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Abstract. Head and neck squamous cell carcinoma (HNSCC) 
is the major histological type of head and neck cancer and no 
curative treatments are currently available. Using advanced 
sequencing technologies, The Cancer Genome Atlas (TCGA) 
has produced large‑scale sequencing data, which provide 
unprecedented opportunities to reveal molecular mechanisms 
of cancer. The present study analyzed the mRNA and micro 
(mi)RNA expression data of HNSCC and normal control 
tissues released by the TCGA database using a bioinformatics 
approach to explore underlying molecular mechanisms. 
The mRNA and miRNA expression data were downloaded 
from the TCGA database and differentially expressed genes 
(DEGs) and miRNAs (DEMs) between HNSCC and normal 
head and neck tissues were identified using TwoClassDif. 
Subsequently, the gene functions and pathways which are 
significantly altered in HNSCC were identified using Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis. Regulatory 
networks among DEGs and DEMs were then constructed, 
and transcription factors (TFs) potentially regulating the 
DEGs and DEMs were determined and a TF ‑ miRNA ‑ gene 
network was established. A total of 2,594 significant DEGs 
(1,087 upregulated and 1,507 downregulated), and 25 DEMs 
(8 upregulated and 17 downregulated) were identified in 
HNSCC compared with normal control samples. These 
DEGs were significantly enriched in GOs and KEGG path-
ways such as mitosis, cell cycle, Wnt, JAK/STAT and TLR 
signaling pathway. CPBP, NF‑AT1 and miR‑1 were situated 

in the central hub of the TF ‑ miRNA ‑ gene network, under-
lining their central roles in regulatory processes specific 
for HNSCC. The present study enhanced the current under-
standing of the molecular mechanisms underlying HNSCC 
and may offer novel strategies for its prevention, diagnosis 
and treatment.

Introduction

Head and neck squamous cell carcinoma (HNSCC), the major 
histological type of head and neck cancer (90‑95%), is the 
sixth most common cancer type worldwide, with an incidence 
of <600,000 cases per year (1,2). More than 60% of HNSCC 
patients are already in the advanced stage at the time-point 
of first diagnosis (3). Despite the advances in the treatments 
for HNSCC, including surgical methods, chemoradiotherapy 
and the introduction of targeted therapies, the overall survival 
has not significantly improved in the last decades, with a 
five‑year survival rate of only 40‑50% (10‑30% for patients 
with stage IVa and IVb tumors) (4,5). Therefore, it is urgently 
required to thoroughly explore the molecular characteristics of 
HNSCC to develop novel molecular‑based targeted strategies 
for its treatment.

Numerous recent studies have investigated the biological 
characteristics of HNSCC. Certain genes, micro (mi)RNAs, 
transcription factors (TFs) and signaling pathways, including 
XPA, miR‑504, EGR3 and the Notch signaling pathway, 
respectively, have important roles in the genesis and develop-
ment of HNSCC, and are correlated to the prognosis of affected 
patients (6‑8). However, to date, a comprehensive and systemic 
analysis of expression profiles in HNSCC has been lacking. 
The present study used the high‑throughput mRNA and 
miRNA expression data from hundreds of HNSCC samples 
released by The Cancer Genome Atlas (TCGA) database to 
identify differentially expressed genes (DEGs) and miRNAs 
(DEMs) between human HNSCC and normal head and neck 
tissues. Significant gene functions and signaling pathways 
in which those DEGs are enriched were then determined. 
Finally, the regulatory network among TFs, DEMs and DEGs 
was mapped. The present study contributed to the current 
understanding of the molecular basis of HNSCC and may aid 
in the development of novel means of prevention, diagnosis 
and treatment.
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Materials and methods

Data sources. Level 3 RNA‑sequencing data from 
43 normal samples and 498 HNSCC samples, and level 3 
miRNA‑sequencing data from 45  normal samples and 
513 HNSCC samples released by TCGA prior to July 1st, 2014 
were all obtained from the TCGA data portal (https://tcga‑data.
nci.nih.gov/tcga/). As published previously, the mature 
miRNAs and star miRNAs (3' arms of pre‑miRNA) from each 
pre‑miRNA in the miRNA sequencing data were sorted and 
calculated according to their MIMAT serial number based on 
miRbase V20.0 (http://www.mirbase.org), whereas stem‑loop, 
precursor or unannotated transcript data were not included in 
the present analysis (9,10). Reads per kilobase of exon model 
per million mapped reads (RPKM) and reads per million 
miRNA mapped (RPM) values were used to represent mRNA 
and miRNA expression levels, respectively (11). All data were 
presented as the mean ± standard deviation.

