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Abstract. Liver‑intestine cadherin (LI‑cadherin), a novel 
member of the cadherin family, has been associated with the 
ability of a tumor to acquire an aggressive phenotype in several 
types of cancer. However, the exact function of LI‑cadherin in 
the process of tumor invasion and metastasis remains predom-
inantly unknown. To explore the effect of LI‑cadherin on the 
regulation of matrix metalloproteinase‑2 (MMP‑2), MMP‑9 
and galectin‑3 in LoVo human colorectal cancer cells, a RNA 
interference technique was applied to suppress the expression 
of LI‑cadherin. Subsequently, the mRNA levels and activities 
of MMP‑2 and ‑9 were analyzed by semi‑quantitative reverse 
transcription‑polymerase chain reaction and gelatin zymog-
raphy, respectively. Additionally, the protein expression 
level of galectin‑3 was determined by western blot analysis. 
The results of the present study demonstrated that short 
hairpin RNA (shRNA)‑silencing of LI‑cadherin significantly 
increased the mRNA levels and activities of MMP‑2 and ‑9, 
and significantly reduced the protein levels of galectin‑3 in 
LoVo cells compared with control shRNA (P<0.05). These 
data indicate that knockdown of LI‑cadherin facilitates the 
invasion of cancer cells by degrading extracellular matrix 
components via activation of MMP‑2 and ‑9, and increases 
cancer cell adhesion and migration via altered expression of 
galectin‑3. This suggests that LI‑cadherin serves an important 
role in the invasion and metastasis of colorectal cancer, and 
may be used as a potential therapeutic target.

Introduction

Cell adhesion is crucial during the development and adult 
life of multicellular organisms. There are principally two 
types of adhesion: Cell‑cell adhesion; and cell‑extracellular 
matrix (ECM) adhesion. The canonical receptors for cell‑cell 
adhesion are cadherins (1). Cadherins are a multi‑member 
glycoprotein family of transmembrane Ca2+‑dependent adhe-
sion molecules, which maintain tissue structure in normal 
and pathological settings (2,3). They are major contributors to 
cell‑cell adhesion. Numerous cadherin superfamily members 
have been previously identified and these are comprised of 
four different subfamilies (classical, desmosomal, atypical and 
protocadherins) (4). Distinct members of the cadherin family 
are important for morphogenesis during development, forma-
tion of junctional complexes, induction of the polarized cell 
type, development of cell‑cell associations and the invasion of 
tumor cells (5).

Liver‑intestine cadherin (LI‑cadherin), also termed 
cadherin‑17, is expressed in fetal livers and the gastrointestinal 
tract during embryogenesis as one member of the 7D‑cadherin 
superfamily (6). LI‑cadherin is often upregulated in certain 
types of cancer, including hepatocellular carcinoma, gastric, 
ductal pancreatic and colorectal cancer, however, it has not been 
reported to be expressed in brain tumors or blood malignan-
cies (7). LI‑cadherin has been observed to be expressed in 96% 
of tumor samples and is regarded as a useful diagnostic marker 
for adenocarcinomas of the digestive system (8). Compared 
with classical cadherins, including E‑, N‑ and P‑cadherin, 
LI‑cadherin possesses several unique features (9). For example, 
it has seven extracellular cadherin domains, whereas classical 
cadherins have five cadherin repeats. Additionally, LI‑cadherin 
has a short cytoplasmic domain composed of 20  amino 
acids, which shares no homology with the corresponding 
regions of classical cadherins, such as E‑cadherin, which 
binds catenin proteins through their cytoplasmic domains to 
initiate signaling cascades. Although LI‑cadherin is able to 
mediate Ca2+‑dependent cell‑cell adhesion  (10), the differ-
ence in structure causes the adhesive function of LI‑cadherin 
to be independent of any interaction with catenins, the actin 
cytoskeleton or other cytoplasmic components. The adhesive 
mechanism of LI‑cadherin remains unclear.
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Previous studies have demonstrated that LI‑cadherin 
is associated with colorectal carcinoma  (11), gastric 
cancer (12‑16), ductal adenocarcinoma of the pancreas (17) 
and hepatocellular carcinoma  (18‑23). Furthermore, the 
expression level of LI‑cadherin is associated with lymph 
node metastasis, advanced pTNM stage, early tumor recur-
rence and poor overall survival (15,16,24,25). Together, these 
previous studies indicate that LI‑cadherin is associated with 
the ability of tumor cells to acquire an aggressive phenotype 
in several types of cancer. However, the exact mechanisms of 
LI‑cadherin in the development of cancer remain unclear.

