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Abstract. Vibrio vulnificus is known to induce severely 
fulminant and fatal septicemia in susceptible hosts. In the 
present study, the antimicrobial activity of natural marine 
product-derived compounds against V. vulnificus, were inves-
tigated in vitro and in vivo. Twelve pure compounds were 
isolated from natural marine products and their inhibitory 
effects on V. vulnificus-induced cytotoxicity were determined 
in INT-407 cells. Among the 12 pure compounds tested, 
treatment with psammaplin A significantly suppressed 
V. vulnificus-induced cytotoxicity in INT-407 cells. Notably, 
treatment with psammaplin A (5-50 µg) had improved survival 
rates compared with that in the untreated mice, when the mice 
were infected with V. vulnificus intraperitoneally. In addition, 
the bacterial load of V. vulnificus in several tissues (spleen, 
liver and small intestine) was significantly lower in psam-
maplin A-treated mice than in untreated mice. Furthermore, 
psammaplin A treatment significantly suppressed the growth 
of V. vulnificus. Taken together, these results indicate that 
psammaplin A may be a potential agent for the prevention and 
treatment of V. vulnificus infections.

Introduction

Vibrio vulnificus is a gram-negative bacterium, is known to 
cause primary sepsis and gastroenteritis in humans. Following 
an infection with V. vulnificus, the disease proceeds rapidly, 
resulting in extensive cellular damage. Additionally, the 
consumption of contaminated shellfish or wound infection 
with V. vulnificus can induce fatal septicemia in suscep-
tible individuals with chronic liver disease (1). A variety 

of virulence factors produced by V. vulnificus can induce 
septic shock, which is often fatal. Putative virulence factors, 
including capsular polysaccharides (2,3), siderophores (4), 
hemolysin (5), matrix metalloproteinase (6), flagella (7,8) and 
RtxA toxin (9-11) have been reported in vivo and in vitro. These 
virulence factors may induce the persistent production of 
proinflammatory mediators, such as interleukin (IL)‑1β, IL-6, 
IL‑8, tumor necrosis factor (TNF)‑α and nitric oxide in the 
host (12,13). Therefore, highly active antimicrobial agents are 
required for the efficient treatment of V. vulnificus infections. 
In this study, the anti-V. vulnificus activity of psammaplin A 
was investigated in vitro and in vivo.

Psammaplin A is a natural marine product isolated 
from sponges, such as Poecillastra sp., Jaspis sp. and 
Psammaplysilla sp. (14,15). Psammaplin A is known to 
possess antimicrobial (16), antitumor and cytotoxic activities 
against several cell lines, including the P388 leukemia cell 
line (14,15), as well as lung, ovarian and colon cancer (17). It 
was also reported to have inhibitory activities against DNA 
gyrase, DNA topoisomerase, farnesyl protein transferase 
and leucine aminopeptidase (16,18‑22). Previous studies 
showed that psammaplin A possesses an antimicrobial 
effect against methicillin-resistant Stapylococcus aureus 
(MRSA) (16,23,24). However, the effects of psammaplin A 
on V. vulnificus infection in vitro and in vivo have not been 
investigated.

In this study, the antibacterial activity of psammaplin A 
against V. vulnificus as well as its suppressive effects against 
the cell cytotoxicity induced by V. vulnificus were examined 
in vitro and in vivo.

Materials and methods

Animal cell culture and chemicals. The INT-407 human 
epithelial cell-line (ATCC CCL-6) was purchased from the 
American Type Culture Collection (Manassas, VA, USA), 
and maintained at 37˚C under 5% CO2 in Minimum Essential 
Medium (MEM; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) supplemented with 10% fetal bovine serum (Gibco; 
Thermo Fisher Scientific, Inc.) and antibiotics (10 U/ml 
penicillin G and 10 µg/ml streptomycin) (growth medium). 
Psammaplin A is a natural marine product that was isolated 
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from two sponges, Jaspis sp. and Poecillastra wondoensis (17). 
The other compounds were isolated from a sponge-derived 
fungus Acremonium sp. and their configurations were deter-
mined by CD spectroscopic data, along with comparison of 
1H and 13C spectroscopic data (25). All chemicals used in the 
study were a gift from Professor Jung (College of Pharmacy, 
Pusan National University, Busan, Korea). The natural marine 
products were dissolved in anhydrous ethanol to make a 
10 mg/ml stock solution. Subsequent dilutions were made in 
Dulbecco's modified Eagle's medium.

