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Abstract. Pulmonary arterial hypertension (PAH) is charac-
terized by endothelial dysfunction and structural remodeling 
of the pulmonary vasculature, mediated initially by reduced 
oxygen availability in the lungs. Hypoxia inducible factor 
(HIF), consisting of the functional subunit, HIF‑1α, and the 
constitutively expressed HIF‑1β, is involved in the patholog-
ical processes associated with hypoxia. In the current study, 
the sequences of cDNAs and amino acids of HIF were char-
acterized and analyzed using online bioinformatics tools. To 
further evaluate whether HIF accounts for the occurrence 
of PAH, the present study determine the expression and 
phosphorylation levels of HIF and its associated pathways, 
including extracellular signal‑regulated kinase (Erk)1/2 and 
phosphoinositide 3‑kinase (PI3K)/Akt, in the lungs of patients 
with PAH by reverse transcription‑quantitative polymerase 
chain reaction and western blotting. The mRNA expres-
sion levels of PI3K, Erk2, and HIF‑1α in the patients with 
PAH were significantly higher, compared with those in the 
control group, by 3.6‑fold (P<0.01), 4.06‑fold and 2.64‑fold 
(P<0.05), respectively. No significant differences were found 
in the mRNA and protein levels of Akt between the two 
groups (P>0.05). The protein levels of phosphorylated (p‑)
Akt, Erk1/2, p‑Erk1/2, HIF‑1α and HIF‑1β were significantly 

increased by 5.89‑, 0.5‑, 0.59‑, 1.46‑ and 0.92‑fold, respec-
tively, in the patients with PAH, compared with those in 
the controls group (P<0.01 for p‑Akt, Erk1/2; P<0.05 for 
p‑Erk1/2, HIF‑1α and HIF‑1β). These findings suggested that 
the mitogen‑activated protein kinase and PI3K/Akt signaling 
pathways, and HIF‑1 may perform a specific function in the 
pathogenesis of PAH.

Introduction

Pulmonary arterial hypertension (PAH), defined as a mean 
pulmonary arterial pressure (mPAP) ≥25 mm Hg at rest, is a 
clinical syndrome of heart‑lung circulation disorder, and can 
ultimately result in right heart failure with higher morbidity 
and mortality rates (1,2). Various types of PAH may affect 
up to 100,000,000 individuals worldwide (3). The estimated 
prevalence of PAH is ~15/1,000,000 individuals, with a mean 
age of 50±15  years, and women constitute 75% of those 
diagnosed  (4,5). The average duration between the onset 
of symptoms and diagnosis is >2 years (5), and the 5‑year 
mortality rate has reached 34% (6), reinforcing the importance 
of diagnosis, treatment and prognosis of PAH, which depends 
on investigations of the pathogenesis and etiology of the 
disease.

PHA is characterized by endothelial dysfunction and 
structural remodeling of the pulmonary vasculature, medi-
ated initially by reduced oxygen availability in the lungs (7,8). 
Cell sensing and rapid response to oxygen deprivation are 
essential for survival of the organisms, in which the regulation 
of oxygen homeostasis becomes an important physiological 
system (9). As a result of evolution, adaptation to hypoxia 
involves a number of genes, in which hypoxia inducible factor 
(HIF) is considered to be a core regulator (10).

The first HIF, HIF‑1, is a highly conserved transcription 
factor in almost all cells, and is involved in pathological 
processes associated with hypoxia, including pulmonary 
and systemic hypertension, cancer and ischemic myocardial 
injury (11‑14). HIF‑1 is a heterodimeric protein comprised 
of an oxygen‑regulated HIF‑1α subunit and a constitutively 
expressed HIF‑1β subunit, also termed aryl hydrocarbon 
receptor nuclear translocater  (15,16). HIF‑1α is a master 

Expression and analyses of the HIF-1 pathway in the lungs 
of humans with pulmonary arterial hypertension

WEI LEI1,2*,  YUAN HE1*,  XIAORONG SHUI3*,  GUOMING LI2,  GUOSEN YAN1,2,   
YU ZHANG2,  SHIAN HUANG2,  CAN CHEN1,2  and  YUANLIN DING4

