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Abstract. Despite ongoing research into diabetes and its 
complications, the underlying molecular associations remain 
to be elucidated. The systematic identification of molecular 
interactions in associated diseases may be approached using 
a network analysis strategy. The biomarker‑target interrelated 
molecules associated with diabetes and its complications were 
identified via the Comparative Toxicogenomics Database 
(CTD); the Search Tool for Recurring Instances of Neighboring 
Genes was utilized for network construction. Functional 
enrichment analysis was performed with Database for 
Annotation, Visualization and Integrated Discovery software 
to investigate connections between diabetes and its complica-
tions. A total of 142 (including 122 biomarkers, 10 therapeutic 
targets and 10 overlapping molecules) biomarker‑target 
interrelated molecules associated with diabetes and its compli-
cations were identified via the CTD database, and analysis of 
the network yielded 1,087 biological processes and fifteen 
Kyoto Encyclopedia of Genes and Genomes pathways with 
significant P‑values. Various critical aspects of the networks 
were examined in the present study: a) Intermolecular 
horizontal and vertical combinations in biomarkers and thera-
peutic targets associated with diabetes and its complicationb) 
network topology properties associated with molecular patho-
logical responsec) contribution of key molecules to integrated 
regulation; and d) crosstalk between multiple pathways. Based 
on a multi‑dimensional analysis, it was concluded that the 
integrated molecular pathological development of diabetes and 

its complications does not proceed randomly, which suggests a 
requirement for integrated, multi‑target intervention.

Introduction

Diabetes is a group of metabolic diseases rapidly increasing 
as a result of an aging population, urbanization and associated 
lifestyle changes. In 2010, >250 million people worldwide had 
type 2 diabetes mellitus (1), and this number continues to rise. 
Considerable improvements have occurred in the detection of 
this disease and in effective interventions in highrisk popula-
tions (2). Despite improvements in blood glucose control and 
increased public awareness of type 2 diabetes mellitus over the 
past decade, human obesity, and therefore diabetes, remains 
a challenge. As a chronic metabolic disease, type 2 diabetes 
mellitus and its complications, including diabetic nephropathy 
(prevalence, 5 to 20%), neuropathy (prevalence, 8 to 68%), 
angiopathy (stroke prevalence, 4 to 12%), cardiomyopathy 
(prevalence, 5 to 36%) and retinopathy (prevalence, 11 to 
65%) (3), are a major global healthcare concern. The induction 
of endothelial dysfunction (4), oxidative stress (5), immunity 
and inflammation  (6,7), and mitochondrial damage  (8,9) 
by hyperglycemia is an important aspect of the molecular 
pathology of diabetes and its complications. The origin of 
the diabetes epidemic lies in the interaction of an extremely 
complex combination of genetic and epigenetic predisposi-
tions, with an equally complex combination of societal factors 
that determine behavior and environmental risk (2). In addi-
tion, the complications of diabetes have a greater negative 
impact on patient quality of life and the economy compared 
with diabetes itself (10). Thus, the systematic elucidation of 
the mechanisms underlying diabetic complications is critical 
for improved control of this disorder.

The pathological mechanisms underlying diabetes and 
its complications likely reflect complex interactions between 
genetic and environmental factors, as well as the balance 
between glycemic indices and insulin (INS) secretion. The 
continued genome‑wide identification of associated risk loci 
and susceptibility genes for diabetes and its complications 
has explained a substantial proportion of disease risk, thus 
serving as a proof of principle for genome‑wide approaches 
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for elucidation of complex genetic traits (11‑16). Additional 
examination of underlying epigenetic mechanisms using 
recently developed next‑generation sequencing technologies 
has provided novel insights into the pathology of diabetes 
and its complications and may facilitate the discovery of 
novel therapeutic targets  (17). The integrated management 
of biomarkers and therapeutic targets may enable the early 
diagnosis, prevention and treatment of this complex metabolic 
disease. The aim of the present study was to simplify and 
confirm the molecular associations between diabetes and its 
complications based on a network analysis strategy, in order 
to facilitate the development of novel therapeutic agents and 
improve disease management.

