gefitinib‑resistant PC‑9‑ZD lung adenocarcinoma cell line, 
and the possible mechanism underlying their function. A 
clonogenic assay was performed to determine the effects 
of PS radiosensitization on the PC‑9‑ZD cell line. The cell 
cycle was analyzed by flow cytometry, and cell apoptosis 
was analyzed with Annexin V/propidium iodide and Hoechst 
staining. Protein expression levels were detected by western 
blotting. The results of the present study revealed a signifi-
cant increase in PC‑9‑ZD cell line radiosensitivity following 
treatment with PSs. PSs induced G2/M cell cycle phase arrest 
and apoptosis of the irradiated PC‑9‑ZD cells. Notably, the 
expression levels of B cell lymphoma 2 (Bcl-2) were down-
regulated, and those of caspase-3, Bcl-2-associated X protein 

(Bax) and p21/Waf1/Cip1 were upregulated following 
treatment with PSs. The present results demonstrated that 
PSs induced radiosensitivity in gefitinib‑resistant cells by 
inducing G2/M phase arrest and by enhancing the apoptotic 
response via the modulation of caspase-3, Bax, Bcl-2 and 
p21/Waf1/Cip1 expression.

Introduction

Lung cancer is regarded as one of the leading causes of 
cancer-associated mortality worldwide (1). Non-small cell 
lung cancer (NSCLC) accounts for 80% of lung cancers (2,3). 
Epidermal growth factor (EGFR) is an important therapeutic 
target in NSCLC (4). Selective EGFR tyrosine kinase inhibitors 
(TKIs) such as gefitinib have been developed, and are highly 
effective for the treatment of EGFR-mutated NSCLC (5). 
Notably, the efficacy duration of these drugs is short, and patients 
who initially respond to TKIs inevitably relapse, suggesting that 
resistance may easily emerge (6‑8). Gefitinib has shown measur-
able efficacy at early stages of treatment, but disease progression 
usually occurs following 6-8 months of therapy, which eventu-
ally leads to treatment failure (9). Radiation is one of the most 
effective therapeutic strategies for patients with NSCLC who 
are not eligible for a surgical procedure following chemotherapy 
failure (10). Although chemotherapies inhibit cancer cell growth 
when combined with appropriate radiotherapy, this type of 
treatment leads to severe side effects, including irradiation 
pneumonitis and suppression of the hemopoietic system (11,12). 
Therefore, increasing tumor response to irradiation with 
targeted sensitizers has become the focus of numerous studies 
in patients with NSCLC that relapse following treatment with 
TKIs (13). Natural products are suitable alternatives that may be 
used in the treatment of cancer. In past decades, an increasing 
number of investigations have focused on finding anti‑tumor 
agents from natural resources (13-35).
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In recent years, steroidal saponins have attracted scientific 
attention for their structural diversity and significant anti‑tumor 
bioactivities (14-18). Steroidal saponins belong to a family of 
glycosides with a chemical structure that contains either a 
steroid or a triterpenoid attached via C3 and an ether bond 
to a sugar side chain (14-18). In addition, numerous studies 
have been designed to evaluate the anti-tumor effects of Paris 
Saponins (PSs), which are derived from the roots and rhizome 
of Paris polyphylla (19‑25). PSI is a potent anti-tumor agent 
that inhibits cell proliferation and acts as a radiosensitizer for 
gefitinib‑resistant NSCLC cells (13,26). Although PSI has been 
extensively studied for its ability to inhibit tumor growth in 
various types of cancer (13,26‑29), PSII, PSVI and PSVII have 
only recently emerged as potential anti-tumor agents (30-35). 
To the best of our knowledge, the radiosensitization potential 
of PSII, PSVI, and PSVII in TKI-resistant NSCLC has yet to 
be investigated. Therefore, the present study aimed to investi-
gate the radiosensitization effects of PSII, PSVI, and PSVII in 
NSCLC with acquired in vitro gefitinib resistance, and also the 
potential mechanisms underlying their function.

