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Abstract. The aim of the present study was to investigate 
whether environmental endocrine disrupting chemical, 
bisphenol A (BPA), affects secretion of suppressor of cyto-
kine signaling 3 (SOCS‑3) and insulin signaling transduction 
in 3T3‑L1 adipocytes. 3T3‑L1 adipocytes were treated for 
0, 2, 6, 12 and 24 h with BPA at 80 µM in serum‑deprived 
medium. Reverse transcription‑quantitative polymerase chain 
reaction and western blotting were performed to detect the 
mRNA expression levels of SOCS‑3 and protein expression 
levels of SOCS‑3, insulin receptor substrate 1 (IRS‑1), phos-
phorylated (p)‑IRS‑1, Akt and p‑Akt. The levels of p‑IRS‑1, 
Akt and p‑Akt in cultures treated for 6 h with BPA were also 
analyzed by immunofluorescence. The SOCS‑3 mRNA and 
protein expression levels were decreased in the 6, 12 and 24 h 
groups. The levels of p‑IRS‑1 and p‑Akt protein were mark-
edly downregulated, while the level of IRS‑1 and Akt protein 
remained unaltered among these groups, which was consistent 
with the results observed using immunofluorescence. BPA may 
inhibit insulin signal transduction and result in the occurrence 
of insulin resistance via promoting the expression of SOCS‑3.

Introduction

The incidence of diabetes has notably increased in recent years, 
and it is estimated that ~380 million patients will be diagnosed 
worldwide by 2025 (1). Insulin resistance (IR), a key feature of 
type 2 diabetes, is a state in which insulin has a reduced ability to 
mediate glucose homeostasis in its major target tissues, resulting 
in compensatory hyperinsulinemia. Previous studies have 
indicated that various signaling pathways, particularly insulin 
receptor substrate‑1 (IRS‑1)/phosphatidylinositol 3‑kinase 
(PI3K)/Akt, are key in mediating the occurrence of IR (2,3).

Insulin action involves a series of signaling transduction 
pathways, initiated by insulin binding to its receptor, which 
initiates receptor autophosphorylation and activation of the 
receptor tyrosine kinase, resulting in tyrosine phosphorylation 
of IRS‑1, a substrate of the insulin receptor (4,5). Subsequently, 
phosphorylation of IRS‑1 leads to activation of PI3K and Akt 
and its downstream signaling molecules, all of which are 
important in the promotion of the synthesis of glycogen and 
regulation of glucose homeostasis (6). Thus, a state of IR often 
suggests the attenuation or failure of insulin signaling trans-
duction by inhibiting the phosphorylation of key molecules.

Bisphenol A (BPA) is widely used as a plasticizer and 
stabilizer in the manufacture of consumer products, however, 
it is considered an endocrine disrupting chemical (EDC). 
Exposure to EDCs is proposed to be involved in the etiology 
of IR and associated metabolic disorders (7). Data from the 
U.S. National Health and Nutritional Examination Survey 
2003‑2008 reported a positive association between urinary 
BPA levels and an increased prevalence of diabetes mellitus 
independent of traditional diabetes risk factors (8), consistent 
with research findings in China (9). In addition, previous studies 
have elucidated the mechanisms by which BPA provoked IR by 
affecting glucose transport (10,11), adiponectin secretion (12), 
adipocyte differentiation and lipid accumulation (13).

Furthermore, suppressor of cytokine signaling 3 (SOCS‑3), 
a negative regulator of insulin signaling, is known to be associ-
ated with IR. A previous study demonstrated resistin induced 
IR in HepG2 cells via induction of SOCS‑3 expression (14). It 
has also been previously reported that the expression levels of 
SOCS‑3 were markedly increased in mice with IR induced by 
a high fat diet (15), which may contribute to increased serine 
phosphorylation of IRS‑1. Insulin signaling transduction is 
impaired by inhibiting the activation of tyrosine phosphory-
lation of IRS‑1 (16). However, to the best of our knowledge, 
no investigation into the effect of BPA on SOCS‑3 has been 
conducted. The aim of the current study was to investigate 
whether BPA modulates SOCS‑3 production and affects 
insulin signaling transduction in 3T3‑L1 adipocytes.

