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Abstract. The complex etiopathogenesis of Alzheimer's 
disease (AD) has limited progression in the identification 
of effective therapeutic agents. Amyloid precursor protein 
(APP) and presenilin‑1 (PS1) are always overexpressed in 
AD, and are considered to be the initiators of the formation 
of β‑amyloid plaques and the symptoms of AD. In the present 
study, a transgenic AD model, constructed via the overex-
pression of APP and PS1, was used to verify the protective 
effects of ginsenoside Rg1 on memory performance and 
synaptic plasticity. AD mice (6‑month‑old) were treated via 
intraperitoneal injection of 0.1‑10 mg/kg ginsenoside Rg1. 
Long‑term memory, synaptic plasticity, and the levels of 
AD‑associated and synaptic plasticity‑associated proteins 
were measured following treatment. Memory was measured 
using a fear conditioning task and protein expression levels 
were investigated using western blotting. All the data was 
analyzed by one‑way analysis of variance or t‑test. Following 
30 days of consecutive treatment, memory in the AD mouse 
model was ameliorated in the 10 mg/kg ginsenoside Rg1 treat-
ment group. As demonstrated by biochemical experiments, 
ginsenoside Rg1 treatment reduced the accumulations of 
β‑amyloid 1‑42 and phosphorylated (p)‑Tau in the AD model. 
Additionally, brain‑derived neurotrophic factor (BDNF) and 
p‑TrkB synaptic plasticity‑associated proteins were upregu-
lated following ginsenoside Rg1 application. Correspondingly, 
long‑term potentiation (LTP) was restored following ginsen-
oside Rg1 application in the AD mice model. Taken together, 
ginsenoside Rg1 repaired hippocampal LTP and memory, 
likely through facilitating the clearance of AD‑associated 
proteins and through activation of the BDNF‑TrkB pathway. 

Therefore, ginsenoside Rg1 may be a candidate drug for the 
treatment of AD.

Introduction

Alzheimer's disease (AD) remains the most severe form of 
neurodegenerative disease, and is characterized by a decline 
in memory performance and other cognitive abilities. It is 
estimated that ~25,000,000 individuals are affected world-
wide, particularly in the elderly population (1). At present, 
there is no cure for AD, however, certain symptomatic 
therapeutics are available (2‑4). Although the etiology of AD 
remains to be fully elucidated, there is a general consensus 
in favor of the plaque hypothesis. The hallmark appear-
ance of amyloid plaques and intracellular neurofibrillary 
tangles of Tau are reported to contribute to neuron loss in 
AD (5,6). The formation of β‑amyloid plaques in AD patients 
affects neuronal synaptic plasticity in the early phase, and 
progressively leads to cell death in the later phase  (7‑9). 
Therefore, plaque formation and synaptic plasticity, particu-
larly in the hippocampus, which is a region responsible for 
memory formation, are critical indices in evaluating anti‑AD 
efficacy.

The use of Chinese medicines has a long‑term history in 
clinical practice, and has been suggested to offer potential 
in improving memory (10,11). Among the effective herbs, 
ginseng is considered to promote the health of middle‑aged and 
elderly populations (12). Ginseng has been used as an adapto-
genic herb in traditional Chinese medicine for >2,000 years, 
and the long‑term application of ginseng improves the ability 
to combat stress, trauma, anxiety and fatigue (13). Additional 
pharmacological activities, including in the prevention of 
cancer and neurodegenerative diseases, have also been 
reported  (14,15). Ginsenosides, the active compounds of 
the Panax species, have been widely investigated in basic 
and clinical settings. A substantial number of ginsenosides 
have been found to improve the decline in memory induced 
by lipopolysaccharide or okadaic acid  (16‑19). However, 
the effects of ginsenosides on memory decline induced by 
genetic interruption have not been reported, particularly its 
mechanisms. A previous study suggested that ginsenoside 
Rg1 is able to pass through blood‑brain barrier to distribute 
in the cortex and hippocampus (20,21). In the present study, 
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an AD transgenic mouse model (APPswe/PSEN1dE9) was 
used to investigate the effects of ginsenoside Rg1 on memory, 
and to examine its underlying mechanisms. In combination 
with other evidence (22,23), the present study hypothesized 
that ginsenoside Rg1 is a candidate memory enhancer, not 
only in age‑related and drug‑induced memory decline, but 
also in the genetic AD model. The present study may provide 
novel evidence to suggest a therapeutic effect of ginsenoside 
Rg1 on AD.