Identification of DEGs and DEMs. TwoClassDif was used to 
identify DEGs and DEMs between normal samples and HNSC 
samples as previously reported (12,13). Briefly, Fold‑change 
(Tumor/Normal) was firstly used to filter DEGs and DEMs. 
Only genes with a Fold‑change (Tumor/Normal) of >2 or <0.5, 
and miRNAs with a Fold‑change (Tumor/Normal) of >2.5 or 
<0.4 progressed to next stages. Subsequently, the DEGs and 
DEMs were further confirmed with the t-test and random 
variance model (RVM)‑modified t-test to reduce statistical 
errors using SPSS for windows, version 20 (International 
Business Machines, Armonk, NY, USA). In the present study, 
P<0.05 corrected by the false discovery rate (FDR) was 
considered to indicate a statistically significant difference.

Gene ontology (GO) analysis. GO analysis was performed 
according to the GO database (http://geneontology.org/) as 
previously described (14,15). In brief, the χ2 test and Fisher's 
exact test were used to test the significance level of each func-
tion, and the FDR was calculated to correct statistical errors 
derived from multiple tests. The significance threshold was 
set at P<0.01 and FDR<0.05. The results were then classified 
in a GO‑map to further integrate the functional links between 
these significant GO functions using Cytoscape  v3.2.0 
(http://cytoscape.org/).

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis. KEGG analysis was performed as described 
previously using the KEGG database (http://www.genome.
jp/kegg/)  (16‑18). The χ2 test and Fisher's exact test were 
also performed to screen the significant pathways, and the 
P‑value, FDR and enrichment value were calculated as previ-
ously reported (17). Pathways with P<0.01 and FDR<0.05 
were considered as significant. Then, based on the pathway 
associations in the KEGG database, the path network was 
established to integrate the interactions among these signifi-
cant pathways using Cytoscape v3.2.0.

TF  ‑  miRNA  ‑  gene network analysis. First, the target 
genes of the DEMs were predicted using Targetscan 
(http://www.targetscan.org/) and Miranda (http://www.
microrna.org/) (19,20). The intersections of predictions from 

the two databases were matched to these DEGs to identify 
their regulatory targets.

To predict the TFs that regulate these DEGs and DEMs, 
the DNA sequences of these genes and pre‑miRNA near 
the transcription start site area were acquired, including 
1,000‑bp upstream and 200‑bp downstream regions. 
Then, the Match™ algorithm in the TRANSFAC database  
(http://www.gene-regulation.com/index2) was used to search 
for TF binding sites in these regions. Two score values 
generated in this algorithm, the core similarity score (CSS) 
and the matrix similarity score (MSS), were then applied to 
evaluate the forecast results (21‑23). Based on these results, 
a TF ‑ miRNA ‑ gene network was finally constructed using 
Cytoscape v3.2.0, to summarize and illustrate the regulatory 
interactions among TFs, DEMs and DEGs.

Results

Identification of DEGs and DEMs. The present study identified 
2,594 significant DEGs (1,087 upregulated and 1,507 down-
regulated), and 25  significant DEMs (8  upregulated and 
17 downregulated) in HNSCC compared with normal control 
samples. The DEGs and DEMs with the greatest fold‑change 
are shown in Fig. 1.

GO analysis results. GO analysis was performed to prelimi-
narily summarize the biological functions of the DEGs 
(Fig. 2).

The upregulated genes were mainly enriched in GO 
terms including mitosis (GO:0007067), cell proliferation 
(GO:0008283), cell division (GO 0051301) and the cell cycle 
(GO:0007049), which are features accountable for the overp-
roliferation of HNSCC cells. They were also enriched in cell 
migration (GO:0016477), extracellular matrix organization 
(GO:0030198), cell‑cell signaling (GO:0007267), angiogen-
esis (GO:0001525) and vascular endothelial growth factor 
receptor signaling pathway (GO:0048010), indicating the 
metastatic and angiogenic capacities of HNSCC.

Downregulated genes were mainly involved in the 
G‑protein coupled receptor signaling pathway (GO:0007186), 
epidermal growth factor receptor signaling pathway 
(GO:0007173), transmembrane transport (GO:0055085) and 
glucose metabolic processes (GO:0006006), which indicated 
the potential negative effects of these GO terms in the genesis 
and development of HNSCC.

