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Abstract. Head and neck squamous cell carcinoma (HNSCC)
is the major histological type of head and neck cancer and no
curative treatments are currently available. Using advanced
sequencing technologies, The Cancer Genome Atlas (TCGA)
has produced large-scale sequencing data, which provide
unprecedented opportunities to reveal molecular mechanisms
of cancer. The present study analyzed the mRNA and micro
(mi)RNA expression data of HNSCC and normal control
tissues released by the TCGA database using a bioinformatics
approach to explore underlying molecular mechanisms.
The mRNA and miRNA expression data were downloaded
from the TCGA database and differentially expressed genes
(DEGs) and miRNAs (DEMs) between HNSCC and normal
head and neck tissues were identified using TwoClassDif.
Subsequently, the gene functions and pathways which are
significantly altered in HNSCC were identified using Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. Regulatory
networks among DEGs and DEMs were then constructed,
and transcription factors (TFs) potentially regulating the
DEGs and DEMs were determined and a TF - miRNA - gene
network was established. A total of 2,594 significant DEGs
(1,087 upregulated and 1,507 downregulated), and 25 DEMs
(8 upregulated and 17 downregulated) were identified in
HNSCC compared with normal control samples. These
DEGs were significantly enriched in GOs and KEGG path-
ways such as mitosis, cell cycle, Wnt, JAK/STAT and TLR
signaling pathway. CPBP, NF-AT1 and miR-1 were situated
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in the central hub of the TF - miRNA - gene network, under-
lining their central roles in regulatory processes specific
for HNSCC. The present study enhanced the current under-
standing of the molecular mechanisms underlying HNSCC
and may offer novel strategies for its prevention, diagnosis
and treatment.

Introduction

Head and neck squamous cell carcinoma (HNSCC), the major
histological type of head and neck cancer (90-95%), is the
sixth most common cancer type worldwide, with an incidence
of <600,000 cases per year (1,2). More than 60% of HNSCC
patients are already in the advanced stage at the time-point
of first diagnosis (3). Despite the advances in the treatments
for HNSCC, including surgical methods, chemoradiotherapy
and the introduction of targeted therapies, the overall survival
has not significantly improved in the last decades, with a
five-year survival rate of only 40-50% (10-30% for patients
with stage IVa and IVb tumors) (4,5). Therefore, it is urgently
required to thoroughly explore the molecular characteristics of
HNSCC to develop novel molecular-based targeted strategies
for its treatment.

Numerous recent studies have investigated the biological
characteristics of HNSCC. Certain genes, micro (mi)RNAs,
transcription factors (TFs) and signaling pathways, including
XPA, miR-504, EGR3 and the Notch signaling pathway,
respectively, have important roles in the genesis and develop-
ment of HNSCC, and are correlated to the prognosis of affected
patients (6-8). However, to date, a comprehensive and systemic
analysis of expression profiles in HNSCC has been lacking.
The present study used the high-throughput mRNA and
miRNA expression data from hundreds of HNSCC samples
released by The Cancer Genome Atlas (TCGA) database to
identify differentially expressed genes (DEGs) and miRNAs
(DEMs) between human HNSCC and normal head and neck
tissues. Significant gene functions and signaling pathways
in which those DEGs are enriched were then determined.
Finally, the regulatory network among TFs, DEMs and DEGs
was mapped. The present study contributed to the current
understanding of the molecular basis of HNSCC and may aid
in the development of novel means of prevention, diagnosis
and treatment.
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Materials and methods

Data sources. Level 3 RNA-sequencing data from
43 normal samples and 498 HNSCC samples, and level 3
miRNA-sequencing data from 45 normal samples and
513 HNSCC samples released by TCGA prior to July Ist, 2014
were all obtained from the TCGA data portal (https://tcga-data.
nci.nih.gov/tcga/). As published previously, the mature
miRNAs and star miRNAs (3' arms of pre-miRNA) from each
pre-miRNA in the miRNA sequencing data were sorted and
calculated according to their MIMAT serial number based on
miRbase V20.0 (http://www.mirbase.org), whereas stem-loop,
precursor or unannotated transcript data were not included in
the present analysis (9,10). Reads per kilobase of exon model
per million mapped reads (RPKM) and reads per million
miRNA mapped (RPM) values were used to represent mRNA
and miRNA expression levels, respectively (11). All data were
presented as the mean + standard deviation.