Materials and methods

Animals. APP/PS1 mice (n=80; B6C3‑Tg) were obtained from 
the Jackson Laboratory (Farmington, CT, USA) and were 
bred amongst the colony. The offspring were genotyped using 
primers for APP and PS1 (Sangon Biotech Co., Ltd., Shanghai, 
China), which were as follows: Sense, 5'‑GAC​TGA​CCA​CTC​
GAC​CAG​GTT​CTG‑3' and antisense, 5'‑CTT​GTA​AGT​TGG​
ATT​CTC​ATA​TCCG‑3' for APP; sense, 5'‑AAT​AGA​GAA​
CGG​CAG​GAGCA‑3' and antisense, 5'‑GCC​ATG​AGG​GCA​
CTA​ATCAT‑3' for PS1 reference; and sense, 5'‑CCT​CTT​
TGT​GAC​TAT​GTG​GAC​TGA​TGT​CGG‑3' and antisense, 
5'‑GTG​GAT​AAC​CCC​TCC​CCC​AGC​CTA​GACC‑3' also for 
PS1, which distinguishes AD. C57 BL/6J mice (n=30) were 
purchased from the Animal Center of the Chinese Academy 
of Sciences (Shanghai, China). The mice (male; age, 6 months; 
weight, 30 g) used in the experiments were housed together 
in a 12 h light/dark cycle at 22±3˚C, with food and water 
ad libitum. All experimental procedures were approved by the 
ethics committee of Weifang Medical University (Weifang, 
China). 

Ginsenoside Rg1 treatment. APP/PS1 mice were chroni-
cally administered with Rg1 (Sigma‑Aldrich, St. Louis, MO, 
USA) by intraperitoneal injection, at concentrations of 0.1, 
1 or 10 mg/kg once each day for 30 days consecutively. This 
concentration range was selected based on previous publica-
tions (22,24). The control mice received the same volume of 
saline. During the drug administration, diet, water intake and 
body weights were monitored. At 30 days post‑administration, 
behavioral, electrophysiological and biochemical experiments 
were performed.

Electrophysiological experiments. After 30  days, at least 
4 mice from each group were sacrificed by decapitation. From 
each group, 4‑8 slices were prepared. Acute hippocampal slices 
(300 µm) were prepared following decapitation in cutting solu-
tion (Beyotime Institute of Biotechnology, Haimen, China). 
The components of the cutting solution were as follows: 
124 mM NaCl, 26 mM NaHCO3, 10 mM D‑glucose, 3 mM 
KCl, 1.25 mM KH2PO4, 5 mM MgSO4 and 3.4 mM CaCl2. 
The slices were then transferred to an interface recording 
chamber (BSC‑ZT; Warner Instruments LLC, Hamden, CT, 
USA) and exposed to a warm, humidified atmosphere of 95% 
O2/5% CO2 and continuously perfused (for ~4 h) with oxygen-
ated and preheated (32±0.5˚C) artificial cerebrospinal fluid 
(aCSF; Beyotime Institute of Biotechnology, Inc.) comprising 
110 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.5 mM MgSO4, 
1.24 mM KH2PO4, 10 mM D‑glucose and 27.4 mM NaHCO3. 
The aCSF flow speed was adjusted to 1.4 ml/min. Following 

a 2 h recovery period, the field‑excitatory postsynaptic poten-
tial (fEPSP), elicited by stimulation of the Schaffer collateral 
pathway with twisted nichrome wires (Warner Instruments 
LLC), was recorded. The input‑output and paired‑pulse 
facilitation at 30, 50 and 100 msec intervals were assessed. 
Long‑term potentiation was induced using a θ‑burst stimula-
tion (TBS) protocol. Long‑term depression (LTD) was induced 
by low‑frequency stimulation (LFS).