Furthermore upregulated, as well as downregulated, genes 
were significantly enriched in processes including cell differ-
entiation (GO:0030154), cell adhesion (GO:0007155), immune 
response (GO:0006955) and ion transport (GO:0006811), 
suggesting that intricate changes were likely to occur in these 
GOs during the genesis of HNSCC.

Aberrant pathways in HNSCC tissues. As displayed in Fig. 3, 
the upregulated genes in HNSCC were significantly enriched 
in the cell cycle (Path ID: 4110), Wnt signaling pathway (Path 
ID: 04310), p53 signaling pathway (Path ID: 04115), Jak/STAT 
signaling pathway (Path ID: 04630), TGF‑β signaling pathway 
(Path ID: 04350), Toll‑like receptor signaling pathway (Path 
ID: 04620) and extracellular matrix ‑   receptor interaction 
(Path ID: 04512).
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The downregulated genes mostly participated in the 
calcium signaling pathway (Path ID: 04020), ErbB signaling 
pathway (Path ID: 04012), GnRH signaling pathway (Path ID: 
04912), pyruvate metabolism (Path ID: 00620) and further 
small molecular metabolism pathways, while the upregulated 
as well as downregulated genes were enriched in pathways 
including the MAPK signaling pathway (Path ID: 4010) and 
cell adhesion molecules (Path ID: 04514).

TF  ‑  miRNA  ‑  gene network. As shown in Fig.  4, CPBP 
(also called KLF6) was located in the central hub of the 
TF ‑ miRNA ‑ gene network and regulated the largest number 
of DEMs  (n=22) and genes  (n=97) in HNSCC. This was 
followed by NF‑AT1 (also termed NFATC2), GKLF (also 
known as KLF4), ZNF333 and Churchill. miR‑1, miR‑101‑3p, 
miR‑486‑5p, miR‑133a‑3p and miR‑195‑5p were the top‑5 
DEMs that regulated the highest number of DEGs. These 
molecular regulators were indicated to have key roles in 
HNSCC.

Discussion

The present study identified 2,594 DEGs and 25 DEMs 
in HNSCC based on gene and miRNA expression profiles 
of HNSCC tissues compared with normal tissues. A large 
variety of DEMs, including CALB1 and MAGEA9B, DEMs, 
including miR‑196a‑5p and miR‑196b‑5p, in HNSCC were 
identified. Overexpression of CALB1 has been previously 
reported to be inversely correlated with apoptosis to be 
correlated with poor prognosis in other cancer types (24,25). 
MAGEA9B and three other genes belonging to the melanoma 
antigen family A (MAGEA) were among the ten most strongly 
upregulated genes of the present study. This gene family is 
highly expressed in early embryos and is associated with 
reduced overall survival in numerous types of cancer (26‑28). 
However, the roles of the CALB1 and MAGEA gene families 
have been rarely studied in HNSCC and require to be further 
investigated. As the most strongly upregulated miRNAs in 
the present study, miR‑196a‑5p and miR‑196b‑5p have been 
frequently reported to be overexpressed in the blood of 
HNSCC patients and in HNSCC tissues and to be associated 

with the prognosis and radio‑response, indicating their poten-
tial as promising diagnostic and prognostic biomarkers as 
well as therapeutic targets (29‑33). Therefore, the potential of 
these DEGs and DEMs as biomarkers and therapeutic targets 
deserve further investigation with regard to their application in 
the early diagnosis, pathological identification, treatment and 
monitoring of HNSCC.

To explore the main functional enrichment and signaling 
pathways of these DEGs at the cellular level, GO and KEGG 
pathway analyses were performed, respectively. GO func-
tions and pathways including mitosis and cell cycle as well 
as Wnt, JAK/STAT and Toll‑like receptor signaling pathways 
were markedly altered in HNSCC compared with normal 
controls. The mutation, abnormal expression and modification 
of these GOs and pathways have been frequently reported in 
HNSCC and other cancer types (34‑38). In tumor cells, the 
normal energy metabolism of aerobic respiration is replaced 
by glycolysis, which is harnessed for accumulating intermedi-
ates of macromolecule biosynthesis, known as the ‘Warburg 
effect’ (39‑41). Along with this, the present study revealed that 
the downregulated DEGs were significantly enriched in gene 
functions and pathways associated with the metabolism of 
glucose, pyruvate and numerous other small molecules. These 
results suggested that these significant GOs and pathways 
are critical drivers in the carcinogenesis and development 
of HNSCC, and so are the DEGs that participate in these 
GOs and pathways. As shown in the interaction networks, 
considerable cross‑links exist among these gene functions 
and pathways, and therapeutic targeting of one of them may 
modulate others, indicating that several parts of the network 
may be affected by targeting one component for the treatment 
of HNSCC. The hub genes involved in the significant GO and 
pathway networks might be applied as novel targets in HNSCC 
therapeutic strategies.

