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Abstract. In the present study, gene expression profiles of 
acute myeloid leukemia (AML) samples were analyzed to 
identify feature genes with the capacity to predict the mutation 
status of FLT3/ITD. Two machine learning models, namely 
the support vector machine (SVM) and random forest (RF) 
methods, were used for classification. Four datasets were 
downloaded from the European Bioinformatics Institute, two 
of which (containing 371 samples, including 281 FLT3/ITD 
mutation-negative and 90 mutation‑positive samples) were 
randomly defined as the training group, while the other two 
datasets (containing 488 samples, including 350 FLT3/ITD 
mutation-negative and 138 mutation-positive samples) were 
defined as the test group. Differentially expressed genes 
(DEGs) were identified by significance analysis of the micro-
array data by using the training samples. The classification 
efficiency of the SCM and RF methods was evaluated using 
the following parameters: Sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV) and 
the area under the receiver operating characteristic curve. 
Functional enrichment analysis was performed for the feature 
genes with DAVID. A total of 585 DEGs were identified in 
the training group, of which 580 were upregulated and five 
were downregulated. The classification accuracy rates of the 
two methods for the training group, the test group and the 
combined group using the 585 feature genes were >90%. For 
the SVM and RF methods, the rates of correct determination, 
specificity and PPV were >90%, while the sensitivity and NPV 
were >80%. The SVM method produced a slightly better clas-
sification effect than the RF method. A total of 13 biological 
pathways were overrepresented by the feature genes, mainly 

involving energy metabolism, chromatin organization and 
translation. The feature genes identified in the present study 
may be used to predict the mutation status of FLT3/ITD in 
patients with AML. 

Introduction

Fms‑like tyrosine kinase 3 (FLT3) is expressed in hemato-
poietic progenitor cells. In acute myeloid leukemia (AML), 
its most frequent mutation is an internal tandem duplication 
(FLT3/ITD), which has a prevalence of 30‑35% (1). FLT3/ITD 
is a critical prognostic factor for patients with AML. Compared 
with carriers of wild‑type FLT3, patients with the FLT3/ITD 
mutation have shorter overall survival time and disease‑free 
survival time (2). Early diagnosis of FLT3/ITD allows for timely 
treatment of AML and thus benefits the clinical outcome.

Certain achievements have been made in revealing the role 
of the FLT3/ITD mutation in AML and several feature genes 
associated with the FLT3/ITD mutation have been identified. 
Chen et al (3) reported that signaling associated with the FLT3/ITD 
mutation includes the suppression of SHP‑1. Furthermore, 
aberrant expression of CD7 in myeloblasts has been found to 
be highly associated with the FLT3/ITD mutation in AML (4). 
Okamoto et al (5) indicated that Lyn, an important component 
of the signal transduction pathway specific for FLT3/ITD, may 
be utilized as a therapeutic target for the treatment of AML 
in carriers of the FLT3/ITD mutation. Furthermore, PIM1, a 
serine/threonine kinase, has been found to be upregulated in 
FLT3‑ITD mutation-positive AML and may be involved in 
FLT3‑mediated leukemogenesis (6). Dalal et al (7) reported that 
CD56 can predict the presence of the FLT3‑ITD mutation in 
AML.

In order to distinguish the FLT3/ITD mutation from 
the wild-type at the transcriptional level, the present study 
analyzed microarray gene expression data of AML samples. 
Feature genes were identified by a bioinformatics analysis 
and subsequent classification was performed by machine 
learning models, namely the support vector machine 
(SVM) and random forest (RF) methods. The classifica-
tion efficiency of the two models was also evaluated. The 
feature genes identified in the present study may be used 
to predict the mutation status of FLT3/ITD in patients with 
AML.
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Materials and methods

Microarray data and data pre‑processing. Gene expression 
data of AML samples were downloaded from the European 
Bioinformatics Institute (EBI; http://www.ebi.ac.uk) (8). Four 
relevant data sets for patient cohorts with AML containing 
information on the FLT3/ITD mutation were obtained, which 
included a total of 859 AML samples (Table I). Two data sets 
(containing 371  samples, including 281  FLT3/ITD muta-
tion‑negative and 90 FLT3/ITD mutation‑positive samples) 
were selected as the training group, while the other two data 
sets (containing 488 samples, including 350 FLT3/ITD muta-
tion-negative samples and 138 FLT3/ITD mutation-positive 
samples) were used as the test group.