Materials and methods

Drugs and reagents. PSII, PSVI and PSVII were obtained from 
the Zhejiang Institute for Food and Drug Control (Hangzhou, 
China; batches no. 111591, 111592, and 111593, respectively; 
>99% purity). PSII, PSVI and PSVII (100 µg) were each 
dissolved in 100 µl dimethyl sulfoxide (DMSO) as a 100 µg/µl 
stock solution and stored at ‑20˚C. PSII, PSVI and PSVII were 
then diluted in Dulbecco's modified Eagle's medium (DMEM) 
to achieve the final concentration of 0.5 µg/ml for each 
experiment, with a final DMSO concentration of 0.25% (v/v). 
DMEM and 10% fetal bovine serum were purchased from 
GE Healthcare Life Sciences (Logan, UT, USA). A Cycletest™ 
Plus DNA Reagent kit and fluorescein isothiocyanate-Annexin V 
Apoptosis Detection kit were purchased from BD Biosciences 
(Franklin Lakes, NJ, USA). Rabbit anti-rat B cell lymphoma 2 
(Bcl‑2; cat. no. 3498), Bcl‑2‑associated X protein (Bax; cat. 
no. 5023), caspase-3 (cat. no. 9665) and p21/Waf1/Cip1 (cat. 
no. 2947) monoclonal primary antibodies at 1:1,000 dilution 
were purchased from Cell Signaling Technology, Inc., (Danvers, 
MA, USA), and mouse anti-rat glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) monoclonal antibody (sc-365062) 
from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). The 
horseradish peroxidase (HRP)‑conjugated goat anti‑rabbit 
IgG (heavy & light chain) polyclonal antibody (611-1302) was 
purchased from Rockland, Inc. (Limerick, PA, USA). 

Cell culture. A PC‑9‑ZD NSCLC cell line (36) resistant to 
gefitinib following long‑term exposure to the drug was obtained 
from the Laboratory of Biochemistry and Molecular Biology, 
Tongji University (Shanghai, China). The PC‑9‑ZD cells were 
cultured to 80% confluence in DMEM supplemented with 
10% FBS, 100 µg/ml penicillin and 100 µg/ml streptomycin 
(both Sigma-Aldrich, St. Louis, MO, USA) for 2 weeks at 37˚C 
in a humidified atmosphere containing 5% CO2.

Clonogenic assay. The PC‑9‑ZD cells were divided into four 
experimental groups, as follows: i) The control group; ii) the 
PS group; iii) the radiation group; and iv) the PS + radiation 

group. The control group received no treatment, whereas the 
PS group was subdivided into three groups that were treated 
with 0.5 µg/ml PSII, PSVI or PSVII for 3 h. The radiation group 
was irradiated at 4 Gy with a 6‑MV X‑ray, and the PS + radia-
tion group was treated with PSII, PSVI or PSVII for 3 h, then 
irradiated at 4 Gy with a 6-MV X-ray. After 24 h, the cells were 
trypsinized (Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
and then counted under the Olympus CKX41 inverted light 
microscope (Olympus Corporation, Tokyo, Japan). Subsequently, 
the cells were seeded at 1,000 cells/flask and cultured for 
14 days at 37˚C in a humidified atmosphere containing 5% CO2. 
The colonies were then fixed using a mixture of methanol and 
glacial acetic acid (3:1; Sigma‑Aldrich), stained with crystal 
violet (Sigma-Aldrich), and counted under the Olympus CKX41 
inverted light microscope. Only colonies containing >50 cells 
were scored. The experiments were performed in triplicate.

Apoptosis assay. Apoptosis levels were measured using a 
fluorescein isothiocyanate‑Annexin V Apoptosis Detection kit 
(eBioscience, Inc., San Diego, CA, USA). The cells in all groups 
were harvested at 24 h following treatments (or no treatments 
for the control) and stained with 5 µl PI (2.5 µg/ml) and 5 µl 
Annexin V. Apoptosis levels were detected by flow cytometry 
(Beckman Coulter, Inc., Brea, CA, USA).

Cell cycle assay. The radiation group received 4 Gy irradiation 
treatment and the PS + radiation group received 4 Gy irradia-
tion followed by treatment with PSII, PSVI and PSVII. The 
cells were harvested at 12, 24 and 48 h prior to being fixed 
with 70% ethanol and stored overnight at ‑20˚C. The cells were 
then centrifuged at 300 x g for 5 min at 20˚C, and washed 
twice with phosphate-buffered saline. The cells were labeled 
with PI (50 mg/ml) and protected from the light for 30 min 
prior to analysis by flow cytometry and a Kaluza software, 
version 1.20 (Beckman Coulter, Inc.). The experiments were 
performed in triplicate.