Materials and methods

Reagents and antibodies. Dulbecco's modified Eagle's medium 
(DMEM) and fetal bovine serum (FBS) were purchased from 
Gibco (Thermo Fisher Scientific, Inc., Waltham, MA, USA). 
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BPA, dexamethasone, insulin and 3‑isobuty‑1‑methylxanthine 
(IBMX) were obtained from Sigma‑Aldrich (St. Louis, MO, 
USA). Rabbit polyclonal anti‑SOCS‑3 antibody (cat. no. 2923), 
rabbit monoclonal anti‑IRS‑1 antibody (cat. no. 2390), rabbit 
polyclonal anti‑Akt antibody (cat. no. 9272) and rabbit polyclonal 
anti‑phosphorylated (p)‑Akt (Ser473) antibody (cat. no. 9271) 
were purchased from Cell Signaling Technology, Inc. (Danvers, 
MA, USA; dilution, 1:1,000 for western blotting). Goat poly-
clonal anti‑p‑IRS‑1 (Tyr 632) antibody (cat. no. sc‑17196) was 
purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, 
USA; dilution, 1:200). Mouse monoclonal antibodies against 
β‑actin (cat. no. ab8226; dilution, 1:1000), horseradish peroxidase 
(HRP)‑conjugated goat anti‑rabbit immunoglobulin G (IgG) 
(cat. no. ab6721; dilution 1:200), horseradish peroxidase goat 
anti‑mouse IgG (cat. no. ab6789; dilution, 1:200), horseradish 
peroxidase‑conjugated donkey anti‑goat IgG (cat. no. ab6885; 
dilution, 1:100), fluorescein isothiocyanate (FITC)‑conjugated 
polyclonal donkey anti‑goat IgG (cat. no.  ab6881; dilution, 
1:200), FITC‑conjugated polyclonal goat anti‑rabbit IgG (cat. 
no. ab6717; dilution, 1:100) and cyanine 3 (Cy3)‑conjugated goat 
anti‑rabbit IgG (cat. no. 97075; dilution, 1:100) secondary anti-
bodies were purchased from Abcam (Cambridge, MA, USA).

Cell culture and treatment. The 3T3‑L1 mouse preadipocyte 
cell line was obtained from the American Type Culture 
Collection (Manassas, VA, USA), and the cells were cultured 
and differentiated into adipocytes as described previously (17). 
Briefly, the cells were grown in DMEM containing 10% FBS, 
100 U/ml penicillin (Beyotime Institute of Biotechnology, 
Haimen, China) and 100  mg/ml streptomycin (Beyotime 
Institute of Biotechnology) at 37˚C in a humidified atmosphere 
of 5% CO2. The cells were exposed to standard differentiation 
inducers 48 h after confluency was reached. The inducer used 
was DMEM containing 0.5 mM IBMX, 1 µM dexamethasone 
and 10 µg/ml insulin for 48 h (from day 0 to 2). The medium was 
then changed and supplemented with 10 µg/ml insulin only for 
the following 48 h (from day 2 to 4). Thereafter, the medium 
was replaced by growth medium and changed every 2 days. 
At 10 days after the induction of differentiation, >80% of cells 
exhibited typical morphology and biochemical properties of 
adipocytes. Following overnight incubation in serum‑free 
DMEM, 3T3‑L1 adipocytes were treated with 80 µM BPA 
diluted in DMEM for 0, 2, 6, 12 and 24 h respectively.

RNA preparation and reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR). Total RNA from 
3T3‑L1 adipocytes treated with BPA was extracted using 
TRIzol (Invitrogen; Thermo Fisher Scientific, Inc.) according 
to the manufacturer's protocols and quantified spectrophoto-
metrically by measuring absorbance at wavelengths 260 and 
280 nm on a BioPhotometer spectrophotometer (Eppendorf, 
Hamburg, Germany). RT was conducted using Transcriptor 
First Strand cDNA Synthesis kit (Roche Diagnostics, Basel, 
Switzerland) from 1 µg RNA as described by the manufac-
turer's protocols. The temperature protocol for the reaction 
was 25˚C for 10 min, 55˚C for 30 min and 85˚C for 5 min. 
qPCR was performed to determine the relative mRNA expres-
sion levels of SOCS‑3. β‑actin served as an internal control for 
normalization. Specific mRNAs were amplified in FastStart 
Universal SYBR Green Master mix (Roche Diagnostics) 

using the ABI  Prism  7500 (Applied Biosystems; Thermo 
Fisher Scientific, Inc.) sequence detector with the following 
thermocycling conditions: 50˚C for 2 min; 95˚C for 10 min; 
40 cycles of 95˚C for 15 sec and 60˚C for 1 min. The primers 
(Invitrogen; Thermo Fisher Scientific, Inc.) were as follows: 
Forward, 5'‑ATG​GTC​ACC​CAC​AGC​AAG​TTT‑3' and reverse, 
5'‑TCC​AGT​AGA​ATC​CGC​TCT​CCT‑3' for SOCS‑3; and 
forward, 5'‑CTA​CAA​TGA​GCT​GCG​TGT​GG‑3' and reverse, 
5'‑AAG​GAA​GGC​TGG​AAG​AGT​GC‑3' for β‑actin. Three 
data points were used and the experiment was replicated three 
times and the data was analyzed using the 2‑ΔΔCq method (18).