The raw data were pre-processed using the affy package (9) 
in R (www.r‑project.org), including data format conversion, 
filling in missing values (using median gene expression), back-
ground correction using the MAS method and normalization 
with the quantiles method (10).

Screening of differentially expressed genes (DEGs). Microarray 
data from wild-type and FLT3/ITD mutation-positive AML 
samples were screened for DEGs using the significance 
analysis of microarray method in R (11). The false discovery 
rate (FDR) was estimated using the permutation method with 
P<0.05 (12,13) and |log2(fold change)|>1 set as the thresholds.

Prediction of mutation status of AML samples. The ability 
of DEGs to predict the FLT3/ITD mutation status in AML 
samples was examined using two methods: SVM and random 
forest.

SVM is a classification technique based on the structural 
risk minimization principle  (14). The SVM classifier was 
constructed via the SVM function in the e1071 package of 
R with the non‑linear radial basis function as the kernel and 
penalty functions set at 1,000.

RF utilizes multiple classification and regression trees to 
classify samples (15). The function randomForest from the 
randomForest package in R was adopted to classify AML 
samples from the training group.

A leave‑one‑out cross validation method was performed 
to evaluate the classification efficiency of the two methods. 
The sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV)  (16) and area under the 
receiver operating characteristic (ROC) curve (17) were calcu-
lated. The classification efficiency for the training group, test 
group and the combined group were evaluated individually. 
Whenever the construed SVM or RF classifier produced a 
high reliability, the DEGs collected from the training sets were 
considered as feature genes for distinguishing wild-type from 
FLT3/ITD-mutation positive samples.

Functional enrichment analysis. Functional enrichment anal-
ysis of the feature genes was performed using the Database 
for Annotation, Visualization and Integration Discovery 
(http://david.abcc.ncifcrf.gov/) (18,19). P<0.5 and FDR<0.1 
were set as the cut‑off values to screen out significantly 
over‑represented biological pathways.

Results

Screening for DEGs. A total of 585 DEGs were identified in 
FLT3/ITD mutation-positive samples from the training group, 
comprising 580  upregulated and 5  downregulated genes 
compared with those in the FLT3/ITD mutation-negative 
AML samples.

Sample classif ication using SVM or RF classif ier. 
Classification of AML samples with regard to their FLT3/ITD 
mutation status depending on their gene expression profiles 
was performed using the SVM and RF methods (Fig. 1).

For the 371 AML samples from the training group, 276 
and 273 mutation-negative samples, as well as 86 and 85 muta-
tion‑positive samples were correctly classified using the SVM 
and RF method, respectively. The accuracy rates were 97.57 
and 96.5%, respectively.

Among the 488  AML samples from the test group, 
337 and 325 mutation-negative samples, as well as 123 and 
117 mutation-positive samples were correctly classified by 
using the SVM and RF method, respectively, and the accuracy 
rates were 94.26 and 90.57%.

For the 859  AML samples from the combined group, 
606 and 590 mutation-negative samples, as well as 204 and 
206 mutation-positive samples were correctly classified by 
using the SVM and RF method, respectively, with accuracy 
rates of 94.3% and 92.67%.

Table I. Microarray data sets used in the present study.

	 Total	 FLT3/ITD	 FLT3/ITD	 Undetermined
Data set ID	 samples (n)	 mutation negative (n)	 mutation positive (n)	 samples (n)

Training sets
  E‑GEOD‑61804	 325	 243	   50	 32
  E‑GEOD‑34860	   78	   38	   40	   0
  Total	 403	 281	   90	 32
Testing sets
  E‑GEOD‑17855	 237	 189	   48	   0
  E‑GEOD‑15434	 251	 161	   90	   0
  Total	 488	 350	 138	   0
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According to above classification results (Fig. 2), the clas-
sification using the SVM method had a better accuracy rate 
than that of the RF method. However, the accuracy rates were 
>90%, suggesting a good classification ability of these two 
method based on the DEGs identified.

