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Abstract. Aberrant promoter methylation of multiple genes 
is associated with various diseases, including Alzheimer's 
disease (AD). The goal of the present study was to determine 
whether dopamine receptor D4 (DRD4) promoter methylation 
is associated with AD. In the current study, the methylation 
levels of the DRD4 promoter were measured in 46 AD patients 
and 61 controls using bisulfite pyrosequencing technology. The 
results of the present study demonstrated that DRD4 promoter 
methylation was significantly higher in AD patients than in 
controls. A further breakdown analysis by gender revealed 
that there was a significant association of DRD4 promoter 
methylation with AD in males (23 patients and 45 controls). In 
conclusion, the results of the present study demonstrated that 
elevated DRD4 promoter methylation was associated with AD 
risk in males.

Introduction

Alzheimer's disease (AD) is a chronic neurodegenerative 
disease characterized by a progressive decline in cognitive and 
memory function (1). The prevalence of AD was 35.6 million 
globally in 2010, and this number is expected to double by 
2030. AD has become one of the most common forms of 
dementia in the elderly worldwide (2), exerting a huge burden 
on families and society.

AD is a complex disease that is influenced by environmental 
and genetic factors (3). Heritability studies have shown that 
~70% of AD risk may be attributed to genetic factors  (4). 
Epigenetic modifications are thought to link environmental 
and genetic factors (5‑7). DNA methylation, a type of epigen-
etic modification, has been shown to have a significant role 
in the etiology of several diseases, including leukemia (8), 
type 2 diabetes (9,10), essential hypertension (9), coronary 
heart disease (11,12), schizophrenia (13) and AD (14,15). DNA 
methylation often occurs in a CpG dinucleotide context (16). 
The CpG islands of a promoter are CpG‑rich regions that are 
predominantly hypomethylated (17). Alterations in promoter 
methylation often affect gene expression (7,18‑20).

Dopamine receptor D4 (DRD4) encodes the D4 subtype of 
the dopamine receptor (21). An increasing amount of evidence 
supports a link between DRD4 and AD (22). DRD4 polymor-
phism has been observed to be significantly associated with 
AD (22) and DRD4 promoter methylation (23). DRD4 gene 
hypermethylation has been demonstrated to increase DRD4 
gene expression and the risk of schizophrenia in males (13). A 
hypermethylated DRD4 promoter has also been identified in 
patients with alcohol addiction (24).

Although DNA methylation levels vary among tissues, 
independent studies have revealed that the DNA methylation 
patterns of multiple loci in peripheral blood were similar to 
those in brain tissues (25‑28). In light of these previous findings, 
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the goal of the present study was to evaluate the contribution 
of DRD4 promoter methylation to AD using peripheral blood 
as a surrogate of brain tissue.

Materials and methods

Sample collection. A total of 46 sporadic AD patients and 
61  matched controls were selected from Ningbo No.  1 
Hospital (Ningbo, China) and Ningbo Kangning Hospital 
(Ningbo, China). AD was diagnosed by two professional 
neurological physicians (CZ and ZQ) according to National 
Institute of Neurological and Communicative Disorders 
and Stroke‑Alzheimer's Disease and Related Disorders 
Association criteria from ICD‑10 (29), on the basis of medical 
and family histories, neurological examination, blood studies, 
brain imaging studies, neuropsychological testing and cogni-
tive screening tests. All controls were free of any type of 
physical or mental disorder. In the current study, two kinds of 
drugs (Exelon and Aricept) were used for AD patients. Exelon 
(Novartis Farmaceutica S.A, Spain) was administered at 1.5 mg 
twice per day with morning and evening meals. Following a 
minimum of two weeks of treatment, if the initial dose was 
well‑tolerated, it was increased to 3 mg twice per day. Initial 
treatment with Aricept (Eisai China Inc., Jiangsu, China) was 
5 mg per day at bedtime. The dose was increased to 10 mg 
per day after 4 to 6 weeks if the response was not adequate. 
All individuals in the present study were Han Chinese origi-
nating from Ningbo city in Eastern China. Peripheral blood 
samples were collected in 3.2% sodium citrate‑treated tubes 
(Jiangsu Kailijian Medical Device Co., Ltd., Jiangsu, China) 
and then stored at ‑80˚C. The study protocol was approved 
by the Ethical Committee of Ningbo University (Ningbo, 
China), Ningbo No.1 Hospital and Ningbo Kangning Hospital. 
Written informed consent was obtained from all subjects or 
their guardians.