Protein extraction and western blot analysis. At 
0, 2, 6, 12 and 24 h, the cells treated with BPA were washed twice 
with ice‑cold phosphate‑buffered saline (PBS; Thermo Fisher 
Scientific, Inc.) and lysed in radioimmunoprecipitation assay 
buffer (Beyotime Institute of Biotechnology) supplemented with 
1% protease inhibitor (GeneChem Co., Ltd., Shanghai, China) 
and 1% phosphatase inhibitor (GeneChem Co., Ltd.). Total and 
phosphorylated proteins were extracted and concentration was 
determined using the BCA Protein assay kit (Beyotime Institute 
of Biotechnology). Following 10% sodium dodecyl sulfate‑poly-
acrylamide gel electrophoresis for 30 min at 80 V followed by 
120 V, the protein bands (20 µg/lane) were electrophoretically 
transferred onto polyvinyl difluoride membranes (GE Healthcare 
Life Sciences, Chalfont, UK). The blots were blocked for 2 h at 
room temperature in Tris‑buffered saline (Beyotime Institute of 
Biotechnology), with 0.1% Tween 20 (Sigma‑Aldrich; TBS‑T) 
and 5% non‑fat dried milk and subsequently incubated over-
night at 4˚C with the primary antibodies against SOCS3, IRS‑1, 
p‑IRS‑1, Akt, p‑Akt and β‑actin. Following washing in TBS‑T 
buffer, the membranes were incubated with HRP‑conjugated 
secondary antibodies at room temperature for 1 h. Following 
washing in TBS‑T, antigen‑antibody complexes were detected 
using Amersham ECL Western Blotting Detection reagent (GE 
Healthcare Life Sciences) and visualized with the ChemiDoc 
XRS imaging system (Bio‑Rad Laboratories, Inc., Hercules, 
CA, USA) and quantified using the Quantity One image soft-
ware (version 4.31; Bio‑Rad Laboratories, Inc.).

Immunocytochemistry. After 6 h treatment with BPA, 3T3‑L1 
adipocytes were fixed for 30 min with 4% paraformaldehyde 
(Sigma‑Aldrich) at room temperature, and then rinsed three 
times for 5 min with PBS. The cells were permeabilized for 
10 min in 0.1% Triton X‑100 (Sigma‑Aldrich), then again 
rinsed twice for 5 min in PBS, and blocked for 1 h in PBS 
with 5% bovine serum albumin (Sigma‑Aldrich) at room 
temperature. Antibodies against p‑IRS‑1 (dilution, 1:200), 
Akt (dilution, 1:200) and anti‑p‑Akt (dilution, 1:200) were 
incubated with the cells at 4˚C overnight. The cells were 
then incubated with FITC‑conjugated goat anti‑rabbit IgG 
(1:500) or Cy3‑conjugated goat anti‑rabbit IgG (1:500) at room 
temperature for 2 h, followed by washing in PBS. The cells 
were stained with DAPI (Sigma‑Aldrich) for 3 min and images 
were captured using a Nikon Eclipse Ti‑S fluorescent inverted 
microscope (Nikon Corporation, Tokyo, Japan) at magnifica-
tion x200.

Statistical analysis. All data are expressed as the mean ± stan-
dard deviation. Differences among 3‑5 independent groups 
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were statistically evaluated using one‑way ANOVA, while 
significant differences between 2 independent groups were 
analyzed using Student's t‑test. Statistical analysis was 
conducted using SPSS 13.0 (SPSS, Inc., Chicago, IL, USA) 
and P<0.05 was considered to indicate a statistically signifi-
cant difference.