ELISA. To quantify levels the of β‑amyloid 1‑42, the hippo-
campus from four sacrificed mice from each of the groups 
were homogenized in homogenization buffer (5 M guanidine 
HCl/50 mM Tris‑HCl; Beyotime Institute of Biotechnology) 
and centrifuged at 10,000 x g for 10 min at 4˚C. The protein 
concentrations of the supernatants were determined using a 
Bicinchoninic Acid (BCA) Assay kit (Thermo Fisher Scientific, 
Inc., Waltham, MA, USA). The supernatant fractions were 
analyzed using a β‑amyloid 1‑42 ELISA kit (cat no. KHB3441; 
Invitrogen; Thermo Fisher Scientific, Inc.), according to the 
manufacturer's protocol. The absorbance was determined for 
each well at 450 nm using a microplate reader (Fluoroskan 
Ascent™; Thermo Fisher Scientific, Inc.).

Reverse transcription‑quantitative polymerase chain reac‑
tion (RT‑qPCR) analysis. Total RNA was extracted from 
the hippocampus using TRIzol reagent (Invitrogen; Thermo 
Fisher Scientific, Inc.). Reverse transcription was performed 
using Moloney murine leukemia virus reverse transcriptase 
(Promega, Madison, WI, USA). RNA purity was defined 
by optical density (OD)260/OD280 on a Fluoroskan Ascent™ 
microplate reader. qPCR was performed to quantify the 
expression of APP in the hippocampus, using a quantita-
tive thermal cycler (Mastercyclerep realplex; Eppendorf, 
Hamburg, Germany). The system included 2 µl cDNA, 2 µl 
dNTPs, 2 µl MgCl2 and ddH2O to 25 µl. The thermocycling 
conditions were as follows: Initial denaturation, 5 min at 95˚C; 
and 30 cycles of denaturation at 30 sec at 95˚C, annealing at 
58˚C for 30 sec and extension at 72˚C for 30 sec. The relative 
expression values were calculated as a ratio of target cDNA 
to β‑actin and the expression of target genes was calculated 
by 2‑ΔΔCq (25). The primers used in qPCR were obtained from 
Sangon Biotech Co., Ltd. as follows: APP, sense 5'‑TGC​TGG​
CAG​AAC​CCC​AGA​TCG‑3' and antisense 5'‑TTC​TGG​ATG​
GTC​ACT​GGC​TGG‑3'; β‑actin sense 5‑ATG​AGG​TAG​TCT​
GTC​AGGT‑3 and antisense 5‑ATG​GAT​GAC​GAT​ATC​GCT‑3.

Western blot analysis. The whole hippocampus homogenates 
were obtained and lysed, and the protein concentrations were 
measured using a BCA protein assay kit (Thermo Fisher 
Scientific, Inc.), as described above. Equivalent quantities of 
proteins (20 µg) were processed for 12% SDS‑PAGE (Beyotime 
Institute of Biotechnology) and western blot analysis. The 
proteins were transferred to nitrocellulose membranes 
(Bio‑Rad Laboratories, Inc., Hercules, CA, USA) using a wet 
transfer and the membranes were blocked in 5% nonfat milk 
for 2 h and washed three times in phosphate‑buffered saline 
with Tween 20 (PBST). The membrane was incubated with 
primary antibodies overnight at 4˚C, as follows: Rabbit poly-
clonal BDNF (1:1,000; EMD Millipore, Billerica, MA, USA; 
cat. no. AB1534SP), rabbit actin (1:10,000; EMD Millipore; 
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cat. no.  MAB1501), rabbit monoclonal phosphorylated 
(p)‑TrkB (1:3,000; Cell Signaling Technology, Inc., Danvers, 
MA, USA; cat. no. 4619), rabbit monoclonal Trk B (1:3,000; 
Cell Signaling Technology, Inc.; cat. no. 4607), rabbit poly-
clonal p‑Tau (1:3,000; Cell Signaling Technology, Inc.; cat. 
no. 11834), rabbit monoclonal Tau (1:3,000; Cell Signaling 
Technology, Inc.; cat. no. 4019), C‑terminal fragments (CTFs; 
1:1,000; EMD Millipore; cat. no. AB5352), rabbit polyclonal 
postsynaptic density protein  95 (PSD‑95; 1:3,000; Cell 
Signaling Technology, Inc.; cat. no. 2507) and rabbit polyclonal 
synaptophysin (1:3,000; Cell Signaling Technology, Inc.; cat. 
no.  4329). Following incubation with primary antibodies, 
the membranes were washed with PBST 3 times for 10 min 
and then incubated with the mouse anti‑rabbit monoclonal 
secondary antibody (1:10,000; Cell Signaling Technology, 
Inc.; cat. no. 5127) for 2 h at room temperature. Protein levels 
were quantified by densitometry analysis using Quantity One 
software (version 4.5.2; Bio‑Rad Laboratories, Inc.).