Galectin‑3, a member of the β‑galactoside‑binding lectin 
family, is involved in several biological processes, including 
tumor cell proliferation, differentiation, angiogenesis, adhe-
sion, motility, invasion, cancer progression and metastasis (26). 
Interaction of galectin‑3 with adhesion and signaling recep-
tors has been demonstrated to promote tumor cell migration. 
For example, galectin‑3 binding to N‑cadherin destabilizes 
cell‑cell junctions by increasing the turnover of N‑cadherin 
and other glycoconjugates, which may increase cell migra-
tion (27). Whether LI‑cadherin exhibits a similar function via 
binding galectin‑3 remains unclear. Additionally, a previous 
study demonstrated that galectin‑3 is cleaved by members of 
the matrix metalloproteinase (MMP) family of enzymes. The 
72‑kDa (gelatinase A, MMP‑2) and 92‑kDa (gelatinase B, 
MMP‑9) proteinases cleave galactin‑3 to generate a 22‑kDa 
fragment containing the carbohydrate recognition domain 
and a 9‑kDa fragment comprising of the amino terminal 
of galectin‑3. Thus, galectin‑3 is considered as a substrate 
for human MMP‑2 and ‑9 (28). It is possible that galectin‑3, 
MMP‑2 and MMP‑3 are important regulating molecules in the 
LI‑cadherin signaling pathway.

In the current study, to classify the role of LI-cadherin 
in regulating MMP-2, MMP3 and galectin-3 in colorectal 
cancer cells, an RNA interference strategy was employed 
to specifically knockdown LI‑cadherin in LoVo cells. The 
results of the present study demonstrate that a reduction 
in the galectin‑3 expression levels is associated with the 
increased expression of MMP‑2 and MMP‑9, which is medi-
ated by LI‑cadherin.

Materials and methods

Cell  l ines  and cel l  cu l ture.  Der ivat ion of  the 
pU6‑LI‑cadherin‑short hairpin RNA (shRNA)‑transfected 
(Shanghai Genechem Co., Ltd., Shanghai, China) LoVo 
cell (American Type Culture Collection, Manassas, VA, 
USA) clone was performed as previously described  (29). 
T h e  pU6 ‑ L I ‑ c a d h e r i n ‑ sh R NA‑ t r a n s fe c t e d  a n d 
pU6‑control‑shRNA‑transfected LoVo cell clones were 
maintained in Dulbecco's modified Eagle's medium (GE 
Healthcare Life Sciences, Logan, UT, USA) supplemented 
with 10% fetal calf serum (ExCell, Shanghai, China) and 
G418 (350 µg/ml) (Gibco; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA).

Semi‑quantitative reverse transcription‑polymerase chain 
reaction (RT‑PCR). Total RNA was extracted using TRIzol 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.), then 1 µg 
RNA was reverse transcribed using the RevertAid First Strand 

cDNA Synthesis kit (Fermentas; Thermo Fisher Scientific, 
Inc., Pittsburgh, PA, USA) according to the manufacturer's 
instructions. RT‑PCR was performed using standard meth-
odology and Ex Taq DNA polymerase and dNTPs were 
purchased from Takara Biotechnology Co., Ltd., (Dalian, 
China). Primers were designed according to the sequences 
of MMP‑2 (GenBank accession no. NM_004530), MMP‑9 
(GenBank accession no. NM_004994) and β‑actin (GenBank 
accession no. NM_001101). The primers used for MMP‑2, 
MMP‑9 and β‑actin were as follows: MMP‑2, forward 5'‑CCA​
TCA​CTA​TGT​GGG​CTG‑3', reverse 5'‑TGC​TGG​CTG​CCT​
TAG​AAC‑3' (168  bp); MMP‑9, forward  5'‑TTG​ACA​GCG​
ACA​AGA​AGT‑3', reverse 5'‑AGT​AGT​GGC​CGT​AGA​AGG‑3' 
(483 bp); and β‑actin, forward 5'‑AAA​GAC​CTG​TAC​GCC​
AACA‑3', reverse  5'‑GGA​GCA​ATG​ATC​TTG​ATC​TTC‑3' 
(125 bp). The PCR was conducted on an S1000™ Thermal 
Cycler (Bio-Rad, Hercules,  California, USA) and the cycling 
conditions were as follows: For MMP‑2 and β‑actin, 94˚C for 
5 min, 30 cycles of 94˚C for 30 sec, 58˚C for 30 sec and 72˚C 
for 30 sec, followed by an additional extension step of 10 min 
at 72˚C; and for MMP‑9, 94˚C for 5 min, 30 cycles of 94˚C 
for 30 sec, 50˚C for 30 sec, and 72˚C for 30 sec, followed by 
an additional extension step of 10 min at 72˚C. The RT‑PCR 
products were separated by electrophoresis in a 1.5% agarose 
gel and visualized using ethidium bromide (Tiangen, Beijing, 
China) and a 2UV Transilluminator (LM‑26E; UVP, Inc., 
Upland, CA, USA). The expression ratio (MMP‑2/β‑actin 
and MMP‑9/β‑actin) measured by densitometry (Gel-Pro 
Analyzer 4.0, Media Cybernetics, Inc., Rockville, MD, USA) 
was used to evaluate the mRNA levels of the genes. The 
mRNA level of each sample was detected following at least 
two independent experiments.