Results

BPA increases SOCS‑3 expression levels in 3T3‑L1 adipo‑
cytes. The mRNA expression levels of SOCS‑3 were analyzed 
using RT‑qPCR and the results indicated that BPA treatment 
at 80 µM significantly increased mRNA expression levels in 
time‑dependent manners (P<0.01 at 2‑12 h and P<0.05 at 24 h; 
Fig. 1). In order to further investigate the protein expression 
of SOCS‑3, western blotting was performed and the result 
is presented in Fig. 2. RT‑qPCR and western blot analysis 
indicated that BPA significantly increased SOCS‑3 mRNA 
and protein expression levels after 6 and 12 h of treatment 
compared to 0 h (P<0.01). In addition, the expression levels of 
SOCS‑3 mRNA and protein were overexpressed after 24 h of 
treatment with BPA (P<0.05).

BPA alters protein expression levels of insulin signaling 
molecules in 3T3‑L1 adipocytes. 3T3‑L1 adipocytes were 
treated with 80 µM BPA for 0, 2, 6, 12 and 24 h and the expres-
sion levels of IRS‑1, p‑IRS‑1, Akt and p‑Akt were analyzed 
by western blotting. As presented in Fig. 3, there were no 
significant differences in the protein expression levels of IRS‑1 
among these groups. However, BPA decreased the expres-
sion levels of p‑IRS‑1 at 6 h of treatment compared with 0 h 
(P<0.01). Similar effects were also observed in the level of Akt 
(Fig. 4). However, a significant decrease in expression levels 
of p‑Akt was observed following treatment with BPA for 2 to 
24 h (P<0.01; Fig. 4). These results suggest that BPA markedly 
decreased the expression levels of insulin signaling molecules 
in 3T3‑L1 adipocytes.

BPA decreased expression levels of p‑IRS‑1 and p‑Akt. To 
further elucidate the effect of BPA, immunocytochemistry 
was conducted to investigate the expression levels of the 
insulin signaling molecules. Consistent with the results from 
the western blotting, p‑IRS‑1 (Fig.  5) and p‑Akt (Fig.  6) 
expression levels were markedly decreased in BPA‑treated 
cells compared with control cells, while expression levels of 
Akt did not exhibit a marked change (Fig. 6).

Discussion

Adipose tissue is important in insulin sensitivity and basal 
metabolic rate. Thus, 3T3‑L1 adipocytes were selected to 
investigate the effects of BPA on SOCS‑3 and insulin signaling 
transduction. In the current study, it was observed that BPA 
significantly increased SOCS‑3 secretion in 3T3‑L1 adipo-
cytes (P<0.01) and decreased the expression of key molecules 
involved in the IRS‑1/PI3K/Akt signaling pathway.

BPA, in addition to other environmental estrogens, has 
become a public health concern due to deleterious effects on 
energy balance and glucose homeostasis  (19). The present 
study indicates that BPA exposure impairs insulin signaling 

in peripheral tissues and may be a risk factor for the develop-
ment of type 2 diabetes (20). During the early stages of life, 
BPA exposure may impair pancreatic development and result 
in adults susceptible to diabetes (21). In epidemiological studies 
in humans, >93% of US adults have detectable BPA levels in 
urine, higher levels are particularly observed in the population 
with diabetes, hypertension and obesity (22). In animal models, 
BPA exposure in pregnant rats increased their offspring's body 
weight, and the levels of fasting blood glucose and serum insulin, 
which may predispose them to IR (23). Data from a previous 
study demonstrated that BPA exhibited estrogen‑like activities 
via binding to estrogen receptors (ERs), non‑classical membrane 
ERs, G‑protein‑coupled receptor 30 and estrogen‑related recep-
tors (24). There were, however, few studies that had investigated 
the effect of BPA on insulin signal transduction, thus, the present 
study aimed to investigate the association between BPA and the 
IRS‑1/PI3K/Akt signaling pathway.