Detection of biochemical factors. The serum concentrations 
of total protein (TP) and albumin (ALB) were detected using 
the biuret (30) and bromocresol green methods (31), respec-
tively. Globulin (GLB) was calculated as TP minus ALB. The 
concentrations of glutamic‑pyruvic transaminase, alkaline 
phosphatase and glutamic oxalacetic transaminase were 
determined using the velocity method (32,33). The levels of 
total bile acid and homocysteine (Hcy) were measured using 
the cycling enzymatic method (34,35). Plasma concentrations 
of blood glucose, triglyceride, total cholesterol, carbamide 
(UREA), creatinine (CRE) and uric acid were determined 
using the enzymatic methods (36‑41). The high‑density lipo-
protein cholesterol level was determined using the one‑step 
detection method (42). The proportions of apolipoprotein‑A 
(ApoA) and apolipoprotein‑B were measured by the turbi-
dimetry method (43,44). The concentrations of lipoprotein A 
(Lp (a)) and C Reactive Protein (CRP) were detected using 
the endpoint method (45) and latex agglutination assay (46), 
respectively. The apolipoprotein E levels were detected using 
the immunoturbidimetric assay (47).

Bisulf ite pyrosequencing assay. DNA extraction and 
consequent bisulfite pyrosequencing assays were performed 
as described in our previous studies (8,9,12,13,48,49). PCR 

primers were designed using PyroMark Assay Design software 
version 2 (Qiagen China Co., Ltd., Shanghai, China). Primer 
sequences were 5'‑biotin‑GGG​AGG​TTT​TGT​TAG​ATA​TTA​
GGT‑3' for the forward primer; 5'‑CCA​CCC​TAA​ACC​CAA​
TAT​TTA​CTC​ATC​TTA‑3' for the reverse primer; and 5'‑ACC​
AAA​CCA​AAC​CCT‑3' for the sequencing primer.

Statistical analyses. Statistical analyses were performed 
using SPSS software version 16.0 (SPSS, Inc., Chicago, IL, 
USA), and a P<0.05 was considered to indicate a statisti-
cally significant difference. The two independent samples  
t test was used to compare the differences in the mean values 
of continuous variables between AD patients and controls. 
Pearson's correlation test was used to assess the associations 
between DRD4 methylation and the metabolic characteristics 
of the AD subjects. Bonferroni correction was used to adjust 
the results. Power analysis was estimated with the Power and 
Sample Size Calculation software version 3.043 (http://biostat.
mc.vanderbilt.edu/wiki/Main/PowerSampleSize). In the 
present study, according to the online power calculator, α 
was the type I error probability for a two‑sided test; n was 
the sample number of AD patients; δ was the difference in 
population means, which was equal to the mean methylation 
levels in AD patients minus those in normal controls; σ was 
the within‑group standard deviation; and m was the ratio of 
control to experimental patients.

Results

The selected promoter fragment in the current methylation 
assay. The bisulfite pyrosequencing assay was performed on 
the CpG island region (chr11:636877‑637167) of the DRD4 
promoter. As shown in Fig. 1, a total of four CpG sites were 
measured. As there was a significant correlation among the 
methylation levels of the four CpG sites (Fig. 1; r=0.442, 
P<0.001), the mean DNA methylation of the four CpGs was 
also evaluated in the subsequent analyses.

Association tests between clinical phenotypes with AD. 
The present study involved a total of 46 AD patients and 61 
controls. As shown in Table I, among the 22 phenotypes, the 
plasma levels of ApoA, Lp (a), Hcy and CRP were observed to 
significantly differ between AD patients and controls (Table I; 
ApoA, P=0.011; Lp (a), P<0.001; Hcy, P=0.046; CRP, P=0.016). 
A significant male‑specific association was identified between 
the mean DRD4 methylation and ApoA and level (Fig. 2; 
ApoA, P=0.042). A significant female‑specific association was 
observed between the average DRD4 methylation and several 
phenotypes, including ApoA and CRE levels (Fig. 2; ApoA, 
P<0.001; CRE, P=0.045). Age is a well‑known risk factor for 
AD, therefore the association between age and DRD4 meth-
ylation was tested. The results revealed an association between 
age and DRD4 methylation (Fig. 2; males: r=0.281, P=0.021; 
females: r=0.222, P=0.169).