Materials and methods

Network construction. Known biomarkers and therapeutic 
targets of diabetes and its complications (genes with a 
curated association or an inferred association via a curated 
chemical interaction) were retrieved from the Comparative 
Toxicogenomics Database (CTD; ctdbase.org/). This data-
base was used to investigate associations between diseases 
and genes/proteins. Certain genes are labeled as biomarkers 
or targetdisease‑associated biomarker and target genes were 
identified following screening for duplicate genes/proteins. 
The molecular datasets were uploaded to the Search Tool for 
Recurring Instances of Neighboring Genes (STRING) database 
version 9.05 (string‑db.org/) to characterize the associations 
between these molecules and generate molecular interaction 
networks. Human data were used in the present study to 
analyze the pathological and pharmacological correlations 
between diabetes and its complications. The confidence of the 
linkages between molecular nodes was determined based on 
the combined assessment of various data sources, including 
neighborhood, gene fusion, co‑occurrence, co‑expression, 
experiment, database, text mining and homology (18).

Analysis of network topology. Cytoscape software 
version  2.8.3, an interactive platform compatible with 
numerous network analysis software packages, was used for 
network visualization (cytoscape.org/). The use of Cytoscape 
for the biomarker‑target‑associated micro‑network enabled 
the simultaneous identification of multiple essential param-
eters of the network, including size, average degree and node 
degree distribution. Centiscape software version 1.21 (cbmc.
it/~scardonig/centiscape/centiscape.php), a Cytoscape plug‑in, 
was used to compute specific node centrality to efficiently 
describe network topology.

Functional annotation of molecular clusters. The Database for 
Annotation, Visualization and Integrated Discovery (DAVID; 
david.abcc.ncifcrf.gov/) was used to obtain comprehensive 
explanations of molecular function and large‑scale hetero-
geneous annotation content, including gene ontology (GO) 
terms, protein domains and signaling pathways, based on gene 
classification. In the present study, target molecule clusters 
were annotated by DAVID software version 6.7 (parameters, 
count=2, expression analysis systematic explorer=0.01 and 
species=Homo sapiens). Biological processes corresponding 
to the molecular clusters were identified using GO annotation 

and the P‑values of the biological processes obtained from GO 
enrichment were ranked.

Statistical analysis. The threshold of EASE Score, a modified 
Fisher Exact P‑value, was used for gene‑enrichment analysis. 
P‑value ranged from 0 to 1. A Fisher Exact P‑value of 0 repre-
sents perfect enrichment. P<0.05 was considered to indicate a 
statistically significant difference in the annotation categories 
(default is 0.1). When members of two independent groups fall 
into one of two mutually exclusive categories, Fisher Exact 
test is used to determine whether the proportions of those 
falling into each category differ by group. In DAVID annota-
tion system, Fisher Exact test was performed to measure the 
gene‑enrichment in annotation terms.

Results

Biomarker‑target molecular networks. A total of 
142 biomarker‑target interrelated molecules associated with 
diabetes and its complications were identified as network 
nodes using the CTD database, including 122 biomarkers, 
10  therapeutic targets and 10  molecules overlapping 
biomarkers and therapeutic targets. Fig.  1 presents the 
biomarker‑target network, which indicates scarce linkages 
(2 lines) between target molecules (black nodes) and abundant 
linkages (135  lines) between targets and biomarkers (gray 
nodes). The overlapping components (white nodes) between 
biomarkers and targets are a striking indicator of the closeness 
of the internal associations. Specifically, assigning a novel role 
(biomarker) to a target may increase the connectivity of this 
micro‑network (white nodes). Importantly, almost all the nodes 
shared between therapeutic targets and biomarkers (white 
nodes) doubled as overlapping nodes (colorful subnetwork 
presented in Fig. 2) between diabetes and its complications. 
This multidimensional molecular cluster contributes to a 
highly component‑dependent network skeleton that may 
systematically promote the co‑expression of multiple compli-
cation phenotypes, representing an integrated pathological 
trigger.

