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Abstract. Bortezomib (Bor), a proteasome inhibitor, has 
marked therapeutic effects in multiple myeloma (MM), 
and its synergistic effects with other anticancer agents have 
been widely investigated. In the present study, endoplasmic 
reticulum (ER) stress was the target of the treatment strategy; 
anacardic acid (AA) and Bor induce ER stress, resulting in 
apoptosis of multiple myeloma cells. AA/Bor combination 
therapy exhibited overt cytotoxicity in MM cells, by synergis-
tically reducing cell growth and promoting cell death. Notably, 
expression levels of the stress-associated molecules binding 
protein, phosphorylated eukaryotic initiation factor 2α, acti-
vating transcription factor 4 (ATF4) and CCAAT-enhancer 
binding protein homologous protein (CHOP) were increased 
following treatment. AA/Bor combination therapy-induced 
U266 cell cytotoxicity was partially reversed by ATF4 gene 
silencing and slightly enhanced by CHOP knockdown. The 
results of the present study suggest that AA/Bor combination 
may be a potential therapeutic strategy for MM treatment.

Introduction

Multiple myeloma (MM) is a clonal B-cell malignancy that 
primarily affects elderly individuals, accounting for ~1% of 
all cancers (1,2). Cancerous plasma cells accumulate in the 

bone marrow; the effects of this include hypercalcemia, renal 
failure, anemia and osteolytic bone lesions (1,2). MM may be 
treated with the novel therapeutic agents, proteasome inhibi-
tors and immunomodulatory drugs, which may be combined 
with conventional chemotherapeutics. However, almost all 
MM patients ultimately relapse, even when complete remis-
sion is achieved following initial therapy (2).

The majority of intracellular proteins are degraded 
by the ubiquitin-proteasome system (UPS) (3). Abnormal 
proteasome-dependent protein degradation is associated with 
the pathophysiology of multiple cancer types; therefore, it has 
been proposed that the selective inhibition of UPS may provide 
a novel strategy for the development of anticancer thera-
peutics (4-6). Notably, the proteasome inhibitor bortezomib 
(Bor) has been successfully developed for relapsed/refrac-
tory MM therapy. Bor has demonstrated a marked effect in 
MM patients; however, Bor resistance and its secondary side 
effects, including bone growth impairment, restrict the use 
of this therapy (7,8). Adjuvant agents are therefore required 
to chemosensitize MM cells to Bor and achieve therapeutic 
efficacy with limited toxicity.

Bor treatment results in the aggregation of ubiquitinated 
proteins, endoplasmic reticulum (ER) stress and apoptotic 
cell death, via inhibition of 26S proteasome activity. The 
proper folding of proteins prior to exit from the ER is ensured 
by quality control mechanisms; ER stress is triggered by 
improper protein folding and involves various signaling path-
ways collectively referred to as the unfolded protein response 
(UPR). Severe or prolonged ER stress promotes apoptotic 
cell death in the event that the UPR is unable to resolve the 
situation (9,10). Various signaling pathways may modulate ER 
stress-induced programmed cell death. To date, three contrib-
uting UPR branches have been identified: Inositol‑requiring 
enzyme 1, protein kinase RNA-like ER kinase (PERK) and 
activating transcription factor (ATF) 6 (11-13). PERK signaling 
induces eukaryotic initiation factor 2α (eIF2α) phosphoryla-
tion, enhancing ATF4 protein synthesis. The pre-apoptotic 
eIF2α-ATF4 signaling pathway involves binding protein (BiP), 
phosphorylated eIF2α, ATF4 and CCAAT-enhancer binding 
protein homologous protein (CHOP) activation (14-16). Heat 
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shock protein 70 (HSP70; encoded by HSPA8), a member 
of the 70 kDa HSPs family, is a primary chaperone involved 
in ER stress. HSP70 binds to and censors the folding status 
of substrate membrane proteins that are synthesized in the 
ER and transported to the cell surface via the conventional 
ER-to-Golgi secretion pathway (17).

Anacardic acid (AA; also referred to as 6-pentadecylsali-
cylic acid) is a constituent of the traditional medicinal plant 
Amphipterygium adstringens. Previous studies have revealed 
that AA exerts anticancer effects in various carcinomas (18,19). 
Previous studies by our laboratory and others have demon-
strated that AA induces ER stress (20,21). In addition, it has 
been established that the ER stress inducer fenretinide sensi-
tizes tumor cells to Bor-mediated killing (22). Therefore, the 
aim of the present study was to assess whether AA enhances 
the anticancer effects of Bor. AA was observed to significantly 
increase Bor activity via enhancing ATF4-dependent ER 
stress-associated caspase activation in vitro.