There are two major ways in which cells generally regulate 
gene expression; one is to regulate the transcription from DNA 
to RNA via elements, such as TFs, while the other is to regu-
late the stability of RNA via factors, such as miRNAs (42). 
Using the mRNA and corresponding miRNA expression 
data released by TCGA, the present study constructed the 
TF ‑ miRNA ‑ gene network in HNSCC. In this network, 

Figure 1. Top‑10 differentially expressed genes and top‑5 differentially expressed miRNAs in head and neck squamous cell carcinomas ordered by fold‑change. 
miRNA/miR, microRNA; RSEM, RNA-Seq by expectation maximization; RPM, Reads per million miRNAs mapped.
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CPBP, NF‑AT1 and miR‑1 were situated in the central hub, 
indicating their marked importance in the regulatory net of 
HNSCC. CPBP is a member of the Kruppel‑like family of 
TFs, some of which are implicated in carcinogenesis, acting 

in processes ranging from cell proliferation and apoptosis to 
differentiation, migration and pluripotency (43). NF‑AT1 has a 
central role in gene transcription during the immune response 
and is associated with several tumor types, including glio-

Figure 2. Gene ontology map for head and neck squamous cell carcinomas. Circles represent genetic functions of differentially expressed genes, with their 
size being proportional to the importance of their function. Red represents functions encoded by upregulated genes, blue represents functions encoded 
by downregulated genes and yellow represents functions encoded by up- as well as downregulated genes. Straight lines represent links between genetic 
functions.
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Figure 3. Kyoto Encyclopedia of Genes and Genomes path network in head and neck squamous cell carcinomas. Circles represent pathways, and their size 
is relative to the importance of the respective pathway. Red represents pathways of upregulated genes, blue represents pathways of downregulated genes and 
yellow represents pathways of up- as well as downregulated genes. Straight lines represent interactions between pathways.

Figure 4. TF ‑ miRNA ‑ gene regulation network in head and neck squamous cell carcinomas. Triangles represent TFs, circles represent differentially 
expressed genes and rounded rectangles represent differentially expressed miRNAs, with their area being relative to the significance. Red represents upregula-
tion, blue represents downregulation and yellow represents up- as well as downregulation. Straight lines represent regulatory interactions. TF, transcription 
factor; miR, microRNA.
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blastoma and human melanoma (44,45). However, the roles of 
these two TFs in have remained elusive in HNSCC. As the 
second most downregulated DEM, miR‑1 has been reported to 
be a tumor suppressor miRNA targeting transgelin 2, purine 
nucleoside phosphorylase, fibronectin  1 and prothymosin 
alpha, and to accelerate apoptosis and inhibit proliferation 
in HNSCC (46‑49). Further investigation on these TFs and 
miRNAs will enhance the current understanding of the 
molecular mechanisms of HNSCC and help to identify poten-
tial therapeutic targets for the treatment of HNSCC.

Based on the mRNA and corresponding miRNA expression 
data for hundreds of HNSCC samples, the present study identi-
fied the DEGs and DEMs, and then investigated the GOs and 
pathways in which the DEGs were significantly enriched. The 
regulatory links among the DEMs and DEGs were determined 
and potential TFs, which regulate these DEMs and DEGs were 
predicted to finally construct the TF ‑ miRNA ‑ gene network. 
Additionally, the hub genes, TFs and miRNAs may potentially 
be targeted by novel therapeutic strategies in the future. To 
the best of our knowledge, the present study was the first 
systematic bioinformatics analysis in HNSCC, and for the first 
time, significantly altered GOs and pathways, as well as DEMs 
and TFs were identified in HNSCC. The results of the present 
study enhanced the current understanding of the molecular 
mechanisms underlying HNSCC, and may provide a source 
for developing novel strategies for its prevention, diagnosis and 
treatment.
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