By contrast, a different visualization layout indicates 
that the groups of molecules associated with each diabetic 
complication are relatively independent (Fig. 2). Nodes were 
divided into eight categories: Diabetes mellitus (red nodes), 
diabetic angiopathies (yellow nodes), diabetic cardiomy-
opathies (light purple), diabetic nephropathies (blue nodes), 
diabetic neuropathies (dark purple), diabetic retinopathy 
(green nodes), microvascular complications of diabetes (pink 
nodes) and mixed (multicolored), which represented 57.04% 
(81/142), 2.11% (3/142), 2.82% (4/142), 9.15% (13/142), 3.52% 
(5/142), 2.82% (4/142), 2.11% (3/142) and 20.42% (29/142) of 
the total number of nodes, respectively. The 1,274 lines that 
corresponded to quantitative associations between molecules 
were investigated in more detail using the STRING database. 
Although the interior is sparse, 6 complication‑associated 
molecular clusters exhibited high external connectivity, for 
example 34, 36, 91, 49, 85 and 49 total connections for the 
molecular clusters for diabetic angiopathies, diabetic cardio-
myopathies, diabetic nephropathies, diabetic neuropathies, 
diabetic retinopathy and microvascular complications of 
diabetes, respectively.
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Network topology analysis. In the absence of isolated nodes, 
the reconstructed molecular network provides a background 
of global pathology and drug intervention for diabetes and its 
complications, network analysis by Centiscape 1.21 revealed a 
high clustering coefficient of 0.504 [compared with a regular 
network and small‑world network proposed based on high clus-
tering coefficients of 0.5 and 0.453, respectively, as defined by 
Watts and Strogatz (19)]. This suggests a network with markedly 
associated cascade‑like pathways that provides the necessary 
conditions for combined diagnosis and treatment. Analysis 
of the network reveals a network diameter of 5, a network 
centralization of 0.526, a characteristic path length of 2.236 
and a network density of 0.127. Taken together, these results 
suggest that protein‑protein interactions, signal transduction, 
metabolic pathways or transcriptional regulation may improve 
the efficiency of a network response based on pathology or 

pharmacology. Furthermore, the average number of neighbors 
was 17.944, indicating that nodes with a node degree ≥17.944 
were considered hubs (the top eight hubs are listed in Table I). 
A total of fifty‑two hubs were significantly enlarged in this 
network to describe the basic framework (Fig. 3A) of the 
region of concentrated intermolecular communication.

The existence of hub nodes is an important feature of 
network heterogeneity. A total of fifty‑two nodes were above 
the average degree of network nodes (Fig. 3A). In addition, 
43.4% of the hubs were part of the aforementioned multidi-
mensional molecular clusters. The top ten hubs accounted for 
up to 80% of these clusters. To reduce the risk of artifacts due 
to artificial networks, hubs with high ranks were investigated. 
Hyperglycemia induces the development of complications 
through altered gene expression and/or protein function, which 
contributes to cellular dysfunction and damage. INS molecules 

Figure 1. Biomarker‑target‑associated molecular networks. A total of 142 biomarker‑target‑interrelated molecular nodes were identified to be associated with 
diabetes and its complications, including 122 biomarkers (gray nodes), 10 therapeutic targets (black nodes) and 10 molecules overlapping biomarkers and 
therapeutic targets (white nodes). Lines between pairs of nodes represent interactions between two molecules.
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may be central. As a shared node between diabetes and four 
complications: Cardiomyopathies, ketoacidosis, nephropa-
thies and neuropathies, INS exhibited connections with other 
high‑weight hubs, including albumin, tumor necrosis factor 
(TNF), vascular endothelial growth factor (VEGF) A, peroxi-
some proliferator‑activated receptor γ, superoxide dismutase 2, 
mitochondrial (SOD2), transforming growth factor β1 (TGFβ1) 
and angiotensin I converting enzyme. Thus, INS forms an 
interactive network based on the STRING database (Fig. 3B). 
Molecular interactions revealed horizontal or vertical informa-
tion flow and primarily included binding, activation and the 

inhibition or induction of gene expression. Furthermore, these 
hub nodes completely covered the targets and biomarkers of 
diabetes and its complications. The statistics on the associations 
between these hubs, diabetes and its complications are listed in 
Table I.