Fear conditioning. The fear conditioning experiment was 
performed, as previously described  (26). The mice were 
handled daily for 5 days consecutively prior to training. On 
the training day, the mice were placed in the fear‑conditioning 
chamber and allowed 5 min for exploration. Subsequently, 
three tone‑footshock pairings, separated by 1 min intervals 
were delivered to the animals. The footshocks were 0.70 mA 
for 2 sec and a tone of 85 dB 2 kHz for 30 sec. The mice were 
retained in the training chamber for another 30 sec, following 
which they were transferred to their home cages. A context 
assessment (5 min) was performed 24 h post‑training. On 
day 3, the animals were subjected to a tone test in the same 
conditioning chamber, which was modified by a change in the 
color of the walls. The freezing level (5 min) in this altered 
context was measured (moving frequency, <25 msec), and 
a tone (85 dB; 2 kHz) was delivered for 1 min to measure 
freezing to tone. The frequency of freezing was recorded using 
FreezeFrame software (version 3; Coulbourn Instruments, 
Holliston, MA, USA) and analyzed using FreezeView software 
(version 3; Coulbourn Instruments). In each group, there were 
five animals. The percentage of time in which the animal froze 
was calculated.

Statistical analysis. Data are presented as the mean ± standard 
error of the mean. All statistical analyses were performed 
using one‑way analysis of variance with GraphPad Prism 6.0 
software (GraphPad Software, Inc., La Jolla, CA, USA). 
Bonferroni's correction with a post‑hoc t‑test was performed 
to compare the differences between groups. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Chronic treatment with ginsenoside Rg1 ameliorates long‑term 
memory in AD model mice. In the present study, long‑term 
memory was measured using a fear conditioning experiment. 
Ginsenoside Rg1 was administered to the mice at a range of 
doses (10, 1 and 0.1 mg/kg) for 30 days. The dietary intake, 
drinking and body weights of the animals were unaffected 
during the drug treatment. As shown in Fig.  1A, context 
memory was markedly improved following treatment with 

10 mg/kg ginsenoside Rg1 (P<0.05). The intermediate dose 
showed improved memory, but without statistical significance 
(P>0.05). No significant effect was observed following treatment 
with the low dose of ginsenoside Rg1. Tone memory was also 
measured. As shown in Fig. 1B, treatment with ginsenoside Rg1 
at the dose of 10 mg/kg improved tone memory (P<0.05). The 
intermediate dose of ginsenoside Rg1 also had an ameliorating 
effect. These results confirmed that ginsenoside Rg1 improved 
long‑term memory in the transgenic AD model. 