Materials and methods

Materials, reagents and antibodies. AA was manufactured 
by Sigma-Aldrich (St. Louis, MO, USA). Bor (Ben Venue 
Laboratories, Inc.; Boehringer Ingelheim Pharmaceuticals, 
Inc., Ridgefield, CT, USA) was used according to the manu-
facturer’s instructions. Fetal bovine serum (FBS), RPMI-1640 
and antibiotics were produced by Invitrogen; Thermo Fisher 
Scientific, Inc. (Waltham, MA, USA). Rabbit polyclonal 
anti-GAPDH antibody (clone, FL-335; catalog no. sc-25778; 
1:500) was purchased from Santa Cruz Biotechnology, Inc. 
(Dallas, TX, USA). The following were purchased from Cell 
Signaling Technology, Inc. (Danvers, MA, USA): Rabbit mono-
clonal antibodies against nuclear poly (ADP-ribose) polymerase 
(PARP; clone, 46D11; catalog no. 9532; 1:1,000), eIF2α (clone, 
D7D3; catalog no. 9079; 1:1,000), phospho-eIF2α (Ser51; clone, 
D9G8; catalog no. 3398; 1:1,000), BiP (clone, C50B12; catalog 
no. 3177; 1:1,000), ATF4 (clone, D4B8; catalog no. 11,815; 
1:1,000), caspase-3 (clone, 8G10; catalog no. 9665; 1:1,000) and 
caspase-8 (clone, D35G2; catalog no. 4790; 1:1,000); mouse 
monoclonal antibodies against caspase-9 (clone, C9; catalog 
no. 9508; 1:1,000) and CHOP (clone, L63F7; catalog no. 2895; 
1:1,000); and a rat monoclonal antibody against HSP70 (clone 
6B3; catalog no. 4873; 1:1,000). Rabbit polyclonal antibodies 
against active caspase-3 (catalog no. BS7004; 1:1,000), 
caspase-8 (catalog no. AP0358; 1:1,000) and caspase-9 
(catalog no. BS7070; 1:1,000) were manufactured by Bioworld 
Technology, Inc. (St. Louis Park, NM, USA). Horseradish 
peroxidase (HRP)-conjugated goat anti-mouse IgG (catalog 
no. sc-395,763; 1:5,000), HRP-conjugated goat anti-rabbit IgG 
(catalog no. sc-2004; 1:5,000) and HRP-conjugated goat anti-rat 
IgG (catalog no. sc-2006; 1:5,000) were purchased from Santa 
Cruz Biotechnology, Inc. The enhanced chemiluminescence 
(ECL) kit was obtained from GE Healthcare Life Sciences 
(Chalfont, UK). Propidium iodide (PI) and Caspase-3 Activity 
and Annexin V‑fluorescein isothiocyanate (FITC) Apoptosis 
Detection kits were manufactured by Nanjing Keygen Biotech 
Co., Ltd. (Nanjing, China).

Cell culture. U266 human myeloma cells were obtained from 
the American Type Culture Collection (Manassas, VA, USA) 

and cultured as previously described (21). AA and Bor were 
dissolved in dimethyl sulfoxide (DMSO) to a stock concentra-
tion of 50 mM, aliquoted and stored at ‑80˚C. Prior to use, AA 
was diluted to 10, 20 and 30 mM; Bor was diluted to 25, 50 and 
75 µM. During the treatment of each group, the corresponding 
drugs were diluted 1:1,000 in medium, added to the wells or 
plates and cultured at 37˚C and 5% CO2 for the indicated time.

3‑(4,5‑dimethylthiazol‑2‑yl‑5‑(3‑carboxymethoxyphenyl)‑2‑ 
(4‑sulfophenyl)‑2H‑tetrazolium (MTS) assay. Cytotoxicity 
was assessed by the MTS assay as described previously (21,23). 
Exponentially growing cells were seeded into 96-well plates 
(2,500/well) and incubated with drugs for 48 h prior to assess-
ment with MTS.