Bacterial strains and growth conditions. V. vulnificus strain 
MO6-24/O used in the present study was isolated from 
patients (9,10) and provided by Professor Sang Ho Choi (Seoul 
National University, Seoul, Korea). The V. vulnificus bacteria 
were grown to log phase at 30˚C in Luria‑Bertani medium 
(produced in the laboratory) supplemented with 2.0% NaCl 
LBS medium, after which they were diluted to 6x108 CFU/ml 
in LBS medium, and then centrifuged for 3 min at 2,500 x g 
and resuspended in antibiotic-free MEM medium prior to 
infection of INT-407 cells. The concentration of bacteria was 
confirmed via viable colony counting conducted on LBS agar.

In vitro broth cultures of V. vulnificus. The V. vulnificus 
inoculum size was 6x108 CFU/ml. Variable concentrations of 
natural pure compounds 1, 4, 6, 8 and 10 (1, 5, 10, 12.5, 20, 25, 
40, 50, 75 and 100 µg/ml) were solubilized in 20 ml of growth 
medium (2% NaCl LBS) and then tested for their ability to 
alter bacterial growth by spectrometry (OD540). This was 
conducted by culturing V. vulnificus for 0-13 h in the presence 
of 50 µg/ml psammaplin A or 0-100 µg/ml psammaplin A for 
13 h at 37℃ in 2% NaCl LB medium, and bacterial growth 
was evaluated by measuring the optical density at 540 nm 
(OD540). The V. vulnificus cultures were then incubated with 
aeration at 150 rpm using a gyratory shaker for 5 h at 37˚C.

Infection protocol. INT-407 human epithelial cells were 
infected with V. vulnificus as previously described (9,10). 
Briefly, INT‑407 cells were grown in growth medium at 37˚C 
in a 5% CO2 incubator. Next, the cells were seeded onto 6-well 
(8x105 cells/well) and 96-well (2x104 cells/well) culture plates 
and then cultured for 24 h in antibiotic-free growth medium. 
Prior to infection, the bacteria were centrifuged for 3 min 
at 2,500 x g, resuspended and adjusted to 6x108 CFU/ml in 
antibiotic-free MEM medium. The bacterial suspensions were 
then added to psammaplin A-treated or untreated-epithelial 
cells at various multiplicities of infection (MOI; the ratio 
of the number of bacteria to the number of epithelial cells), 
after which the infected cells were incubated for 1-4 h in 
antibiotic‑free growth medium at 37˚C under 5% CO2.

Cytotoxicity assay. The bacteria-infected INT-407 cell 
cultures were aliquoted into a 96-well tissue culture plate 
(Nunc, Roskilde, Denmark) as previously described (9,10). 
The cytotoxicity was then determined by measuring the 
activity of lactate hydrogenase (LDH) in the supernatant using 
a cytotoxicity detection kit (Roche, Mannheim, Germany). 
The cytotoxic level was expressed as a percentage relative to 
the total LDH activity of cells that were completely lysed by 
1% Triton X‑100 (9,10).

Morphological study. INT‑407 (8x105 cells/well) cells were 
incubated with bacteria in a 6-well plate for 3 h at an MOI of 
10, after which the cells were washed with phosphate-buffered 
saline (PBS). The cells were then fixed with 4% para‑form-
aldehyde (Sigma-Aldrich, St. Louis, MO, USA) for 10 min at 
room temperature, washed and completely dried. Next, the 
cells were stained with Giemsa solution (Molecular Probes, 
Thermo Fisher Scientific, Inc.) for 1 h at room temperature. 
The cells were then washed twice with distilled water and 
dried, after which the images of the specimens were acquired 
using a microscope (Olympus IX 71, Tokyo, Japan).