Chronic treatment with ginsenoside Rg1 reverses LTP deficit 
in the AD model. To confirm the effect of ginsenoside Rg1 
on hippocampal synaptic transmission and plasticity, the 

Figure 1. Chronic treatment with ginsenoside Rg1 improves memory in trans-
genic AD mice. (A) Context. (B) Tone. Each group comprised five animals. 
High (10 mg/kg), middle (1 mg/kg) and low (0.1 mg/kg) doses of ginsenoside 
Rg1 were administered to the mice for a consecutive 30 day period, respec-
tively. Data are presented at the mean ± standard error of the mean. *P<0.05, 
compared with WT; #P<0.05, compared with AD. AD, Alzheimer's disease; 
WT, wild‑type.
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Figure 3. Chronic treatment with ginsenoside Rg1 downregulates the expression levels of APP, CTFs and p‑Tau. (A) mRNA expression of APP; (B) protein 
expression of APP. Representative blots of APP and Actin are shown above. (C) Expression of CTFs. Representative blots of CTFs and Actin are shown above. 
(D) Expression of p‑Tau. Representative blots of p‑Tau and total Tau are shown above. Data are presented as the mean ± standard error of the mean. Data were 
obtained from five animals in each group. *P<0.05 and **P<0.01, compared with WT; #P<0.05, compared with AD. APP, amyloid precursor protein; CTFs, 
C‑terminal fragments; p‑Tau, phosphorylated Tau; AD, Alzheimer's disease; WT, wild‑type.

Figure 2. Chronic treatment with ginsenoside Rg1 increases LTP. (A) Input‑output was not affected by ginsenoside Rg1 treatment. (B) PPF was not affected by 
ginsenoside Rg1 treatment. (C) TBS‑induced LTP was improved by ginsenoside Rg1 treatment. (D) LFS‑induced LTD was not affected by ginsenoside Rg1 
treatment. Data are presented at the mean + standard error of the mean. In each group, 5‑10 slices from five animals were included. *P<0.05, #P>0.05 vs. the AD 
group. AD, Alzheimer's disease; TBS, θ‑burst stimulation; LTP, long‑term potentiation; LFS, low‑frequency stimulation; LTD, long‑term depression; fEPSP. 
field‑excitatory postsynaptic potential; PPF, paired‑pulse facilitation.

  A   B

  A   B

  C   D

  C   D
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fEPSPs at Schaffer collateral‑CA1 synapses were measured. 
As shown in Fig. 2A and B, ginsenoside Rg1 had no effect 
on the input‑output. Paired‑pulse facilitation was also unaf-
fected by ginsenoside Rg1 treatment (P>0.05). The induction 
of LTP by TBS was impaired in the slices obtained from the 
AD mice (Fig. 2C). However, following ginsenoside Rg1 treat-
ment, TBS‑LTP was ameliorated (P<0.05), compared with in 
the AD model. LFS‑LTD was not affected by ginsenoside Rg1 
treatment (Fig. 2D).

Chronic treatment with ginsenoside Rg1 attenuates the expres‑
sion of AD‑associated proteins. The expression levels of APP 
and PS1 in the hippocampus were measured using RT‑qPCR 
and Western blot analyses. Compared with the wild‑type mice, 
the mRNA expression of APP increased ~3‑fold in the AD 
model mice (Fig. 3A; P<0.05). Ginsenoside Rg1 did not alter 
the mRNA expression levels of APP. The protein levels were 
also determined. As shown in Fig. 3B, the protein level of 
APP also appeared to be enhanced in the AD model mice, 
compared with the wild‑type mice. Of note, ginsenoside Rg1 
decreased the protein levels following 1 month of treatment 
(P<0.05). In addition, the present study detected the expres-
sion of CTFs. In the model mice, the expression of CTFs was 
significantly increased (P<0.05), however, the expression was 
reduced by ginsenoside Rg1 treatment (P<0.05; Fig. 3C). The 
expression of p‑Tau was also measured. Compared with the 
wild‑type mice, the expression of p‑Tau was increased in the 
model mice (P<0.05). Following treatment with ginsenoside 
Rg1, the protein level was also attenuated (P<0.05; Fig. 3D). 
The level of β‑amyloid 1‑42 was reduced following treatment 
with ginsenoside Rg1 (Fig. 4). These results suggested that 
ginsenoside Rg1 treatment ameliorated the accumulation of 
AD‑associated proteins in the AD model mice.