Flow cytometric analysis of cell apoptosis. Exponentially 
growing cells were seeded into 6-well plates (5x104/well) and 
incubated with drugs for 24 h. Apoptosis was quantified in 
cells using Annexin V-FITC and PI double staining as previ-
ously described (24). Stained U266 cells were assessed by 
flow cytometry within 30 min. The data was analyzed using 
FACSDiva software version 6.1.3 (BD Biosciences, Franklin 
Lakes, NJ, USA).

Caspase‑3 activity evaluation. Exponentially growing cells 
were seeded into 6-cm dishes (1x106/well) and incubated 
with drugs for 24 h. Caspase-3 activity was determined in 
U266 cell lysates using a specific colorimetric assay kit 
according to the manufacturer's instructions. Following drug 
treatment, 1x106 cells were lysed with lysis buffer (Nanjing 
Keygen Biotech Co., Ltd.) and submitted to centrifugation 
(10,000 x g, 4˚C, 1 min). The supernatants were harvested 
and the enzyme‑specific substrate was added at 37˚C for 4 h. 
The resulting product was quantified on a microplate reader 
at 405 nm.

RNA interference. CHOP or ATF-4 genes were silenced 
using small interfering RNA (siRNA) technology as 
described previously (21). CHOP/GADD153 siRNA (catalog  
no. sc-35437), ATF4/CREB-2 siRNA (catalog no. sc-35112) 
and control siRNA (catalog no. sc-37007), purchased from 
Santa Cruz Biotechnology, Inc., were transfected separately 
into cells using Lipofectamine® 3000 reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
instructions.

Western blot analysis. Exponentially growing cells were 
seeded into 6-cm dishes (1x106/well) and incubated with drugs 
for 24 h. Protein expression levels were determined as previ-
ously described (25,26). Briefly, total protein extracts (40 µg) 
from U266 cell lysates were resolved by 12% SDS-PAGE 
(100 V for 90 min) and transferred onto polyvinylidene difluo-
ride membranes. Membranes were blocked with 5% milk, and 
following sequential incubations with primary and secondary 
antibodies, an ECL kit was used for protein detection. Blots 
were quantified with Image-Pro Plus software version 5.0 
(Media Cybernetics, Inc., Rockville, MD, USA).

Combination index assessment. The effects of AA and Bor 
were assessed by evaluating the combination index (CI) using 
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the Chou-Talalay method, as described previously (26,27). A 
CI of <1, 1 or >1 indicated synergistic, additive or antagonistic 
effects, respectively.

Statistical analysis. Data are presented as the mean ± stan-
dard deviation. One-way analysis of variance was utilized 
to compare groups, with the least significant difference test 
being performed as a post hoc test. Statistical analyses were 
performed using SPSS software version 16.0 (SPSS, Inc., 
Chicago, IL, USA). P<0.05 was considered to indicate a statis-
tically significant difference.

Results

AA and Bor induce human myeloma U266 cell killing in a 
synergistic fashion. To assess if AA alone causes myeloma 
cell death, the effects of AA at various concentrations on 
MM cell viability were assessed. Cell viability was inhibited 
<48% in U266 cells treated with 30 µM AA as a monotherapy 
compared with DMSO treatment (P=0.001; Fig. 1A). Based on 
these findings, 10, 20 and 30 µM AA were co‑administered 
for 48 h with 25, 50 and 75 nM Bor. All CI results were <0.8, 
except one CI value of 0.809 (Fig. 1B), indicating synergy 
between these two agents in U266 cells. Doses of 20 µM AA 
and 50 nM Bor were chosen for subsequent experiments, as 
these doses were effective at reducing cell viability, but not to 
the extent that further analysis would be impossible.

AA sensitizes U266 cells to Bor‑mediated caspase‑dependent 
apoptosis. To investigate whether AA- and/or Bor-induced 
cytotoxicity correlated with cell death, myeloma cells were 
incubated with AA and/or BOR, and cell death was assessed 
using Annexin V/PI double staining. Co-administration of 
Bor and AA resulted in a significant increase in Annexin V 
and PI positive cells compared with monotherapy (P<0.001; 
Fig. 2A and B), indicating that increased cell death was the 
result of Bor and AA combination therapy. The effects of 
combination therapy on cleavage of the apoptosis mediators, 
caspase and PARP, were investigated by western blotting. 
As presented in Fig. 2C, AA/Bor co-administration resulted 
in markedly enhanced cleavage of caspase-3, -8 and -9, as 
well as PARP, compared with monotherapies. To confirm 
these results, caspase-3 activity in cell lysates was assessed.  
AA/Bor combination therapy significantly increased caspase‑3 
activity compared with monotherapies (P<0.001; Fig. 2D). 
These results suggested that AA sensitized U266 cells to Bor 
via caspase-dependent apoptotic cell death.