As previously described, IR may be induced by the 
inhibition of insulin signaling transduction. In the current 
study, the results of the western blotting indicated that BPA 
significantly decreased the expression levels of p‑IRS‑1 and 
p‑Akt (P<0.01), which are key in insulin‑stimulated glucose 
transport (25). The decrease in protein expression levels of 
p‑IRS‑1 and p‑Akt were further shown by immunocytochem-
istry. In vitro, the cellular uptake of glucose into the cells by 
glucose transporters requires insulin and receptor‑mediated 
tyrosine phosphorylation of IRS‑1  (26), which is key in 
insulin signal transduction and affects insulin signaling by 
regulating protein presentation, post‑translational modifica-
tion and subcellular localization of proteins, particularly 
in phosphorylation/dephosphorylation of post‑translational 
modification  (27). IRS‑1 is closely associated with PI3K 
activation, which is responsible for activation of the Akt 
signaling cascade (28). It is generally accepted that impaired 
tyrosine phosphorylation of IRS‑1 is responsible for reduced 
insulin signaling and impaired downstream PI3K/Akt signal 
transduction  (29). The downregulated phosphorylation of 
Akt resulting from attenuated tyrosine phosphorylation of 
IRS‑1 may impair GLUT4 translocation and glucose uptake. 
A previous study has indicated that insulin‑stimulated Akt 
phosphorylation was suppressed in skeletal muscle and livers 
of BPA‑treated pregnant mice, these mice then suffered 
from metabolic disorders associated with glucose homeo-
stasis (30). The present study suggests that 80 µM BPA may 
inhibit the IRS‑1/PI3K/Akt signaling pathway, which results 
in IR.

To further investigate the underlying mechanisms of 
BPA induced impairment of insulin signaling transduction, 
the mRNA and protein expression levels of SOCS‑3 were 
investigated by RT‑qPCR and western blotting. The results 
demonstrated that BPA markedly increased SOCS‑3 mRNA 
and protein expression levels in a time‑dependent manner. 
In addition, it was observed that tyrosine phosphorylation 
of IRS‑1 and serine phosphorylation of Akt was decreased 
as demonstrated by a decrease in the expression levels of 
these proteins following the treatment with BPA. This was 
consistent with the increased expression levels of SOCS‑3 at 
the same time points.

SOCS‑3 is one member of the SOCS protein family, which 
is overexpressed in insulin‑sensitive tissues from patients 
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with type 2 diabetes and IR and animal models of the condi-
tions (31,32). Previous studies have demonstrated SOCS‑3 
binds via the SH2 domain to tyrosine phosphorylation 
sites on cytokine receptors to inhibit inflammatory signal 
transduction  (33). In the skeletal muscle of obese Zucker 
rats, SOCS‑3 protein concentration and co‑localization of 
SOCS‑3 with IRS‑1 is notably increased, while tyrosine 
phosphorylation of IRS‑1 was decreased and serine phos-
phorylation of IRS‑1 was increased (34). Furthermore, mice 
with muscle‑specific deletion of SOCS‑3 were protected 
against the development of hyperinsulinemia and IR due 
to enhanced skeletal muscle IRS‑1 and Akt phosphoryla-
tion (16). Similarly, genetic deletion of SOCS‑3 from mouse 
liver also results in enhanced insulin signaling due to 

increased IRS‑1 phosphorylation (35). These studies suggest 
SOCS‑3 interferes with insulin signaling and results in IR by 
inhibiting tyrosine phosphorylation of IRS‑1.

In conclusion, BPA significantly increases mRNA and 
protein expression levels of SOCS‑3 and decreases the 
phosphorylation of IRS‑1 and Akt. Based on these results, 
the present study hypothesizes that BPA may inhibit insulin 
signal transmission and lead to the development of IR via 
promoting the expression of SOCS‑3 and preventing tyrosine 
phosphorylation of IRS‑1. The present study provides a novel 
insight into the mechanism by which BPA induces IR.

Figure 1. mRNA expression levels of SOCS‑3. The mRNA expression levels 
of SOCS‑3 were detected by reverse transcription‑quantitative polymerase 
chain reaction at 0, 2, 6, 12 and 24 h after BPA treatment. *P<0.05, **P<0.01. 
BPA, bisphenol A; SOCS‑3, suppressor of cytokine signaling 3.

Figure 2. Western blot analysis of SOCS‑3 expression. The expression levels 
of SOCS‑3 and β‑actin were detected by western blot at 0, 2, 6, 12 and 24 h 
after BPA treatment. *P<0.05, **P<0.01. BPA, bisphenol A; SOCS‑3, sup-
pressor of cytokine signaling 3.

Figure 3. Western blot analysis of p‑IRS‑1 and IRS‑1. The expression levels 
of p‑IRS‑1 and IRS‑1 were detected by western blotting at 0, 2, 6, 12 and 
24 h after BPA treatment. **P<0.01. BPA, bisphenol A; IRS‑1, insulin receptor 
substrate 1; p, phosphorylated.

Figure 4. Western blot analysis of p‑Akt and Akt. The expressions of p‑AKT 
and AKT were detected by western blotting at 0, 2, 6, 12 and 24 h after BPA 
treatment. **P<0.01. BPA, bisphenol A; p, phosphorylated.
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