Western blot analysis. The cells were treated with PSII, 
PSVI and PSVII for 3 h prior to being irradiated at a dose of 
4 Gy and incubated for 24 h. The cells were lysed with lysis 
buffer containing 50 mM Tris-HCl (pH 8.0) and 150 mM 
1% Triton X-100 (Sigma-Aldrich). The concentration of 
protein in the cell lysate was determined using the Bradford 
Protein Assay (Bio-Rad Laboratories, Inc., Hercules, CA, 
USA). Equal amounts of protein (100 µg) were separated by 
10% sodium dodecyl sulfate-polyacrylamide gel electropho-
resis and transferred to nitrocellulose membranes (Thermo 
Fisher Scientific). The membranes were blocked using bovine 
serum albumin (GE Healthcare Life Sciences) to prevent 
non‑specific binding, prior to incubation overnight at 4˚C 
with rabbit anti-rat Bcl-2, Bax, caspase-3 and p21/Waf1/Cip1 
monoclonal antibodies and mouse anti-rat GAPDH mono-
clonal antibody (all 1:1,000). Subsequently, the membranes 
were washed three times with Tris-buffered saline supple-
mented with Tween-20 (Sigma-Aldrich), prior to incubation 
for 2 h at room temperature with the HRP‑conjugated goat 
anti-rabbit IgG secondary antibody (1:10,000). The 
membranes were visualized using an enhanced chemilu-
minescence system (Immun-Star™AP Chemiluminescence 
kit; Bio‑Rad Laboratories, Inc.) and X‑ray films (Santa Cruz 
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Biotechnology Inc.). The blots were analyzed using Quantity 
One software, version 4.6 (Bio-Rad Laboratories).

Statistical analysis. The results of the present study were 
compared by one-way analysis of variance using SPSS software, 
version 17.0 (SPSS, Inc., Chicago, IL, USA). The experimental 
data are presented as the mean ± standard deviation. P<0.05 
was considered to indicate a statistically significant difference.

Results

PSII, PSVI and PSVII enhance the radiosensitivity of PC‑9‑ZD 
cells. To investigate the effects of PS on radiosensitivity in 

gefitinib‑resistant lung adenocarcinoma cells, PC‑9‑ZD cells 
were exposed to radiation (4 Gy) either with or without PSII, 
PSVI, and PSVII (0.5 µg/ml each), and cell survival was 
determined using a colony formation assay. As shown in 
Fig. 1A‑C, the cell survival rates were significantly reduced in 
the combined treatment groups, as compared with the radia-
tion only group (*P<0.01). These results suggest that PC‑9‑ZD 
cells are more sensitive to the combination treatment than to 
either treatment alone.

PSII, PSVI and PSVII induce apoptosis of irradiated PC‑9‑ZD 
cells. Annexin V/PI double staining was used to evaluate the 
apoptosis induced by PSII, PSVI, and PSVII (0.5 µg/ml each) 
in irradiated PC‑9‑ZD cells. As shown in Fig. 2A‑C, irradiation 

Figure 2. Flow cytometric analysis of cell apoptosis induced by (A) PSII, 
(B) PSVI and (C) PSVII (0.5 µg/ml each). Data are presented as the 
mean ± standard deviation. *P<0.01 vs. the radiation group; #P<0.05 vs. the 
control group. PS, Paris Saponins.

Figure 1. Clonogenic survival of gefitinib‑resistant PC‑9‑ZD lung adeno-
carcinoma cells. The cells were exposed to radiation (4 Gy) and (A) PSII, 
(B) PSVI or (C) PSVII (0.5 µg/ml each). Following cell incubation for 
14 days, the number of colonies with >50 cells were scored. Data are pre-
sented as the mean ± standard deviation. *P<0.01 vs. the radiation group. PS, 
Paris Saponins.
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increased apoptosis levels at 24 h; however, combined treat-
ment with PS (II, VI or VII) further increased apoptosis levels 
(P<0.01). These results suggested that treatment with PSs 
significantly increases radiation‑induced apoptosis.