Survival of V. vulnificus‑infected mice. A total of 35 female ICR 
mice (Samtaco Bio Korea, Gyounggi‑do, Korea; age, 8 weeks; 
weight, 20‑22 g) that were housed under specific‑pathogen 
free conditions were used for all experiments. They were 
maintained at 24˚C with a relative humidity of 50%, under 
a 12-h light/dark cycle. The mice had access to food and 
water ad libitum. The present study was approved by Korea 
University (Seoul, Korea). The mice were intraperitoneally 
infected with 0.1 ml of 250 µg iron dextran (Sigma-Aldrich) 
30 min prior to injection with V. vulnificus. Next, the mice were 
intraperitoneally injected with 1x103 CFU/0.1 ml V. vulnificus. 
The use of iron dextran produces a useful model to investigate 
systemic disease that results from V. vulnificus infection. The 
mice were administered 0.2 ml psammaplin A (DCM 1-9-1) 
solution (5, 10, 25 or 50 µg per mouse) or a PBS intraperitone-
ally (control), after which their survival status was assessed 
every hour for 24 h.

Quantitative analysis of bacteria in tissues. The V. vulni‑
ficus‑inoculated mice were sacrificed by cervical dislocation 
7 h after infection. A ventral incision was made to observe the 
abdomen of the infected mice treated with or without psam-
maplin A (Nikon D60; Nikon Corporation, Tokyo, Japan), and 
the spleen, liver and small intestine lesions were then asepti-
cally removed. The removed specimens were homogenized 
in 2 ml PBS using glass tissue homogenizers, after which the 
homogenates were diluted in PBS and plated on 2% NaCl HI 
agar. The samples were then incubated at 37˚C for 12 h and 
bacterial colonies were counted.

Statistical analysis. The data were analyzed with Microsoft 
Excel (Microsoft Corporation, Redmond, WA, USA). 
Student's t-test and one-way analysis of variance followed by 
the Bonferroni method were employed to identify statistical 
differences between the values of the various experimental 
and control groups. P<0.05 was considered to indicate a statis-
tically significant difference.

Results

Psammaplin A suppresses V. vulnificus‑induced cytotoxicity 
in human epithelial cells. Twelve pure compounds were 
isolated from natural marine products, and their structures 
were characterized as previously described (17,25) (Fig. 1). 
The inhibitory effects of these compounds were determined 
on V. vulnificus-induced cytotoxicity (Fig. 2). INT-407 cells 
were infected with V. vulnificus at an MOI of 10 for 3 h in 
the presence or absence of the 12 marine product-derived 
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Figure 1. Structures and names of 12 pure compounds isolated from natural marine products.

Figure 2. Effects of psammaplin A, a natural marine product on Vibrio vulnificus‑induced cytotoxicity in human epithelial cells. (A) INT-407 cells were 
infected with V. vulnificus for 3 h at an MOI of 10 in the presence or absence of 12 natural marine products (50 µg/ml), and cytotoxicity was determined using 
the lactase dehydrogenase release assay. The white bars indicate non-infected cells; black, infected but not treated with natural marine products; grey, infected 
and treated with natural marine products; checkered, infected, treated with psammaplin A. *P<0.05 vs. infected but untreated group. (B) INT-407 cells were 
infected with V. vulnificus for 3 h at an MOI of 10 in the presence of compounds 1, 4, 6, 8 and 10 (0, 12.5, 25, 50 and 100 µg/ml). (C) INT‑407 cells were infected 
with V. vulnificus at an MOI of 10 for varying times (1, 2, 3 and 4 h) in the presence of compounds 1, 6 and 8. Data are presented as the mean ± standard error 
(n=3) for all experiments. MOI, multiplicity of infection.

  C
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Figure 3. Psammaplin A protects human epithelial cells against Vibrio vulnificus‑induced cellular damage. INT‑407 cells (8x105 cells/well) were incubated 
with V. vulnificus for 2 or 3 h at MOI 10 in the absence or presence of psammaplin A (50 µg/ml) in six-well plates. Culture plates were then centrifuged, washed 
twice with pre‑warmed PBS (pH 7.4), and fixed with 4% paraformaldehyde. Next, cells were washed twice with PBS and then stained with Giemsa solution. 
Images of the specimens were acquired using a microscope (magnification, x400). PBS, phosphate‑buffered saline; MOI, multiplicity of infection. 