Functional enrichment analysis. Network analysis using 
DAVID software yielded 1,087 biological processes, and fifteen 
pathways from Kyoto Encyclopedia of Genes and Genomes 
(KEGG), with significant P‑values. The top 30  significant 
biological processes are listed in Table II, including homeostatic 

Figure 2. Molecular networks associated with diabetes and its complications. A total of 142 biomarker‑target‑interrelated molecular nodes were divided into 
eight subgroups: Diabetes mellitus (red nodes), diabetic angiopathies (yellow nodes), diabetic cardiomyopathies (light purple), diabetic nephropathies (blue 
nodes), diabetic neuropathies (dark purple), diabetic retinopathy (green nodes), microvascular complications of diabetes (pink nodes) and a mixed (multicol-
ored). Lines represent interactions between any pair of intra‑ or intergroup nodes.
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processes, responses to external stimuli, blood circulation, cell 
death and apoptosis, and responses to oxygen levels. A clus-
tering strategy was used to simplify these biological processes 
into 22 categories that were largely associated with metabo-

Table I. Continued.

Condition	 Reference countinga

Diabetic angiopathies	 10
Diabetic cardiomyopathies	 25
Diabetic nephropathies	 121
Diabetic neuropathies	 52
Diabetic retinopathy	 15
Microvascular complications of diabetes 	 1

F, Tumor necrosis factor hub gene

Condition	 Reference countinga

Diabetes mellitus	 358
Diabetic angiopathies	 12
Diabetic cardiomyopathies	 28
Diabetic nephropathies	 135
Diabetic neuropathies	 56
Diabetic retinopathy	 26
Microvascular complications of diabetes	 0

G, Transforming growth factor β1 hub gene

Condition	 Reference countinga

Diabetes mellitus	 339
Diabetic angiopathies	 12
Diabetic cardiomyopathies	 27
Diabetic nephropathies	 132
Diabetic neuropathies	 51
Diabetic retinopathy	 25
Microvascular complications of diabetes	 0

H, Angiotensin I converting enzyme hub gene

Condition	 Reference countinga

Diabetes mellitus	 320
Diabetic angiopathies	 10
Diabetic cardiomyopathies	 24
Diabetic nephropathies	 116
Diabetic neuropathies	 47
Diabetic retinopathy	 14
Microvascular complications of diabetes	 1 

aReference counting represents the number of references regarding 
the association between the gene and the disease in the comparative 
toxicogenomics database. 

Table I. Literature and statistics‑based association verification 
between top hubs and diabetes and its complications.

A, Insulin hub gene

Condition	 Reference countinga

Diabetes mellitus	 331
Diabetic angiopathies	 9
Diabetic cardiomyopathies	 25
Diabetic nephropathies	 107
Diabetic neuropathies	 49
Diabetic retinopathy	 14
Microvascular complications of diabetes	 0

B, Albumin hub gene

Condition	 Reference countinga

Diabetes mellitus	 326
Diabetic angiopathies	 8
Diabetic cardiomyopathies	 26
Diabetic nephropathies	 120
Diabetic neuropathies	 49
Diabetic retinopathy	 16
Microvascular complications of diabetes	 0

C, Vascular endothelial growth factor A hub gene

Condition	 Reference countinga

Diabetes mellitus	 336
Diabetic angiopathies	 12
Diabetic cardiomyopathies	 27
Diabetic nephropathies	 126
Diabetic neuropathies	 51
Diabetic retinopathy	 27
Microvascular complications of diabetes	 1

D, Peroxisome proliferator‑activated 
receptor γ hub gene

Condition	 Reference countinga

Diabetes mellitus	 334
Diabetic angiopathies	 11
Diabetic cardiomyopathies	 26
Diabetic nephropathies	 116
Diabetic neuropathies	 49
Diabetic retinopathy	 14
Microvascular complications of diabetes	 0

E, Superoxide dismutase 2, mitochondrial hub gene

Condition	 Reference countinga

Diabetes mellitus	 331
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lism, development, cell communication, cell death and stress 
responses (Fig. 4A). A total of fifteen significant KEGG path-
ways were detected in the molecular target‑biomarker network 
(Table  III). The type 2 diabetes mellitus pathway from the 
KEGG database (www.kegg.jp/kegg/pathway.html) was used as 
an example based on its significant P‑value (Fig. 4B). The mole-
cules and pathways associated with type 2 diabetes mellitus that 

were identified by the present study are indicated by red stars. 
A total of two aspects of this pathway and the crosstalk between 
other pathways were highlighted (red stars, Fig. 4B) to reflect 
the collective dynamics of molecules and pathways. Among the 
fifteen pathways, the appearance of overlapping molecules is 
frequent, including INS and TNF, which are shared molecules 
of multiple pathways.