Association tests of DRD4 methylation with AD. Significantly 
increased DRD4 methylation levels were observed in AD 
patients compared with controls (Table II; CpG1, P=0.001; 
CpG2, P=0.013; CpG3, P=0.001; CpG4, P<0.001; mean 
CpG1‑4 methylation, P<0.001). Among 23 male patients and 
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45 male controls, elevated methylation levels of four CpG sites 
of the DRD4 promoter were observed following breakdown 
analysis by gender (Table II; CpG1, P=0.013; CpG2, P=0.012; 
CpG3, P<0.001; CpG4, P<0.001; mean CpG1‑4 methylation, 
P<0.001). As shown in Table  II, the power was sufficient 
in the overall (power=0.978) and male‑based subgroup 
(power=0.976) case‑control comparisons; however, the 
power was only 0.405 in the female‑based subgroup analysis, 
suggesting that the negative association in the female subgroup 
may be due to a lack of power. A consequent breakdown anal-
ysis by gender revealed that the above significant association 
of DRD4 methylation with AD existed only in males (Fig. 3A; 
males, P<0.001; females, P=0.080).

DRD4 methylation levels in AD patients with various 
treatments. Exelon and Aricept are commonly used acetylcho-
linesterase inhibitors in the treatment of AD (48). Both drugs 
aim to enhance cholinergic neurotransmission in specific parts 
of the brain and to improve the clinical symptoms of AD (50). 
The results of the present study revealed that the patients using 
Exelon‑treated patients had significantly higher CpG3 meth-
ylation levels compared with Aricept‑treated patients Aricept 
(Fig. 3B; P=0.044).

Discussion

The present study evaluated the levels of DRD4 promoter 
methylation in AD patients and matched controls to clarify 
the contribution of DRD4 promoter methylation to AD risk. 
It was observed that the DRD4 promoter methylation levels in 
AD patients were significantly higher than those in controls. 
In a breakdown analysis by gender, there were varying asso-
ciations of methylation status in males and females. Positive 
results were identified for all four CpG sites observed in 
males. Positive correlations between DRD4 methylation and 
age, as well as DRD4 methylation and ApoA level, were also 

observed in males. In addition, clear positive correlations were 
observed between DRD4 methylation and ApoA and between 
DRD4 methylation and CRE in females. Furthermore, varying 
methylation levels were observed in patients who used Exelon 
and those who used Aricept.

Anomalies in dopaminergic transmission may lead to the 
disturbance of synaptic plasticity and advanced cognitive 
behavior (22). A male‑specific association between DRD4 
methylation and schizophrenia has been reported in Han 
Chinese (13). As a significant receptor of dopamine, DRD4 
is pivotal to the development of AD (51). In the present study, 
significantly hypermethylated DRD4 promoters were observed 
in AD patients compared with controls. These results indi-
cated that DRD4 may be involved in the progression of AD. 
Understanding the DNA methylation changes in the DRD4 
promoter may aid in understanding the pathological mecha-
nisms of AD. This information may also provide insight into 
the function of AD‑associated genes, including DRD4, and 
help identify novel targets for therapeutic strategies to reverse 
the promoter methylation of DRD4.

Gender differences in AD have been widely documented. 
Females have a higher risk of AD at all ages, and the age‑adjusted 
odds ratio for females has been shown to be 3.1 between AD 
patients and controls (52). Gender‑specific DNA methylation 
exists in mice (53) and humans (12,54). DRD4 methylation 
research in another nervous system disorder, schizophrenia, 
has also identified a male‑specific significant association (13). 
Significant differences were reported in all CpG sites observed 
in the present study in males, but a significant difference was 
observed in only CpG1 in females. These phenomena of varying 
methylation statuses in the DRD4 promoter also provide insight 
into gender differences in AD. The results of the present study 
support the idea that gender differences should be considered 
when establishing a clinical treatment plan for AD.

Furthermore, a significant association between DNA 
methylation and age in males but not in females was observed 
in the present study. Age is considered a major risk factor for 
AD (54). A previous study reported that DNA methylation is 
dynamically regulated in the human cerebral cortex throughout 
life, involves differentiated neurons and affects a substantial 
proportion of genes predominantly by an age‑associated 
increase (55). Detailed descriptions of associations between 
DNA methylation and age in various gender subgroups require 
additional study.