Identification of DEGs and DEMs. TwoClassDif was used to
identify DEGs and DEMs between normal samples and HNSC
samples as previously reported (12,13). Briefly, Fold-change
(Tumor/Normal) was firstly used to filter DEGs and DEMs.
Only genes with a Fold-change (Tumor/Normal) of >2 or <0.5,
and miRNAs with a Fold-change (Tumor/Normal) of >2.5 or
<0.4 progressed to next stages. Subsequently, the DEGs and
DEMs were further confirmed with the t-test and random
variance model (RVM)-modified t-test to reduce statistical
errors using SPSS for windows, version 20 (International
Business Machines, Armonk, NY, USA). In the present study,
P<0.05 corrected by the false discovery rate (FDR) was
considered to indicate a statistically significant difference.

Gene ontology (GO) analysis. GO analysis was performed
according to the GO database (http:/geneontology.org/) as
previously described (14,15). In brief, the %> test and Fisher's
exact test were used to test the significance level of each func-
tion, and the FDR was calculated to correct statistical errors
derived from multiple tests. The significance threshold was
set at P<0.01 and FDR<0.05. The results were then classified
in a GO-map to further integrate the functional links between
these significant GO functions using Cytoscape v3.2.0
(http://cytoscape.org/).

Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis. KEGG analysis was performed as described
previously using the KEGG database (http:/www.genome.
jp/kegg/) (16-18). The ¥ test and Fisher's exact test were
also performed to screen the significant pathways, and the
P-value, FDR and enrichment value were calculated as previ-
ously reported (17). Pathways with P<0.01 and FDR<0.05
were considered as significant. Then, based on the pathway
associations in the KEGG database, the path network was
established to integrate the interactions among these signifi-
cant pathways using Cytoscape v3.2.0.

TF - miRNA - gene network analysis. First, the target
genes of the DEMs were predicted using Targetscan
(http://www.targetscan.org/) and Miranda (http:/www.
microrna.org/) (19,20). The intersections of predictions from
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the two databases were matched to these DEGs to identify
their regulatory targets.

To predict the TFs that regulate these DEGs and DEMs,
the DNA sequences of these genes and pre-miRNA near
the transcription start site area were acquired, including
1,000-bp upstream and 200-bp downstream regions.
Then, the Match™ algorithm in the TRANSFAC database
(http:/www.gene-regulation.com/index2) was used to search
for TF binding sites in these regions. Two score values
generated in this algorithm, the core similarity score (CSS)
and the matrix similarity score (MSS), were then applied to
evaluate the forecast results (21-23). Based on these results,
a TF - miRNA - gene network was finally constructed using
Cytoscape v3.2.0, to summarize and illustrate the regulatory
interactions among TFs, DEMs and DEGs.

Results

Identification of DEGs and DEMs. The present study identified
2,594 significant DEGs (1,087 upregulated and 1,507 down-
regulated), and 25 significant DEMs (8 upregulated and
17 downregulated) in HNSCC compared with normal control
samples. The DEGs and DEMs with the greatest fold-change
are shown in Fig. 1.

GO analysis results. GO analysis was performed to prelimi-
narily summarize the biological functions of the DEGs
(Fig. 2).