Chronic treatment with ginsenoside Rg1 improves acti‑
vation of the BDNF‑TrkB pathway in AD model mice. 
Synaptic‑associated proteins in the hippocampus were also 
measured in the present study, including BDNF, p‑TrkB, 
synaptophysin and PSD‑95. As shown in Fig. 5A and B, the 
expression of BDNF increased following treatment with 
ginsenoside Rg1 (P<0.05). Correspondingly, the level of 

p‑TrkB was also upregulated following treatment with ginsen-
oside Rg1 (P<0.05; Fig. 5C). By contrast, no effects were 
observed on the presynaptic marker, synaptophsin or post-

Figure 4. Chronic treatment with ginsenoside Rg1 downregulates levels of 
β‑amyloid 1‑42 in the AD model. Data are presented at the mean ± standard 
error of the mean from five animals in each group. ***P<0.001, compared with 
WT; ##P<0.01, compared with AD. AD, Alzheimer's disease; WT, wild‑type.

Figure 5. Chronic treatment with ginsenoside Rg1 activates the expression 
of BDNF and p‑TrkB. (A) Representative blots of BDNF, p‑TrkB, synapto-
physin and PSD95. (B) Quantification of data of the expression of BDNF. 
(C) Quantification of data of the expression of p‑TrkB. (D) Quantification 
data of the expres asion levels of synaptophysin and PSD95. Data are pre-
sented as the mean ± standard error of the mean from five animals in each 
group. **P<0.01, compared with WT; #P<0.05, compared with AD. BDNF, 
brain‑derived neurotrophic factor; p‑TrkB. phosphorylated tropomyosin 
receptor kinase B; Syn, synaptophysin; PSD95, postsynaptic density pro-
tein 95; AD, Alzheimer's disease; WT, wild‑type.
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synaptic marker, PSD‑95 (Fig. 5D) following treatment with 
ginsenoside Rg1. These results indicated that ginsenoside Rg1 
may have improved plasticity, but did not alter basal synapses 
in the AD model.

Discussion

In the present study, it was demonstrated that ginsenoside Rg1 
treatment improved memory and hippocampal LTP in the 
AD model. The expression levels of AD‑associated proteins 
were attenuated, and the BDNF‑TrkB pathway was improved 
following ginsenoside Rg1 treatment.

Ginsenoside Rg1 ameliorates long‑term memory in patho‑
logical disease models. A series of studies have reported that 
ginsenosides improve memory in exogenous toxin‑induced 
memory deficits (16‑19,27,28). In addition, ginsenosides also 
improve memory in aging or aged animals (23,29,30). These 
data indicate that ginsenosides are effective in improving 
memory. In the present study, ginsenoside Rg1 was selected 
as the target therapeutic drug, and a transgenic AD model 
was used to screen the effective doses. The results of the 
present and previous studies demonstrated that the APP/PS1 
transgenic mice exhibited a decline in memory performance 
at 6 months of age (25). In the present study, intraperitoneal 
injection of Rg1 at concentrations between 1 and 10 mg/kg 
was selected, based on previous publications (22,24). As shown 
by Zhang et al (22), this dose range is normal in mice and 
rats, following conversion from humans. Chronic treatment 
for 1 month with 10 mg/kg ginsenoside Rg1 significantly 
ameliorated long‑term memory. Although the low dose of 
ginsenoside Rg1 (0.1 mg/kg) did not cause amelioration in the 
AD model, the middle dose (1 mg/kg) demonstrated a protec-
tive effect. These results showed a dose‑dependent effect of 
ginsenoside Rg1 on memory. Due to the chemical structure of 
ginsenoside Rg1, effective technology to improve its capacity 
to pass through the blood brain barrier is urgently required. 
Although β‑amyloid peptide 1‑42‑induced functional loss is 
ameliorated by ginsenoside Rg1 application (24,31), the present 
study demonstrated a similar effect of ginsenoside Rg1 using 
a transgenic AD model and fear conditioning experiment. The 
present study also aimed to clarify the potential mechanisms 
underlying the memory improvement observed following 
ginsenoside Rg1 treatment. As no commercial ginsenoside 
Rg1 injection is available, an effective dose range for oral 
application requires screening for clinical practice.