Classification efficiency. Five parameters were calculated to 
evaluate the classification efficiency: Rate of correct predic-
tion, sensitivity, specificity, PPV, NPV (Table II) and the area 
under the ROC curve (Fig. 3). For the SVM and RF methods, 
the rate of correct prediction, specificity and PPV were >90%, 
while the sensitivity and NPV were >80%, with the SVM 
method producing a slightly better classification efficiency 
than the RF method.

The feature genes identified were not only suitable for 
correct predictions of the FLT3/ITD mutation status of AML 
samples in the training group, but also in the test group and 
the combined group, suggesting that these DEGs may be 
utilized for distinguishing FLT3/ITD mutation-negative AML 
samples from mutation-positive samples. It was indicated that 

the DEGs identified in the present study are feature genes of 
the FLT3/ITD mutation, including IDH1, SUZ12, BCORL1, 
RUVBL2, JMJD1C, TOP2A, DAPK3, RPS15, RPS16, RPS9, 
EIF2α, EIF4E, EIF3B, EIF3 K, EIF3 L and EIF1B.

Biological pathways of feature genes. A total of 13 biolog-
ical pathways were over‑represented by the feature genes 
(Table III). The number of genes in each biological pathway 
is shown in Fig. 4. Several pathways were associated with 
energy metabolism, including oxidative phosphorylation, 
mitochondrial electron transport and mitochondrial adenosine 
triphosphate (ATP) synthesis. Furthermore, chromatin orga-
nization, chromosome organization and translation were 
significantly overrepresented.

Discussion

In the present study, a total of 585 feature genes were iden-
tified to be differentially expressed between FLT3/ITD 
mutation-positive and wild-type AML samples from the 

Figure 1. Classification results of acute myeloid leukemia samples using the SVM and RF methods. Classification according to the SVM method for (A) the 
training group, (B) the test group and (C) the combined group. Classification according to the RF method for (D) the training group, (E) the test group and 
(F) the combined group. SVM, support vector machine; RF, random forest; Neg, negative; Pos, positive.

  A   B   C   D   E   F

Figure 2. Scatter diagrams showing the classification results. Blue dots indicate FLT3/ITD mutation-negative samples and red dots indicate FLT3/ITD 
mutation-positive samples. Classification according to the SVM method for (A) the training group, (B) the test group and (C) the combined group. 
Classification according to the RF method for (D) the training group, (E) the test group and (F) the combined group. SVM, support vector machine; RF, 
random forest.

  A   B   C

  D   E   F
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training group (two data sets). Two methods, SVM and RF, 
were adopted to classify AML samples from the training 

group and the test group (two further data sets). The accuracy 
rates were >90% using either method on either group of data 

Figure 3. Receiver operator characteristic curves generated using (A) the support vector machine method and (B) the random forest method.

  A   B

Table II. Classification effects of SVM method and RF method.

Method	 No. of samples	 Correct rate	 Sensitivity	 Specificity	 PPV	 NPV	 AUROC

SVM	
  Training group	 371	 0.9757 	 0.9556 	 0.9822 	 0.9451 	 0.9857 	 0.997 
  Test group	 488	 0.9426 	 0.8913 	 0.9629 	 0.9044 	 0.9574 	 0.876 
  Combined	 859	 0.9430 	 0.8947 	 0.9604 	 0.8908 	 0.9619 	 0.902 
RF	
  Training group	 371	 0.9650 	 0.9444 	 0.9715 	 0.9140 	 0.9820 	 0.983 
  Test group	 488	 0.9057 	 0.8478 	 0.9286 	 0.8239 	 0.9393 	 0.818 
  Combined	 859	 0.9267 	 0.9035 	 0.9350 	 0.8340 	 0.9656 	 0.916

PPV, positive predictive value; NPV, negative predictive value; AUROC, area under the receiver operating characteristic curve; SVM, support 
vector machine; RF, random forest.