Western blot analysis. LoVo cells were lysed in radioim-
munoprecipitation assay buffer (Beyotime Institute of 
Biotechnology, Beijing, China) containing 50 mM Tris‑HCl, 
150 mM NaCl, 1 mM ethylenediaminetetraacetic acid, 1 mM 
sodium orthovanadate, 1 mM NaF, 1% NP40, and 0.25% 
sodium deoxycholate supplemented with 1 mM phenylmeth-
ylsulfonyl fluoride and quantified using the DC Protein Assay 
kit (Bio‑Rad Laboratories, Inc., Hercules, CA, USA). Equal 
amounts of proteins from each sample were applied to a 10% 
sodium dodecyl sulfate (SDS) polyacrylamide gel (Beijing 
Solarbio Science & Technology Co., Ltd., Beijing, China) 
and transferred to a polyvinylidene difluoride membrane 
(EMD Millipore, Billerica, MA, USA). The membranes were 
blocked in 5% non‑fat milk and incubated at 4˚C overnight 
with diluted rabbit polyclonal anti‑galectin‑3 (1:1,000; 
cat. no. sc‑20157; Santa Cruz Biotechnology, Inc., Dallas, 
TX, USA) or mouse monoclonal anti‑β‑actin (1:3,000; cat. 
no. sc‑47778; Santa Cruz Biotechnology, Inc.) primary anti-
bodies, followed by incubation with horseradish peroxidase 
(HRP)‑conjugated goat anti-rabbit IgG (cat. no. ZDR-5403; 
ZSGB-Bio, Beijing, China). Immunoreactive bands were 
visualized using Immobilon Western Chemiluminescent 
HRP Substrate (EMD Millipore) and signals were developed 
on X‑ray film (Kodak, Rochester, NY, USA). The expres-
sion ratio (galectin‑3/β‑actin) as measured by densitometry 
(Gel-Pro Analyzer 4.0, Media Cybernetics, Inc.) was used to 
evaluate protein levels.
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Gelatin zymography. The culture supernatant was collected 
and the total protein concentration of the supernatants of 
each sample was determined using a Bradford Protein 
Assay kit (Beyotime Institute of Biotechnology). Culture 
supernatants containing equal amounts of total protein 
were mixed with SDS loading buffer (Beyotime Insititute of 
Biotechnology) and electrophoresed on 10% denaturing SDS 
polyacrylamide gels containing 1 mg/ml gelatin. Following 
electrophoresis, the gels were soaked in 2.5% Triton X‑100 
on a shaker for 1 h, the solution was changed after 30 min 
to eliminate SDS. Following incubation in zymogen activa-
tion buffer (50 mM Tris‑HCl pH 7.5, 0.1% Triton X‑100, 
0.02% NaN3, 5 mM CaCl2 and 1 µM ZnCl2) at 37˚C for 12 h, 
the gels were rinsed in distilled water and stained for 5 h 
with Coomassie blue R250 (Beyotime Institute of Biotech-
nology). Gelatinolytic bands were observed as clear zones 
against the blue background and the intensity of the bands 
was estimated using ImageJ software, version 1.45 (imagej.
nih.gov/ij/). The gelatinase expression level of each sample 
was determined following a minimum of three independent 
experiments.