AA/Bor combination therapy amplifies ER stress. The effects 
of combination therapy on the UPR signaling pathway in 
U266 cells were analyzed by western blotting (Fig. 3). The 
expression levels of HSP70 (P=0.027) and BiP (P=0.001) 
were significantly increased by 24 h compared with Bor 
monotherapy. Combination therapy induced increased protein 
expression levels of CHOP, phospho-eIF2α and ATF4. These 
findings suggest that ER stress is involved in AA/Bor combi-
nation therapy-induced cell death.

Role of ER stress in AA/Bor combination therapy‑mediated 
cytotoxicity. To identify UPR effectors involved in AA/Bor 

combination therapy-mediated cell death, CHOP was silenced 
in U266 cells. Cells were then incubated for 24 h in the 
presence or absence of AA/Bor combination therapy. CHOP 
siRNA inhibited CHOP protein expression levels and slightly 
increased PARP cleavage in U266 cells incubated with combi-
nation therapy, compared to cells that received scrambled 
siRNA (Fig. 4A). In addition, CHOP silencing significantly 
increased the cytotoxicity of combination therapy compared 
with scrambled siRNA (P=0.008; Fig. 4B). These findings 
suggested that CHOP was not the primary UPR signaling 
pathway branch involved in U266 cell death mediated by 
AA/Bor combination therapy.

The role of ATF4 in AA/Bor combination therapy-medi-
ated cell death was subsequently assessed. In contrast to 
CHOP repression, ATF4 silencing decreased PARP cleavage 
(Fig. 4C) and partially attenuated AA/Bor combination ther-
apy-mediated cytotoxicity compared with scrambled siRNA 
(P=0.002; Fig. 4D). These data indicate that ATF4-dependent 
ER stress contributed, at least partially, to AA/Bor combina-
tion therapy-mediated cytotoxicity.

Discussion

Various novel natural compounds have been reported to have 
synergistic anti-cancer cytotoxic effects when administered in 
combination with Bor (26,28,29). Our previous study demon-
strated that AA is a potent inducer of ER stress (21). Based 
on previous findings that the ER stress inducer fenretinide 
sensitizes tumor cells to killing by Bor (22), the effect of 
AA/Bor combination therapy on U266 cells in vitro was inves-
tigated, to examine the potential clinical application of AA.

Figure 1. Effects of AA, Bor and combination therapy on cell viability. 
(A) U266 cells were incubated with Bor (25, 50 or 75 nM) and AA (10, 20, or 
30 µM) as monotherapy or in combination for 48 h. Cell viability was assessed 
using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- 
(4-sulfophenyl)-2H-tetrazolium assay. Cell viability was reduced by AA or 
Bor monotherapy, and by AA and Bor in combination, in a dose-dependent 
manner. Data are presented as the mean ± standard deviation from three 
independent experiments. *P<0.05 vs. DMSO; #P<0.01 vs. respective AA 
monotherapy. (B) Combination index values were determined, and revealed 
that AA and Bor act synergistically in U266 cells. AA, anacardic acid; Bor, 
bortezomib; DMSO, dimethyl sulfoxide. 
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Inhibition of cell growth and promotion of apoptosis 
constitute the primary mechanisms underlying the cyto-
toxicity of cancer chemotherapeutics; therefore, the present 
study assessed these effects. AA or Bor alone inhibited cell 
viability in a dose-dependent manner. Notably, the combined 
inhibitory effects of AA and Bor on cell viability were 

markedly greater compared with those observed following 
AA and Bor monotherapies in vitro, with CI values <0.8. 
In addition, Bor and AA combination therapy significantly 
increased cancer cell apoptosis compared with AA or Bor 
treatment alone. Proteasome inhibition by Bor induces 
caspase activation; this constitutes an important mechanism 