Figure 4. Psammaplin A treatment prolongs the survival of Vibrio vulnificus-inoculated mice. (A) Survival of V. vulnificus-inoculated mice. ICR female mice 
(n=5 per group) were intraperitoneally inoculated with 103 CFU V. vulnificus and then treated with psammaplin A (5-50 µg per mouse). Survival of the mice 
was recorded every hour for 24 h. (B) Determination of the number of V. vulnificus colonies recovered from various tissues. ICR female mice (n=5 per group) 
were intraperitoneally inoculated with 103 CFU V. vulnificus, and treated with or without psammaplin A (5-50 µg per mouse). At 7 h after V. vulnificus infec-
tion, the spleen, liver and small intestine were excised. Specimens were homogenized, diluted, plated on 2% NaCl HI agar plates, incubated at 37˚C for 12 h, 
and then the number of bacterial colonies was counted. Data are presented as the mean ± standard error. *P<0.05 vs. infected but untreated group. (C) Opened 
abdomen of V. vulnificus-infected mice treated with or without psammaplin A treatment observed using a digital camera (Nikon D60).

  C

  B  A
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compounds. Then, the cytotoxicities of the compounds were 
evaluated in cells using LDH assays. As shown in Fig. 2A, 
there was significantly decreased cytotoxicity in cells treated 
with compounds 1, 4, 6, 8, 9 and 10 compared with the 
untreated cells infected with V. vulnificus, indicating that these 
compounds have inhibitory effects on V. vulnificus-induced 
cytotoxicity. Treatment with these compounds significantly 
inhibited the cytotoxicity of V. vulnificus in a concentra-
tion- and time-dependent manner (Fig. 2B and C). Of these 
compounds, psammaplin A (compound 8) had the strongest 
inhibitory effect on the V. vulnificus-induced cytotoxicity.

To confirm the inhibitory effects of psammaplin A on 
the V. vulnificus-induced cytotoxicity of INT-407 cells, the 
size and morphology of nuclei were assessed using a micro-
scope (Fig. 3). INT-407 cells infected with V. vulnificus at 
an MOI of 10 for 2-3 h showed typical phenotypic features 
of cell death, such as cytoplasmic loss and cellular damage, 
while treatment with psammaplin A reversed that phenotype. 
Psammaplin A ameliorated the significant cellular damage 
at 3 h after infection with V. vulnificus. These results suggest 
that psammaplin A inhibits the cytotoxicity against host cells 
induced by V. vulnificus infection.

Psammaplin A treatment prolongs the survival of V. vulni‑
ficus‑infected mice. To investigate whether psammaplin A 
prolonged survival, mice were infected with V. vulnificus and 
administered psammaplin A (0-50 µg per mouse). Mice inocu-
lated intraperitoneally with 1x103 CFU V. vulnificus all died 
within 16 h. However, psammaplin A treatment of V. vulni‑
ficus-infected mice increased the survival rate. Following 
psammaplin A treatment, four out of five mice infected with 
V. vulnificus (50 µg per mouse) survived for 24 h (Fig. 4A).

To investigate the effects of psammaplin A treatment on 
the growth of V. vulnificus in vivo, mice were intraperitoneally 
infected with 1x103 CFU V. vulnificus and administered psam-
maplin A (0, 10, 25 and 50 µg per mouse). After 7 h, several 
tissue samples, including from the spleen, liver and small intes-
tine were excised from the mice, and the number of V. vulnificus 
colonies in each tissue was evaluated. Fig. 4B shows that the 
number of V. vulnificus colonies was significantly reduced in 
all tissue samples isolated from psammaplin A-treated mice 

compared with the number of V. vulnificus colonies isolated 
from untreated controls. In addition, the necropsy results of  
V. vulnificus-infected mice at 7 h post infection showed edema, 
hemorrhage, vasodilation and necrosis in the intestines, livers 
and spleens isolated from the untreated mice. However, the 
tissue samples from the psammaplin A-treated mice did not 
show any of the symptoms observed in the tissues of untreated 
mice (Fig. 4C). These results suggest that psammaplin A 
significantly suppresses the growth of V. vulnificus and the 
associated pathology in vitro and in vivo.