Statistical analysis. All analyses were performed using SPSS 
software, version 11.5 (SPSS, Inc., Chicago, IL, USA). The 
mRNA and protein levels were analyzed by one‑way analysis 
of variance followed by a post‑hoc least‑significant difference 

test. P<0.05 was considered to indicate a statistically signifi-
cant difference.

Results

Silencing of LI‑cadherin increases the mRNA level of MMP‑2 
and MMP‑9 in LoVo cells. To investigate the effect of silencing 
LI‑cadherin on the mRNA levels of MMP‑2 and MMP‑9 
in LoVo cells, RT‑PCR analysis was performed. The results 
demonstrated that there was no significant difference between 
the mRNA levels of MMP‑2 in untreated LoVo cells and in 
LoVo cells stably expressing pU6‑control‑shRNA (P>0.05). By 
contrast, the mRNA level of MMP‑2 in LoVo cells expressing 
pU6‑LI‑cadherin‑shRNA was significantly increased compared 
with untreated (P<0.05) and pU6‑control‑shRNA‑expressing 
LoVo cells (P<0.05; Fig.  1A). Similarly, the mRNA level 
of MMP‑9 did not differ between untreated and LoVo cells 
stably expressing pU6‑control‑shRNA (P>0.05). However, the 
mRNA level of MMP‑9 was significantly increased in LoVo 
cells following silencing LI‑cadherin compared with untreated 
and control shRNA‑transfected cells (P<0.05; Fig. 1B).

Silencing of LI‑cadherin increases the protein levels and 
activity of MMP‑2 and MMP‑9 in LoVo cells. To explore 
whether the protein expression levels and activity of 
MMP‑2 and MMP‑9 were altered following knockdown 

Figure 1. Effects of pU6‑LI‑cadherin‑shRNA on mRNA transcript levels of MMP‑2 and MMP‑9 in LoVo cells. Semi‑quantitative reverse 
transcription‑polymerase chain reaction was performed to assess the mRNA levels of (A) MMP‑2 and (B) MMP‑9. β‑actin was used as a reference gene 
to normalize the samples. Statistical analysis was performed using analysis of variance followed by the post‑hoc least significant difference test. *P<0.05, 
comparison indicated by brackets. Values are presented as the mean ± standard deviation of 3 independent samples performed in triplicate. LI‑cadherin, 
liver‑intestine cadherin; MP, matrix metalloproteinase; shRNA, short hairpin RNA.
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of LI‑cadherin in LoVo cells, a gelatin zymography experi-
ment was performed (Fig. 2). The results of the current study 
demonstrated that the protein levels of proMMP‑2 and ‑9, and 
their active forms were significantly increased in LoVo cells 
expressing pU6‑LI‑cadherin‑shRNA compared with untreated 
and control shRNA‑transfected LoVo cells (P<0.05). 

Silencing LI‑cadherin reduces the protein expression 
level of galectin‑3. Western blot analysis was performed 
to detect the effect of of LI silencing via transfection with 
pU6‑LI‑cadherin‑shRNA on the protein levels of galectin‑3 
in LoVo cells. The protein level of galectin‑3 exhibited 
no significant difference between the untreated cells and 
cells stably expressing pU6‑control‑shRNA. By contrast, 
following knockdown of LI‑cadherin, LoVo cells exhibited 
significantly reduced protein levels of galectin‑3 compared 
with untreated and control shRNA‑transfected cells (P<0.05; 
Fig. 3).

Discussion

A previous study demonstrated that knockdown of LI‑cadherin 
promotes cell migration, invasion and adhesion (29). However, 
the mechanisms that mediate these changes remain unclear. 
The present study demonstrated that silencing of LI‑cadherin 
increases the expression levels (mRNA and protein) and 
activation of MMP‑2 and ‑9, and downregulates the protein 
level of galectin‑3, which is a substrate for human MMP‑2 
and MMP‑9. Based on the present data, it is proposed that 
knockdown of LI‑cadherin expression facilitates the invasion 
of cancer cells by degrading ECM components via enhanced 
expression and activation of MMP‑2 and ‑9, and increases 
cancer cell adhesion and migration via altered expression of 
galectin‑3.

The MMPs are a tightly regulated family of enzymes that 
degrade ECM and basement membrane components, thus 
allowing cancer cells access to subepithelial structures (30). 