Table III. Significantly over‑represented biological pathways in feature genes.

Term	 Count	 P‑value	 FDR

GO:0006119 - Oxidative phosphorylation	 15	 3.80x10-6	 0.008857
GO:0006091 - Generation of precursor metabolites	 27	 1.50x10-5	 0.017414
GO:0022900 - Electron transport chain	 15	 2.25x10-5	 0.017423
GO:0045333 - Cellular respiration	 13	 8.00x10-5	 0.045815
GO:0016568 - Chromatin modification	 23	 1.11x10-4	 0.050724
GO:0006414 - Translational elongation	 13	 1.19x10-4	 0.045367
GO:0006325 - Chromatin organization	 28	 1.40x10-4	 0.045654
GO:0006412 - Translation	 25	 2.62x10-4	 0.073784
GO:0015980 - Energy derivation	 15	 2.89x10-4	 0.072430
GO:0051276 - Chromosome organization	 32	 3.37x10-4	 0.075984
GO:0006120 - Mitochondrial electron transport	   8	 4.01x10-4	 0.081888
GO:0042775 - Mitochondrial ATP synthesis 	   9	 4.64x10-4	 0.086660
GO:0042773 - ATP synthesis-coupled electron transport	   9	 4.64x10-4	 0.086660

FDR, false discovery rate; GO, gene ontology; ATP, adenosine triphosphate.
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sets. SVM produced a slightly more accurate classification 
than RF. It was indicated that the feature genes identified in the 
present study may be used to predict the FLT3/ITD mutation 
status in patients with AML. Functional enrichment analysis 
was also performed for the feature genes. Energy metabolism, 
chromatin organization and translation were significantly 
overrepresented.

Mitochondria are important organelles regulating the 
energy levels, metabolism and apoptosis in cells, which can 
in turn affect cell differentiation and proliferation. Therefore, 
they mitochondria have important roles in the pathogenesis of 
AML (20). Inhibition of mitochondrial translation has been 
suggested as a potential therapeutic strategy for AML (21). 
Yamaguchi et al (22) reported that a mutation in IDH1, which 
has an important role in the citrate circle, has an adverse effect 
in patients with AML.

Several genes associated with chromatin organization 
also participate in the development of AML. SUZ12 encodes 
a subunit of polycomb repressive complex  2, which was 
shown to drive aberrant self‑renewal in a mouse model of 
AML (23). Tiacci et al (24) found that BCORL1 has a role 
AML. Zagaria et al (25) reported that the BCOR gene was 
dysregulated in AML is due to chromosomal transloca-
tion. RUVBL2 is a critical mediator of oncogenesis caused 
by the MLL‑AF9 fusion gene and is a potential therapeutic 
target for MLL‑AF9‑associated leukemia (26). In addition, 
Sroczynska  et  al  (27) found that JMJD1C is required for 
leukemia maintenance, and that depletion of JMJD1C impaired 
the expansion and colony formation of human leukemic cell 
lines. Amplification of TOP2A was found identified in myelo-
dysplastic syndrome transforming to AML (28). DAPK3 was 
indicated to have a role in the induction of apoptosis, and that 
CpG island methylation of this gene, leading to its dysregula-
tion, is implicated in AML (29). 

Translation was also significantly overrepresented in the 
feature genes identified by the present study. Wang et al (30) 
indicated that silencing of RPS14 inhibits the proliferation of 
AML cells via activating p53. It is likely that RPS15, RPS16, 
RPS9 and other members of the RPS family may exert similar 
roles. In addition, EIF2α and EIF4E have been implicated in 
AML (31,32). The roles of EIF3B, EIF3 K, EIF3 L and EIF1B 
in AML may be worth investigating.

In conclusion, the present study identified a number of feature 
genes that may be used to distinguish FLT3/ITD mutation-posi-
tive AML samples from FLT3 wild-type samples. Several of 
the feature genes identified have been previously implicated in 
AML. The computational tools developed in the present study 
may aid in the clinical detection of FLT3/ITD mutation-positive 
AML for possible early and targeted treatment of these patients.
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