A total of 22 phenotypes were analyzed in the present 
study. It is well‑known that ApoA1, an increase in which 
leads to an increased risk of AD, is the major apolipoprotein 
constituent of high‑density lipoprotein, and Apo A1 has been 
observed to affect brain cholesterol metabolism and angiogen-
esis (56). In an earlier study, serum ApoA concentration was 
shown to have a high correlation with the severity of AD (57). 
Significantly increased levels of ApoA1 were observed in AD 
patients compared with controls in the present study. Based on 
previous findings, it was speculated that Lp (a) may participate 
in the progression of dementia (58) and AD (59). The present 
study showed that AD patients had higher levels of Lp (a), 
which was similar to the results of a previous cross‑sectional 
study (59). Hcy levels, another AD factor that may induce 
amyloid β accumulation, synaptic dysfunction and memory 
impairment, were significantly different between AD patients 

Figure 1. Significant correlation among the four CpGs of the DRD4 
promoter. DRD4 (chr11: 637304‑640705) encodes dopamine receptor D4. 
CGI (chr11: 636907‑640628) represents CpG island, which is enriched with 
CpG sites; Four CpG sites from the CpG island of the upstream DRD4 gene 
were selected and tested by pyrosequencing. Significant associations were 
observed among these sites (P<0.001). A total of three primers were used in 
the present study. F, forward primer; R, reverse primer; S, sequencing primer.
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Table I. Characteristics of the 107 subjects.

Characteristic	 Patients (n=46), mean ± SD	 Controls (n=61), mean ± SD	 P‑value

Age, years	 80.67±9.20	 79.54±7.87	 0.495 
TP, g/l	 68.79±6.91	 65.48±9.45	 0.099 
ALB, g/l	 38.32±3.83	 36.86±3.61	 0.090 
GLB, g/l	 30.46±5.32	 29.55±4.58	 0.418 
A/G	 1.29±0.22	 1.28±0.20	 0.768 
ALT, U/l	 13.87±10.68	 18.20±13.46	 0.193a

ALP, U/l	 78.00±24.30	 96.82±63.34	 0.113a

TBA, µmol/l	 6.91±3.84	 6.07±5.86	 0.503 
AST, U/l	 20.52±7.22	 23.58±11.70	 0.258a

Glu, mmol/l	 5.23±1.58	 5.53±2.71	 0.444b

TG, mmol/l	 1.35±0.76	 1.42±0.98	 0.896b

TC, mmol/l	 4.48±1.04	 4.28±1.22	 0.378
HDL‑C, mmol/l	 1.12±0.27	 1.04±0.30	 0.118
ApoA, g/l	 1.06±0.21	 0.94±0.18	 0.011c

ApoB, g/l	 0.66±0.19	 0.73±0.25	 0.194
Lp(a), g/l	 184.86±233.63	 34.86±27.32	 <0.001a,c

ApoE, mg/l	 37.73±17.44	 36.69±10.37	 0.800
UREA, mmol/l	 7.77±10.00	 6.45±3.45	 0.804b

CRE, µmol/l	 82.73±47.25	 78.52±30.04	 0.626
UA, µmol/l	 309.93±106.30	 308.88±112.75	 0.967
Hcy, µmol/l	 19.76±10.82	 17.67±20.84	 0.046a,c

CRP, mg/l	 6.20±11.72	 15.00±26.21	 0.016a,c

aLog‑transformation was used. bNonparametric rank test was applied. cSignificant difference between patients and controls. TP, total protein; 
ALB, serum albumin; GLB, serum globulin; A/G, ALB/GLB; ALT, glutamic‑pyruvic transaminase; ALP, alkaline phosphatase; TBA, total bile 
acid; AST, glutamic oxalacetic transaminase; Glu, blood glucose; TG, triglyceride; TC, total cholesterol; HDL‑C, high‑density lipoprotein cho-
lesterol; ApoA, apolipoprotein A; ApoB, apolipoprotein B; Lp(a), lipoprotein A; ApoE, apolipoprotein E; UREA, carbamide; CRE, creatinine; 
UA, uric acid; Hcy, homocysteine; CRP, C reactive protein; SD, standard deviation.

Figure 2. Correlation tests between DRD4 methylation and three phenotypes. Pearson correlation analyses were used between DRD4 methylation levels and 
phenotypes in two genders. Positive associations between DRD4 methylation with age and APOA were observed in males (Age, P=0.021; ApoA, P=0.042). 
Positive associations between the average DRD4 methylation with ApoA and CRE levels were observed in females (ApoA, P<0.001; CRE, P=0.045). DRD4, 
dopamine receptor D4; APOA, apolipoprotein A; CRE, creatinine.
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and matched controls in the present study (60‑63). It has been 
reported that CRP participates in the systemic response to 
inflammation (64). Additional neuropathological studies have 
shown that CRP is associated with neurofibrillary tangles (65) 
and senile plaques (66) in AD brain tissue. The subjects with 

AD had significantly lower levels of plasma CRP than control 
subjects in the present study, which was consistent with the 
results of a previous study (64).