Psammaplin A strongly inhibits V. vulnificus growth in vitro. 
To investigate the antibacterial activities of psammaplin A 
against V. vulnificus, V. vulnificus was incubated in the pres-
ence or absence of psammaplin A (0-100 µg/ml) for 0-13 h. 
As shown in Fig. 5, the bacterial numbers of V. vulnificus 
increased in an incubation time-dependent manner. However, 
psammaplin A treatment inhibited the growth of V. vulnificus 
in a concentration-dependent manner. These findings suggest 
that psammaplin A significantly inhibited the growth of V. 
vulnificus.

Discussion

V. vulnificus, which is a gram-negative bacterium, causes fatal 
septicemia in individuals with liver cirrhosis, diabetes, hemo-
chromatosis or immunocompromised conditions (26,27). 
Infection with V. vulnificus causes extensive cellular damage 
and >50% of patients with V. vulnificus-induced septicemia die. 
Recent studies revealed that hemolysin produced by V. vulni‑
ficus (VvhA) induces nuclear factor κ-light-chain-enhancer of 
activated B cells-dependent mitochondrial cell death via lipid 
raft-mediated reactive oxygen species production in human 
epithelial cells (28). Therefore, there is an increasing require-
ment for effective antimicrobial agents for the treatment of 
V. vulnificus infections. Psammaplin A was first isolated from 
the Psammaplinaplysilla sponge and it was known to impede 
bacterial growth by inhibiting the activities of several key 
enzyme-mediated processes in prokaryotic systems including 
DNA replication, microbial detoxification and epigenetic 
control of gene expression. The results of this study proved 

Figure 5. Inhibition of Vibrio vulnificus growth by psammaplin A. (A) V. vulnificus was cultured for 0-13 h with 50 µg/ml psammaplin A and (B) 0-100 µg/ml 
psammaplin A for 13 h at 37˚C in 2% NaCl Luria‑Bertani medium, and bacterial growth was evaluated by measuring the optical density at 540 nm (OD540). 
MOI, multiplicty of infection; OD540, optical density at 540 nm. 
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that the marine sponge-derived psammaplin A exerted strong 
inhibitory activity against V. vulnificus in epithelial cells and 
mice.

The 12 pure compounds isolated from natural marine prod-
ucts were incubated with V. vulnificus-infected epithelial cells. 
Among the compounds, psammaplin A exhibited lower cytotox-
icity than the other 11 compounds. In addition, psammaplin A 
treatment exerted inhibitory effects on V. vulnificus-induced 
cytotoxicity in a concentration- and time-dependent manner, 
indicating that it prevented the V. vulnificus-induced epithelial 
cell death. Moreover, cytoplasmic loss and cellular damage 
were not observed in V. vulnificus-infected epithelial cells 
treated with psammaplin A. Furthermore, administration 
of psammaplin A to V. vulnificus-infected mice improved 
their survival rate compared with that of untreated mice. 
The number of V. vulnificus colonies in the spleens, livers 
and small intestines of psammaplin A-treated mice was 
significantly lower than the number of V. vulnificus colonies 
in the untreated mice. Unlike the untreated mice, there was no 
edema, hemorrhage, vasodilation or necrosis in the intestine, 
liver and spleen isolated from the psammaplin A-treated mice. 
Treatment with psammaplin A effectively suppressed the 
growth of V. vulnificus throughout the incubation time in a 
dose-dependent manner.

The underlying mechanism of the potent anti-V. vulnificus 
activity of psammaplin A remains unclear. Previously, psam-
maplin A was reported to possess antibacterial activity against 
gram-positive bacteria, including MRSA, possibly by inhib-
iting DNA synthesis and gyrase activity. The anti‑V. vulnificus 
activity of psammaplin A warrants further investigation to 
determine the specific underlying mechanism.

In conclusion, the results of this study clearly demonstrated 
that psammaplin A exerted strong inhibitory activity against 
V. vulnificus in vitro and in vivo. These findings suggest that 
psammaplin A may be a candidate therapeutic agent for the 
treatment of V. vulnificus-related diseases.
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