Ginsenoside Rg1 facilitates the clearance of AD‑associated 
proteins. Amyloid plaques are considered to be a detrimental 
toxin, contributing to the impairment of hippocampal synaptic 
plasticity and to hippocampal cell death (7‑9). In the APP/PS1 
transgenic mice, APP was overexpressed, and led to an increase 
in the accumulation of amyloid 1‑42 in the hippocampus. In 
addition, the AD protein, p‑Tau, was enhanced at 6 months 
of age. These abnormalities caused by the overexpression of 
APP and PS1 may be responsible for the subsequent memory 
decline. In ginsenoside Rg1‑treated mice, the expression levels 
of APP and PS1 were unaffected. However, the accumulation 
of p‑Tau and amyloid 1‑42 in the hippocampus were signifi-
cantly reduced. The decreases in p‑Tau and amyloid 1‑42 may 

be caused by two factors. Protein synthesis may have been 
inhibited by ginsenoside Rg1 treatment. This possibility is 
supported by a previous study, which showed that ginsenoside 
Rg1 inhibits amyloid generation through regulation of the 
transcription or translation of BACE1 (32), or via inhibition of 
γ‑secretase activity (33). The activity of the protein degradation 
system was enhanced following treatment with ginsenoside 
Rg1, leading to the degradation of β‑amyloid, however, further 
clarification of this is required.

The majority of previous studies have focused on the 
amelioration of ginsenoside Rg1 in the later stage of AD. 
Ginsenoside Rg1 may prevent against β‑amyloid plague accu-
mulation to inhibit apoptosis (34‑36).

Ginsenoside Rg1 ameliorates synaptic plasticity in the AD 
mice model. In addition to the clearance of AD‑associated 
proteins, ginsenoside Rg1 also facilitated the recovery of 
long‑term potentiation. Initially, ginsenoside Rg1 treat-
ment did not affect basal synaptic transmission, in terms 
of input‑output and paired‑pulse facilitation. These results 
suggested that ginsenoside Rg1 did not affect basal synaptic 
transmission, either presynaptically or postsynaptically. 
These physiological data were consistent with the unaltered 
expression levels of PSD‑95 and synaptophysin. By contrast, 
plasticity was enhanced following ginsenoside Rg1 treatment 
in the AD model. The effects on LTP may be due to the clear-
ance of AD‑associated proteins. The present study found 
that the expression of BDNF was upregulated by ginsenoside 
Rg1 treatment and, correspondingly, p‑TrkB was activated 
following ginsenoside Rg1 treatment. Therefore, activation 
of the BDNF‑TrkB pathway may contribute to the recovery 
of LTP in the transgenic AD model. In a senescence‑accel-
erated mouse prone 8 model, the levels of BDNF are also 
improved following treatment with ginsenoside Rg1 (37). 
These findings indicate the general pharmacological activity 
of ginsenoside Rg1 in the AD model. In addition, other 
synaptic plasticity‑associated proteins, including NR1 and 
NR2B, are reported to be upregulated in the AD model to 
increase memory (38). How ginsenoside Rg1 functions in the 
hippocampus remains to be fully elucidated and, although 
the present study did not distinguish the potential target, 
estrogen receptors have been implicated (39).

In the present study, data indicating memory amelioration 
following ginsenoside Rg1 treatment were obtained in a trans-
genic AD model. Clearance of AD‑associated proteins and 
activation of the BDNF‑TrkB pathway may contribute to the 
effect of ginsenoside Rg1 on hippocampal LTP. These results 
suggested that ginsenoside Rg1 may be a potential memory 
enhancer in the transgenic AD model.
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