PSII, PSVI, and PSVII induce G2/M arrest of irradiated 
PC‑9‑ZD cells. In order to determine whether the radiosensi-
tivity induced by PSs were due to cell cycle arrest, the effects 
of PSII, PSVI and PSVII (0.5 µg/ml each) on cell cycle distri-
bution were observed. Irradiation alone induced G2/M phase 
arrest in a time-dependent manner, as compared with the 
control group (P<0.01). However, treatment with PSII, PSVI 
and PSVII following irradiation further changed the cycle 
distribution of irradiated cells, leading to a significant increase 
in cell cycle arrest at the G2/M phase in a time-dependent 

manner, as compared with the radiation group (P<0.01; 
Fig. 3A-C).

PSII, PSVI, and PSVII upregulate p21/Waf1/Cip1, caspase‑3, 
and Bax protein expression levels, and downregulate Bcl‑2 
protein expression levels in irradiated PC‑9‑ZD cells. The 
expression levels of p21/Waf1/Cip1, which are the most 
important regulators of the cell cycle checkpoint (37), and 
caspase-3, Bax and Bcl-2, which are important apoptosis 
regulators (38-41), were investigated to determine which 
molecules were involved in PS-induced cell cycle arrest and 
apoptosis in irradiated PC‑9‑ZD cells. PSII, PSVI, and PSVII 
(0.5 µg/ml) significantly increased the expression levels of 
p21/Waf1/Cip1, caspase-3 and Bax in irradiated cells, and 
significantly decreased the expression levels of Bcl-2 in 

Figure 3. Flow cytometric analysis of cell cycle arrest in the G2/M phase induced by (A) PSII, (B) PSVI and (C) PSVII (0.5 µg/ml each). Data are presented as 
the mean ± standard deviation. *P<0.01 vs. the radiation only group; #P<0.05 vs. the control group. PS, Paris Saponins.
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irradiated cells (P<0.01; Fig. 4A‑C). These results suggest that 
increased p21/Waf1/Cip1 expression levels may contribute to 
G2/M phase arrest, and increased caspase-3 and Bax expres-
sion levels, as well as decreased Bcl-2 expression levels, may 
contribute to PS‑induced apoptosis in irradiated PC‑9‑ZD 
cells.

Discussion

Inhibition of EGFR has emerged as a promising cancer 
therapy approach for the treatment of EGFR-mutated lung 
cancer over the last decade (5). Previous studies have reported 
that the majority of patients who initially responded to EGFR 

inhibition, eventually exhibited tumor recurrence (6-8). 
These results suggested the existence of mechanisms under-
lying acquired resistance to EGFR inhibitors. These include 
mutations in EGFR or V-Ki-ras2 Kirsten rat sarcoma viral 
oncogene homolog, or the activation of other receptor tyro-
sine kinases, such as ErbB3 or c-Met (42). A comparative 
analysis revealed that acquired resistance to EGFR inhibi-
tors was associated with cross-resistance to radiation (43). 
Therefore, radiation is less effective in EGFR-TKI-resistant 
lung cancer.

Previous findings have demonstrated that PSs are able to 
induce cell death, reverse multidrug resistance, and inhibit 
angiogenesis and tumor cell migration by modulating 

Figure 4. Western blot analysis of p21/Waf1/Cip1, caspase-3, Bax and Bcl-2 protein expression levels following treatment with (A) PSII, (B) PSVI or (C) PSVII 
(0.5 µg/ml each). Data are presented as the mean ± standard deviation. *P<0.01 vs. the control groups. PS, Paris Saponins; Bcl‑2, B cell lymphoma 2; Bax, 
Bcl-2-associated X protein.
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various signaling pathways (30-32,35). PSII suppresses the 
growth of human ovarian cancer xenografts by modulating 
VEGF-mediated angiogenesis (30) and tumor cell migra-
tion by elevating the expression levels of pro-apoptotic 
elements including Bax, cytosolic cytochrome c, activated 
caspase‑3, and activated caspase‑9, and by reducing extra-
cellular signal-regulated kinase (ERK)1/2 phosphorylation 
and anti-apoptotic Bcl-2 expression levels (31). PSVII 
induces cell apoptosis and cell cycle arrest in the 
G1 phase, and triggers apoptosis in a caspase-3-dependent  
manner by downregulating mitogen-activated protein kinase 
kinase 1/2 expression, ERK1/2 phosphorylation, and by 
suppressing the protein kinase B signaling pathway (32). 
PSVII reverses multidrug resistance in MCF-7/ADR  
adriamycin-resistant cells via P-glycoprotein inhibition and 
apoptosis augmentation (35). In our previous study, the results 
demonstrated that PSI was able to enhance the radiosensitivity 
of gefitinib‑resistant PC‑9‑ZD lung adenocarcinoma cells, 
which was associated with cell cycle arrest at the G2/M phase 
and apoptosis via increased caspase-3, Bax and p21/Waf1/Cip1 
expression levels, and decreased Bcl-2 expression levels (13). 
PSI, PSII, PSVI, and PSVII exhibit chemical structural simi-
larities; however, to the best of our knowledge, no studies have 
yet to explore the efficacy and mechanisms underlying the 
radiosensitivity of PSs in EGFR-TKI resistance cells.