Figure 3. Hub nodes of biomarker‑target networks. (A) Nodes in the biomarker‑target networks were sorted according to node degree. As the node degree 
increases, the size and color of the nodes gradually change from small to large and green to red, respectively. (B) As an example of interactive hub nodes, eight 
hubs with high ranks were mapped to form a micro‑interaction network based on the Search Tool for Recurring Instances of Neighboring Genes database.

Figure 4. Enrichment analyses of biomarker‑target networks. (A) A total of 142 molecular nodes were annotated by functional enrichment analysis. The results 
classified 1,087 biological processes into 22 categories by clustering and ratio formation. (B) The type 2 diabetes mellitus pathway from the KEGG database 
(www.kegg.jp/kegg/pathway.html) is presented as a statistically significant example. Molecules and pathways associated with this pathway that were identified 
by the present study are marked with a red star.
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Discussion

Additional systematic evidence is required to describe diabetes 
and its complications in a coordinated manner. A total of two 
notable phenomena were observed: i) Biomarkers tended to 
cooperate, whereas therapeutic targets were independent; 
and ii) nodes between diabetes and its complications tended 

to reveal molecular communication, whereas there appeared 
to be no contact between complications. Furthermore, the 
colorful subnetwork reflected dense internal communication 
trends and extensive crosstalk‑like structures between diabetes 
and its complications. These horizontal and vertical molecular 
regulatory modes suggest common triggers of pathological 
evolution, and thus a requirement for multi‑target intervention.

The results of the present study are consistent with 
previous studies of network models of complex disease 
interventions and key regulatory pathways for type  2 
diabetes‑associated risk/complications based on gene 
co‑expression networks  (20,21). These studies indicated 
that targeting a single node is unlikely to affect a disease 
network (22) and multiple proteins must be regulated to affect 
disease phenotypes. Network intervention emphasizes the 
importance of communication infrastructures, and the link-
ages between biomarkers and targets may involve direct or 
indirect connections. The majority of biotherapeutic drugs are 
hypothesized to act on specific targets, which may serve as 
biomarkers for target engagement and validation (23,24). A 
systems biology approach to investigating disease‑associated 
biology is revolutionizing our understanding of the cellular 
pathways and gene networks underlying the onset of disease 
and the mechanisms underlying pharmacological treatments 
that ameliorate disease phenotypes (25,26), thereby facilitating 
drug discovery and development through the identification of 
novel drug targets and biomarkers of disease progression.

In the present study, various topological properties of a 
biomarker‑target network were revealed, which may provide 
future targets for potential systematic interventions. Hub 

Table III. Significant pathways detected in the molecular 
target‑biomarker network.

Pathway	 P‑value

Type 2 diabetes mellitus	 1.1E‑9
Adipocytokine signaling pathway	 7.2E‑8
Maturity‑onset diabetes of the young	 1.3E‑6
Renin‑angiotensin system	 2.9E‑5
Amyotrophic lateral sclerosis (ALS)	 3.9E‑5
Calcium signaling pathway	 4.7E‑4
PPAR signaling pathway	 1.9E‑3
Pathways in cancer	 3.4E‑3
Aldosterone‑regulated sodium reabsorption	 3.1E‑3
Apoptosis	 6.7E‑3
Cytokine‑cytokine receptor interaction	 1.7E‑2
Type 1 diabetes mellitus	 2.0E‑2
Insulin signaling pathway	 2.4E‑2
Huntington's disease	 4.4E‑2
Neurotrophin signaling pathway	 4.6E‑2 

The threshold of EASE score, a modified fisher exact P‑value (max-
imum probability) ranging from 0 to 1, was used for gene‑enrichment 
analysis. A fisher exact P‑value of 0 represents perfect enrichment. 
In the database for annotation, visualization and integrated discovery 
system, fisher exact test was performed to measure the gene‑enrichment 
in annotation terms. The smaller the value, the more enriched the gene.