Aricept is an acetylcholinesterase inhibitor used for the 
symptomatic treatment of AD (67). Furthermore, Aricept 

Figure 3. DRD4 methylation comparisons between AD patients and controls and between Exelon‑treated and Aricept‑treated patients. (A) Comparison 
of DRD4 methylation levels between patients and controls. DRD4 methylation levels were significantly higher in male AD patients than male controls. 
(B) Comparison of CpG3 methylation levels between Exelon‑treated and Aricept‑treated patients. The Aricept‑treated patients had significantly higher CpG3 
methylation levels compared with Aricept‑treated patients. DRD4, dopamine receptor D4; AUC, area under curve.

Table II. Comparison of DRD4 DNA methylation levels between AD patients and controls.

A, All patients

Characteristic, %	 Patients, mean ± SD (n=46)	 Controls, mean ± SD (n=62)	 P‑value	 Power

CpG1	 16.50±5.14	 13.13±4.67	 0.001a,b	 0.916
CpG2	 12.26±4.84	 10.13±3.92	 0.013a,b	 0.610
CpG3	 14.98±5.27	 11.59±4.59	 0.001a,b	 0.906
CpG4	 14.96±4.22	 10.92±4.90	 <0.001a,b	 0.987
Mean methylation 	 14.67±4.12	 11.44±3.72	 <0.001a,b	 0.978

B, Male patients

Characteristic, %	 Patients, mean ± SD (n=46)	 Controls, mean ± SD (n=62)	 P‑value	 Power

CpG1 	 16.74±4.92	 13.68±4.55	 0.013a,b	 0.666 
CpG2 	 12.87±3.94	 10.39±3.62	 0.012a,b	 0.676 
CpG3	 15.61±4.35	 11.16±4.27	 <0.001a,b	 0.975 
CpG4	 15.65±4.60	 10.36±4.42	 <0.001a,b	 0.992 
Mean methylation	 15.22±3.72	 11.40±3.47	 <0.001a,b	 0.976 

C, Female patients

Characteristic, %	 Patients, mean ± SD (n=46)	 Controls, mean ± SD (n=62)	 P‑value	 Power

CpG1 	 16.26±5.45	 11.71±4.82	 0.009a,b	 0.720 
CpG2	 11.65±5.63	 9.47±4.67	 0.201	 0.212 
CpG3 	 14.35±6.10	 12.71±5.31	 0.380	 0.125 
CpG4 	 14.26±3.78	 12.35±5.88	 0.220	 0.162 
Mean methylation 	 14.13±4.51	 11.56±4.40	 0.080	 0.405

aSignificant difference between patients and controls. bP‑values remained significant after multiple tests. SD, standard deviation.
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is a high‑affinity sigma‑1 receptor antagonist, which has 
been investigated as a potential disease‑modifying agent for 
several CNS disorders (64). Exelon is an oral drug approved 
by the US Food and Drug Administration for the treatment of 
AD (67). Significantly higher levels of DNA methylation were 
reported at the CpG3 site in the patients who were treated 
with Exelon compared with those treated with Aricept. This 
finding indicates that varying DNA methylation effects 
were produced by Exelon and Aricept. However, additional 
research is required to uncover the detailed association 
between DNA methylation, Exelon and Aricept.

The current study has a number of limitations. Firstly, 
the sample size was small, which may have influenced the 
results, particularly for the gender‑stratified association test 
of DRD4 methylation with AD. In addition, the levels of 
DNA methylation of the four CpGs that were tested cannot 
represent the entire influence of DRD4. Additional studies 
investigating the DRD4 promoter or gene body regions 
are required. Furthermore, samples were mainly from the 
elderly, who may have underlying diseases. In other words, 
there may be certain unknown or potential risk factors for 
AD present in this study. Also, the DNA methylation level of 
DRD4 was measured in peripheral blood only, which may not 
be an accurate reflection of the situation in the brain tissue. 
Additional comprehensive studies on the association of 
DRD4 methylation within brain tissues and peripheral blood 
are required. Finally, four CpG positions were assessed per 
pyrosequencing read. Certain P‑values may not retain their 
significance after being corrected for this number of CpG 
sites. The possibility that the present positive findings arose 
by chance cannot be excluded.

In conclusion, the present study supports DRD4 
promoter hypermethylation as a risk factor for AD in males. 
Additionally, positive associations between DRD4 methyla-
tion and age, as well as DRD4 methylation and ApoA levels, 
were observed in males. Disparate DRD4 methylation levels 
were reported for patients taking various drugs: Patients 
taking Exelon appear to have higher levels than those taking 
Aricept. The results of the present study may contribute to 
an improved understanding of the molecular mechanisms 
underlying the pathophysiology of AD.
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