In the present study, the mechanism underlying the 
radiosensitivity induced by PSII, PSVI, and PSVII in 
EGFR-TKI-resistant cells was examined in order to develop 
PSII, PSVI, and PSVII radiosensitization agents for the 
treatment of EGFR-TKI-resistant lung cancer. The results 
demonstrated that PSII, PSVI, and PSVII significantly 
increased radiosensitivity in PC‑9‑ZD cells. These data 
provided reasonable evidence that addition of PS treatment 
to radiation may improve patient response to radiotherapy in 
EGFR-TKI-resistant lung cancer. It is widely-accepted that 
cellular response to radiation depends on the phase of the cell 
cycle the cells were in at the time of irradiation (44). Cells in 
the G2/M phase are the most sensitive to irradiation (45). In the 
present study, arrest in the G2/M phase was achieved by treat-
ment with PSII, PSVI, and PSVII. The results demonstrated 
that PSII, PSVI, and PSVII induced marked changes in cell 
cycle distribution, leading to cell cycle arrest in the G2/M phase 
in a time-dependent manner. p21/Waf1/Cip1 is considered to 
be the most important cell cycle checkpoint regulator (37). 
The results obtained from the present study showed that treat-
ment with PSII, PSVI, and PSVII significantly increased the 
expression levels of p21/Waf1/Cip1, which resulted in cell 
cycle progression through G2/M phase arrest in the PC‑9‑ZD 
cells. This suggested that p21/Waf1/Cip1 has an important 
role in mediating cell growth through G2/M phase arrest in  
gefitinib‑resistant cell lines.

Furthermore, investigations analyzing apoptosis by 
fluorescence‑activated cell sorting demonstrated significantly 
increased cell apoptosis levels following treatment with PSII, 
PSVI, and PSVII. In the present study, apoptosis was the 
primary pathway to cell death induced by PSII, PSVI, and 
PSVII in the irradiated cells. The results also demonstrated that 
PSII, PSVI, and PSVII significantly increased apoptosis levels, 
as compared with radiation alone in PC‑9‑ZD cells. Caspases 
are important mediators of apoptosis (38). Among them, 

caspase-3 is a frequently activated death protease, catalyzing 
the specific cleavage of numerous cellular proteins (39,40). The 
Bcl-2 family, which comprises anti-apoptotic (including Bcl-2 
and Bcl-extra large) and pro-apoptotic members (including 
Bax and Bcl-2-antagonist/killer 1), is the predominant regu-
lator and mediator of cell apoptosis (41). To investigate the 
roles of PSII, PSVI, and PSVII in radiation-induced apoptosis 
in gefitinib‑resistant PC‑9‑ZD cells, the expression levels of 
Bcl-2 family proteins and caspase-3 were analyzed in the 
present study. The results indicated that Bcl-2 expression 
levels were decreased, and those of Bax and caspase-3 were 
increased following treatment with PSII, PSVI, and PSVII. 
Therefore, PSII, PSVI, and PSVII promoted radiation-induced 
apoptosis via Bcl-2, Bax, and caspase-3, eventually leading to 
enhanced radiosensitivity.

In conclusion, the results of the present study demon-
strated that PSII, PSVI, and PSVII induced radiosensitivity in 
gefitinib‑resistant cells by arresting cells in the G2/M phase 
and by enhancing the apoptosis response via the modula-
tion of caspase-3, Bax, Bcl-2 and p21/Waf1/Cip1 expression 
levels, proteins which are involved in apoptosis and cell cycle 
signaling pathways. Therefore, PSII, PSVI, and PSVII may 
serve as radiosensitizers in gefitinib‑resistant lung cancer. 
However, studies are required for further clinical evaluation.
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