Table II. Top 30 significant statistical biological processes.

	 Gene ontology

Biological process	 P‑value

Homeostatic process	 1.3E‑26
Chemical homeostasis	 1.1E‑23
Response to organic substance	 6.0E‑20
Blood circulation	 1.2E‑19
Circulatory system process	 1.2E‑19
Regulation of response to external	 7.0E‑19
stimulus
Regulation of cell proliferation	 9.7E‑19
Regulation of blood pressure	 4.1E‑18
Response to extracellular stimulus	 4.7E‑18
Response to nutrient levels	 4.1E‑18
Negative regulation of multicellular	 1.4E‑17
organismal process
Response to steroid hormone stimulus	 4.9E‑16
Response to hormone stimulus	 1.1E‑15
Response to wounding	 5.1E‑15
Glucose homeostasis	 6.9E‑15
Carbohydrate homeostasis	 6.9E‑15
Regulation of protein amino acid	 9.3E‑15
phosphorylation
Regulation of protein kinase cascade	 1.8E‑14
Response to endogenous stimulus	 1.7E‑14
Regulation of cell death	 1.6E‑14
Regulation of apoptosis	 9.3E‑14
Regulation of system process	 1.2E‑13
Regulation of programmed cell death	 1.1E‑13
Response to hypoxia	 2.1E‑13
Positive regulation of locomotion	 3.4E‑13
Response to oxygen levels	 4.9E‑13
Positive regulation of multicellular	 5.9E‑13
organismal process
Regulation of locomotion	 6.7E‑13
Positive regulation of cell proliferation	 1.1E‑12
Regulation of secretion	 1.7E‑12 

The threshold of EASE score, a modified fisher exact P‑value (max-
imum probability) ranging from 0 to 1, was used for gene‑enrichment 
analysis. A fisher exact P‑value of 0 represents perfect enrich-
ment. In the database for annotation, visualization and integrated 
discovery system, fisher exact test was performed to measure the 
gene‑enrichment in annotation terms. The smaller the value, the more 
enriched the gene.
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nodes are the backbone of the network topological architecture 
and may improve our understanding of molecular integra-
tion. Similar results have been reported for transcriptional 
networks (27), protein‑protein interaction networks (28), gene 
co‑expression networks (29) and regulatory networks (30). The 
robustness of a hub gene network formed by various associ-
ated diseases is indicated by its highly connected components. 
Strong correlations between the expression levels of hub genes 
and indicators of disease severity suggest that this hub network 
may partially reflect disease progression (31). Consequently, 
it is important to investigate not only the network structure 
based on hub nodes but also the parallel role of anti‑structure.

The collective behavior and compound effects of the hubs 
are hypothesized to be generated based on three distinct aspects. 
Separate molecules may have a common downstream target. For 
example, the early stages of endothelial dysfunction in diabetes 
may be associated with the increased expression of INS, VEGFs, 
TGFβ1 and TNF, which in addition are suspected to be critical in 
the pathogenesis of diabetic angiopathy (32). Research suggests 
that these four pro‑angiogenic factors may be involved in the 
pathology of diabetic retinopathy, heart disease and atheroscle-
rosis‑based microangiopathy (33). The present study speculates 
that centralized regulation is the primary pattern for consistent 
targeted expression of integrated regulation.

In addition, interactive cooperation may occur between 
molecules. In contrast to consistent targeting, intermolecular 
cooperation emphasizes directed execution, as indicated by 
evidence of extensive information transmission in the field of 
systems biology (31). For example, SOD2 is a member of the 
iron/manganese superoxide dismutase family, which likely 
contributes to the upregulation of microRNAs responsible 
for regulating VEGF. These data led to an improved under-
standing of the role of epigenetics in diabetic retinopathy (34). 
A similar interaction occurs between TGFβ and VEGF to 
enhance the production of VEGF by retinal cells following 
injuries complicated by diabetes and hypoxia in the retina (32). 
Thus, this molecular interaction depends on cooperation as the 
basic paradigm of integrated regulation.