The upregulated genes were mainly enriched in GO
terms including mitosis (GO:0007067), cell proliferation
(G0O:0008283), cell division (GO 0051301) and the cell cycle
(GO:0007049), which are features accountable for the overp-
roliferation of HNSCC cells. They were also enriched in cell
migration (GO:0016477), extracellular matrix organization
(GO:0030198), cell-cell signaling (GO:0007267), angiogen-
esis (GO:0001525) and vascular endothelial growth factor
receptor signaling pathway (G0O:0048010), indicating the
metastatic and angiogenic capacities of HNSCC.

Downregulated genes were mainly involved in the
G-protein coupled receptor signaling pathway (GO:0007186),
epidermal growth factor receptor signaling pathway
(GO:0007173), transmembrane transport (GO:0055085) and
glucose metabolic processes (GO:0006006), which indicated
the potential negative effects of these GO terms in the genesis
and development of HNSCC.

Furthermore upregulated, as well as downregulated, genes
were significantly enriched in processes including cell differ-
entiation (GO:0030154), cell adhesion (GO:0007155), immune
response (GO:0006955) and ion transport (GO:0006811),
suggesting that intricate changes were likely to occur in these
GOs during the genesis of HNSCC.

Aberrant pathways in HNSCC tissues. As displayed in Fig. 3,
the upregulated genes in HNSCC were significantly enriched
in the cell cycle (Path ID: 4110), Wnt signaling pathway (Path
ID: 04310), p53 signaling pathway (Path ID: 04115), Jak/STAT
signaling pathway (Path ID: 04630), TGF-p} signaling pathway
(Path ID: 04350), Toll-like receptor signaling pathway (Path
ID: 04620) and extracellular matrix - receptor interaction
(Path ID: 04512).
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Figure 1. Top-10 differentially expressed genes and top-5 differentially expressed miRNAs in head and neck squamous cell carcinomas ordered by fold-change.
miRNA/miR, microRNA; RSEM, RNA-Seq by expectation maximization; RPM, Reads per million miRNAs mapped.

The downregulated genes mostly participated in the
calcium signaling pathway (Path ID: 04020), ErbB signaling
pathway (Path ID: 04012), GnRH signaling pathway (Path ID:
04912), pyruvate metabolism (Path ID: 00620) and further
small molecular metabolism pathways, while the upregulated
as well as downregulated genes were enriched in pathways
including the MAPK signaling pathway (Path ID: 4010) and
cell adhesion molecules (Path ID: 04514).

TF - miRNA - gene network. As shown in Fig. 4, CPBP
(also called KLF6) was located in the central hub of the
TF - miRNA - gene network and regulated the largest number
of DEMs (n=22) and genes (n=97) in HNSCC. This was
followed by NF-AT1 (also termed NFATC2), GKLF (also
known as KLF4), ZNF333 and Churchill. miR-1, miR-101-3p,
miR-486-5p, miR-133a-3p and miR-195-5p were the top-5
DEMs that regulated the highest number of DEGs. These
molecular regulators were indicated to have key roles in
HNSCC.

Discussion

The present study identified 2,594 DEGs and 25 DEMs
in HNSCC based on gene and miRNA expression profiles
of HNSCC tissues compared with normal tissues. A large
variety of DEMs, including CALB1 and MAGEA9B, DEMs,
including miR-196a-5p and miR-196b-5p, in HNSCC were
identified. Overexpression of CALBI has been previously
reported to be inversely correlated with apoptosis to be
correlated with poor prognosis in other cancer types (24,25).
MAGEAO9B and three other genes belonging to the melanoma
antigen family A (MAGEA) were among the ten most strongly
upregulated genes of the present study. This gene family is
highly expressed in early embryos and is associated with
reduced overall survival in numerous types of cancer (26-28).
However, the roles of the CALB1 and MAGEA gene families
have been rarely studied in HNSCC and require to be further
investigated. As the most strongly upregulated miRNAs in
the present study, miR-196a-5p and miR-196b-5p have been
frequently reported to be overexpressed in the blood of
HNSCC patients and in HNSCC tissues and to be associated

with the prognosis and radio-response, indicating their poten-
tial as promising diagnostic and prognostic biomarkers as
well as therapeutic targets (29-33). Therefore, the potential of
these DEGs and DEMs as biomarkers and therapeutic targets
deserve further investigation with regard to their application in
the early diagnosis, pathological identification, treatment and
monitoring of HNSCC.