Figure 2. Effects of silencing LI‑cadherin on the protein levels and activities of MMP‑2 and MMP‑9. (A) Gelatin zymographic analysis. (B) Quantification 
of zymography. Statistical analysis was performed using analysis of variance followed by post‑hoc least significant difference test. *P<0.05, comparisons 
indicated by brackets. Values are presented as the mean ± standard deviation of 3 independent samples performed in triplicate. LI‑cadherin, liver‑intestine 
cadherin; MMP, matrix metalloproteinase; shRNA, short hairpin RNA.

Figure 3. Effect of LI‑cadherin knockdown on the protein levels of galectin‑3 in LoVo cells. (A) Western blot analysis was performed to detect galectin‑3. 
β‑actin was used as a loading control. (B) Statistical analysis was performed using analysis of variance followed by the post‑hoc least significant difference test. 
*P<0.05, comparisons indicated by brackets. Values are expressed as the ratio of galectin‑3 to β‑actin level and presented as the mean ± standard deviation of 
3 independent samples performed in triplicate. LI‑cadherin, liver‑intestine cadherin; MMP, matrix metalloproteinase; shRNA, short hairpin RNA.
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MMP‑2 and ‑ 9, in particular, are important for cleaving 
major components of the basement membrane, such as 
type IV collagen. They interact with αvβ3 integrin, which 
contributes to collagen degradation, cell migration and cell 
invasion (31,32). A previous study demonstrated that silencing 
LI‑cadherin promotes cell invasion (29). The present study 
demonstrated that knockdown of LI‑cadherin increased the 
expression levels and activation of MMP‑2 and ‑ 9. Thus, 
it is concluded that LI‑cadherin‑associated invasion may 
contribute to LI‑cadherin‑induced alteration and activation of 
MMP‑2 and ‑9.

A previous study demonstrated that galectin‑3 (31 kDa) 
is cleaved by MMP‑2 and ‑9 to generate 22‑kDa and 9‑kDa 
fragments (28,33). In the current study, silencing LI‑cadherin 
in LoVo cells significantly increased the mRNA levels of 
MMP‑2 and ‑9, whereas the protein level of galectin‑3 was 
downregulated under the same conditions. Together these 
studies suggest that the reduction in the protein levels of 
galectin‑3 (31 kDa) is induced via enhanced cleavage resulting 
from increased expression levels of MMP‑2 and ‑9 meditated 
by LI‑cadherin. 

In the present study, silencing LI‑cadherin reduced the 
protein levels of galectin‑3, a protein that is closely involved in 
tumor cell transformation, migration, invasion and metastasis. 
A previous study indicates that Ca2+‑dependent cell‑cell adhe-
sion mediated by LI‑cadherin is independent of interaction 
with cytoplasmic components (10). Thus, it is possible that 
LI‑cadherin inhibits LoVo cell migration and adhesion via 
galectin‑3 in an indirect manner. However, galectin‑3 predomi-
nantly promotes tumor development in cancer, however, it acts 
as a tumor‑suppressor in certain types of cancer (34). Addi-
tionally, Bartolomé et al (7) reported a different mechanism 
when they investigated the association between LI‑cadherin 
and cell proliferation and adhesion. They demonstrated that 
cell adhesion, proliferation and liver metastasis were reduced 
following knockdown of LI‑cadherin in KM12 metastatic 
colorectal cancer cells, and the effects are regulated by 
interaction between LI‑cadherin and α2β1 integrin. The 
previous study also observed a significant correlation between 
LI‑cadherin overexpression and poor survival in colorectal 
cancer, whereas, other studies had previously demonstrated 
that reduced expression of LI‑cadherin is associated with 
lymph node metastasis (11), or tumor dedifferentiation and 
poor overall survival  (35) based on immunohistochemical 
analysis. The conflicting results are possibly caused by differ-
ences in samples number, the ratio of cancer stage and cell 
types. The association of LI‑cadherin expression with cell 
adhesion requires further elucidation.

In summary, previous studies have demonstrated that 
LI‑cadherin has an important function in migration, inva-
sion and adhesion (13,19,29,36). LI‑cadherin acts via various 
molecular mechanisms depending on the cancer cell type. In 
the current study, it was identified that in colorectal cancer 
cells, there was an association between LI‑cadherin, gela-
tinases and galectin‑3, providing insight into the functional 
regulation of LI‑cadherin and a better understanding of the 
molecular mechanisms of the LI‑cadherin. Further study of 
LI‑cadherin may be important to advance the understanding 
of human cancer progression and developing novel diagnostic 
markers.
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