Furthermore, single molecules may perform multiple roles. 
Genetic pleiotropy occurs when one gene affects the expression 
of multiple characteristics. For example, elevated VEGF levels 
and low levels of VEGF activity act as pathological stimuli 
in ocular neovascularization and peripheral neuropathy, 
respectively (35). Anti‑VEGF approaches have been applied in 
clinical settings due to the induction of abnormal angiogenesis 
and enhanced retinal capillary permeability by the overproduc-
tion of VEGF (36). However, high VEGF expression exhibits 
beneficial effects on diabetic nephropathy via unknown 
underlying mechanisms (37). This evidence demonstrates that 
an objective analytical framework of multi‑disease integrated 
regulation that indicates a horizontal and vertical combination 
of various core molecules or overall members may provide a 
robust basis for common diagnosis or integrated therapies for 
diabetes and its complications.

Abnormal INS signaling driven by obesity and hypergly-
cemia may be responsible for INS resistance and impaired INS 
secretion, leading to the spatio‑temporal initiation of continuous 
and devastating metabolic processes. This conditional collapse 
involves a complex signaling network, including INS resis-
tance, β‑cell dysfunction, impaired glucose tolerance and 

mitochondrial dysfunction activated by the INS receptor, which 
regulates intermediary metabolism and ultimately leads to 
diabetic disease states, including types 1 and 2 diabetes mellitus 
and maturity‑onset diabetes in youth (38,39). Adipocytokines 
and glycemia partially account for the association between 
adiposity and the risk of type 2 diabetes (40) and are important 
in the pathogenesis of INS resistance and associated metabolic 
complications, including dyslipidemia, hypertension and 
premature heart disease  (41). Atherosclerosis is considered 
to be the predominant cause of morbidity and mortality in 
patients with diabetes mellitus (42). Epidemiological evidence 
suggests that the risk of various types of cancer is increased in 
patients with diabetes (43,44) and that obesity, hyperglycemia 
and enhanced oxidative stress may contribute to this increased 
risk. Furthermore, cytokine‑cytokine receptor‑associated path-
ways may be potential biological links between diabetes and 
cancer risk. Hyperglycemia may influence multiple signaling 
pathways, including INS and INS‑like growth factor receptor 
signaling, to stimulate multiple cancer phenotypes, including 
proliferation, protection from apoptotic stimuli, invasion and 
metastasis, potentially enhancing the promotion and progres-
sion of numerous types of cancer cells (44,45). Programmed 
cell death in diabetes and its complications occurs in pancreatic 
β‑cells and neural and vascular cells, resulting in retinopathy, 
neuropathy, nephropathy and cardiovascular disease via 
calcium signaling, cytokine signaling, hyperglycemia and mito-
chondrial damage (46‑49). Furthermore, neurotrophins have 
been assessed as candidate therapeutic agents for the treatment 
of neural complications of diabetes (50,51); these complications 
may result from the promotion of neovascularization and micro-
vascular neuroprotection. Taken together, these data indicate the 
extreme complexity of molecular integrated regulation between 
diabetes and its complications. Based on convergent biofunc-
tions, the crosstalk between multiple pathways may be exploited 
to reverse complex pathological cascades.

Integrated molecular pathological analysis may provide 
a novel strategy with which to improve our understanding 
of associated diseases. In the present study, large‑scale, 
interlocking molecular cooperation between diabetes and its 
complications was demonstrated. Systems analysis is based 
on the characteristics of molecules, including common down-
stream targets, interactive cooperation between molecules 
and multiple roles of single molecules. The shared underlying 
mechanisms involve endothelial dysfunction, inflammatory 
factor mediation, neovascularization, neuronal oxidative injury, 
cell death and apoptosis, lipometabolism and mitochondrial 
damage. Integrated regulated analysis strategies may be used 
to reveal general trends, to dissect underlying pathological 
mechanisms and for drug screening (26,52). The identification 
of network‑coupled biomarkers and therapeutic targets may 
facilitate molecular diagnoses and treatments. In conclusion, 
this may be the beginning of a renewed fight against diabetes 
and its complicationfuture studies may focus on blocking 
pathological cascades through the integrated regulation of key 
molecules and pathway crosstalk.
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