To explore the main functional enrichment and signaling
pathways of these DEGs at the cellular level, GO and KEGG
pathway analyses were performed, respectively. GO func-
tions and pathways including mitosis and cell cycle as well
as Wnt, JAK/STAT and Toll-like receptor signaling pathways
were markedly altered in HNSCC compared with normal
controls. The mutation, abnormal expression and modification
of these GOs and pathways have been frequently reported in
HNSCC and other cancer types (34-38). In tumor cells, the
normal energy metabolism of aerobic respiration is replaced
by glycolysis, which is harnessed for accumulating intermedi-
ates of macromolecule biosynthesis, known as the “Warburg
effect’ (39-41). Along with this, the present study revealed that
the downregulated DEGs were significantly enriched in gene
functions and pathways associated with the metabolism of
glucose, pyruvate and numerous other small molecules. These
results suggested that these significant GOs and pathways
are critical drivers in the carcinogenesis and development
of HNSCC, and so are the DEGs that participate in these
GOs and pathways. As shown in the interaction networks,
considerable cross-links exist among these gene functions
and pathways, and therapeutic targeting of one of them may
modulate others, indicating that several parts of the network
may be affected by targeting one component for the treatment
of HNSCC. The hub genes involved in the significant GO and
pathway networks might be applied as novel targets in HNSCC
therapeutic strategies.

There are two major ways in which cells generally regulate
gene expression; one is to regulate the transcription from DNA
to RNA via elements, such as TFs, while the other is to regu-
late the stability of RNA via factors, such as miRNAs (42).
Using the mRNA and corresponding miRNA expression
data released by TCGA, the present study constructed the
TF - miRNA - gene network in HNSCC. In this network,
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CPBP, NF-AT1 and miR-1 were situated in the central hub, in processes ranging from cell proliferation and apoptosis to
indicating their marked importance in the regulatory net of  differentiation, migration and pluripotency (43). NF-AT1 has a
HNSCC. CPBP is a member of the Kruppel-like family of  central role in gene transcription during the immune response
TFs, some of which are implicated in carcinogenesis, acting  and is associated with several tumor types, including glio-
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blastoma and human melanoma (44,45). However, the roles of
these two TFs in have remained elusive in HNSCC. As the
second most downregulated DEM, miR-1 has been reported to
be a tumor suppressor miRNA targeting transgelin 2, purine
nucleoside phosphorylase, fibronectin 1 and prothymosin
alpha, and to accelerate apoptosis and inhibit proliferation
in HNSCC (46-49). Further investigation on these TFs and
miRNAs will enhance the current understanding of the
molecular mechanisms of HNSCC and help to identify poten-
tial therapeutic targets for the treatment of HNSCC.

Based on the mRNA and corresponding miRNA expression
data for hundreds of HNSCC samples, the present study identi-
fied the DEGs and DEMs, and then investigated the GOs and
pathways in which the DEGs were significantly enriched. The
regulatory links among the DEMs and DEGs were determined
and potential TFs, which regulate these DEMs and DEGs were
predicted to finally construct the TF - miRNA - gene network.
Additionally, the hub genes, TFs and miRNAs may potentially
be targeted by novel therapeutic strategies in the future. To
the best of our knowledge, the present study was the first
systematic bioinformatics analysis in HNSCC, and for the first
time, significantly altered GOs and pathways, as well as DEMs
and TFs were identified in HNSCC. The results of the present
study enhanced the current understanding of the molecular
mechanisms underlying HNSCC, and may provide a source
for developing novel strategies for its prevention, diagnosis and
treatment.
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