Figure 2. AA sensitizes U266 cells to Bor-induced cytotoxicity. U266 cells were incubated with AA (20 µM), Bor (50 nM) or combination therapy for 24 h. 
(A) Cells were stained with Annexin V and propidium iodide. Representative flow cytograms are presented. Apoptotic cells were defined as those in the upper 
left, upper right and lower right quadrants. Co‑administration of Bor and AA resulted in a significant increase in Annexin V and PI positive cells compared 
with monotherapy. (B) Flow cytometric analysis of (A), presented as the mean ± SD (n=3). *P<0.01 vs. monotherapy. (C) Western blotting was performed to 
assess the expression levels of various proteins, with GAPDH serving as a loading control. Cleavage of caspase-3, -8 and -9, and PARP, was increased following 
AA/Bor co‑administration. (D) Caspase‑3 activity was assessed in U266 cells by colorimetric assay, and was significantly increased upon AA/Bor combina-
tion therapy. Data are presented as the mean ± SD (n=3). *P<0.01 vs. monotherapy. AA, anacardic acid; Bor, bortezomib; PI, propidium iodide; SD, standard 
deviation; cas, caspase; PARP, poly (ADP-ribose) polymerase. 

Figure 3. AA enhances Bor-induced ER stress. U266 cells were incubated with AA (20 µM), Bor (50 nM) or combination therapy for 24 h. (A) Western blot-
ting was performed to analyze protein expression levels of HSP70, BiP, CHOP, P-eIF2α, eIF2α, ATF4 and GAPDH. (B) Protein bands were quantified and 
normalized to GAPDH. The protein expression levels of HSP70, BiP, CHOP, P-eIF2α and ATF4 were significantly increased by AA/Bor combination therapy. 
*P<0.05 vs. monotherapy. Data are presented as the mean ± standard deviation (n=3). AA, anacardic acid; Bor, bortezomib; ER, endoplasmic reticulum; 
HSP70, heat shock protein 70; BiP, binding protein; CHOP, CCAAT-enhancer binding protein homologous protein; eIF2α, eukaryotic initiation factor 2α;  
P, phosphorylated; ATF4, activating transcription factor 4; DMSO, dimethyl sulfoxide.
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underlying Bor-induced cell death (30-32). In the present 
study, combined treatment with AA and Bor activated 
caspase-3, -8 and -9, and induced PARP cleavage in U266 
cells. AA/Bor co-administration promoted U266 apoptotic 
cell death via intrinsic (mitochondria-mediated; associated 
with caspase-9) and extrinsic (death receptor-mediated; 
associated with caspase‑8) pathways, reflected by increased 
activation of caspase-3, -8 and -9, alongside PARP cleavage.

Certain studies have demonstrated that Bor activates 
HSPs, including HSP90, HSP70 and HSP25, which are asso-
ciated with Bor resistance (33,34). Qi et al (35) reported that 
inhibition of inducible HSP70 increases Bor-induced human 
bladder cancer cell cytotoxicity. In the present study, AA/Bor 
combination therapy in U266 cells was associated with 
increased HSP70 induction. These results support the notion 
that enhancing Bor-mediated HSP70 induction represents an 
attractive means of enhancing its activity.

Protein synthesis, folding and trafficking occurs primarily 
in the ER; thus, intensive ER stress results in cell death (9,10). AA 
and Bor are ER stress inducers (21,22); therefore, it was inves-
tigated whether combination therapy induced UPR signaling. 
BiP, CHOP, phospho-eIF2α and ATF4 were all induced in 
U266 cells treated with AA and Bor. A previous study revealed 
that the ER stress-induced transcription factor ATF4 is a key 
mediator of Bor-induced cytotoxicity in neuro-ectodermal 
tumor cells, while CHOP is dispensable (14). Beck et al (36) 
reported that vemurafenib-induced melanoma cell death is 
associated with ATF4- but not CHOP-dependent ER stress, 
in agreement with our previous report (21). The effects of 
CHOP and ATF4 in promoting apoptosis were investigated 
in the present study. Consistent with previous reports, CHOP 

silencing failed to reduce the cytotoxic activity of combination 
therapy, and instead moderately enhanced this effect. However, 
ATF4 knockdown significantly reduced the cytotoxic effects 
of AA/Bor combination therapy. These findings demonstrate 
that ATF4 and CHOP are pro- and anti-apoptotic, respec-
tively, in AA/Bor combination therapy-mediated cytotoxicity. 
However, future studies are required to reveal the mechanisms 
underlying these effects.

In conclusion, the present study demonstrated that AA 
sensitizes MM cells to Bor-mediated growth inhibition and 
apoptotic cell death in vitro. Therefore, AA may have potential 
applications as a chemosensitizer in human cancer treatment. 
Future in-depth studies, including in vivo experiments, are 
required to confirm the efficacy of AA in combination with 
Bor for MM treatment.
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