1Laboratory of Cardiovascular Diseases, Guangdong Medical University; 2Cardiovascular Medicine Center, 
Affiliated Hospital of Guangdong Medical University; 3Laboratory of Vascular Surgery, Guangdong Medical University, 

Zhanjiang, Guangdong 524000; 4Institute of Medical Systems Biology, Guangdong Medical University, 
Dongguan, Guangdong 523808, P.R. China

Received August 2, 2015;  Accepted July 22, 2016

DOI: 10.3892/mmr.2016.5752

Correspondence to: Dr Yuanlin Ding, Institute of Medical 
Systems Biology, Guangdong Medical University, 57 Xincheng 
Road, Dongguan, Guangdong 523808, P.R. China
E‑mail: gdmcsbd@126.com

Dr Can Chen, Laboratory of Cardiovascular Diseases, Guangdong 
Medical University, 57 Renmin Road, Xiashan, Zhanjiang, 
Guangdong 524000, P.R. China
E‑mail: chencan_21@126.com

*Contributed equally

Key words: pulmonary arterial hypertension, hypoxia inducible 
factor‑1α, hypoxia inducible factor‑1β, signaling pathway, lung



LEI et al:  EXPRESSION AND ANALYSES OF THE HIF-1 PATHWAY4384

regulator of transcription in hypoxic cells and forms a dimer 
with HIF‑1β, further activating genes involved in energy 
metabolism, cell proliferation and extracellular matrix reor-
ganization (17,18). It has been reported that hypoxia mediates 
vascular remodeling through the induction of HIF‑1α. In 
particular, HIF‑1α in smooth muscle cells was demonstrated 
to be important in hypoxia‑induced PAH in mice (19‑21). 
However, the upstream signaling events responsible for 
hypoxia, and its effects on the proliferation of vascular 
smooth muscular and endothelial cells, remain to be fully 
elucidated.

Certain reports have shown that the expression and 
activity of HIF‑1α are regulated by several protein kinase 
signaling pathways, in which extracellular signal‑regulated 
kinase (ERK) and the serine/threonine kinase, Akt, have 
been identified as potent modulators of the expression 
of HIF‑1α  (22‑25). ERK is a subfamily member of the 
mitogen‑activated protein kinase (MAPK) family, and 
its pathway has been recognized to mediate cell growth, 
proliferation and survival (26,27). Li et al (28) found that the 
activation of ERK signaling induces the expression of HIF‑1α 
and stimulates its transcriptional activity in the developing 
rat brain following hypoxia‑ischemia, and an increase in 
the phosphorylation of ERK1/2 has been observed in retinal 
neovascularization and vein occlusion (29). In addition, Akt is 
activated by the phosphoinositide 3‑kinase (PI3K)‑dependent 
pathway, which is crucial in cell differentiation, proliferation 
and survival  (30,31). Numerous studies have revealed the 
PI3K/Akt pathway to be critical for ischemia and angiogen-
esis (32,33), for example, the PI3K/Akt pathway is required 
for the upregulation of HIF‑1α in a rat model of focal cere-
bral ischemia (34,35). However, whether these two pathways 
account for the occurrence of PAH induced by hypoxic 
conditions remains to be elucidated.

In the present study, the genes coding HIF‑1α proteins 
were cloned from the lung tissues of human patients with 
PAH, and then were investigated by immunofluorescent 
techniques and bioinformatic methods. In addition, the 
expression and phosphorylation levels of the HIF‑1α pathway 
components, including PI3K, Akt, ERK1/2 and HIF‑1β, were 
examined using reverse transcription‑quantitative polymerase 
chain reaction (RT‑qPCR) and western blot analyses, and the 
association between target genes and the development of PAH 
were examined. The present clinical study aimed to contribute 
to the elucidation of the role of HIF‑1α and its intracellular 
pathway in the occurrence of PAH, and provide a reference 
for further functional investigations of the pathogenesis of 
PAH.

Materials and methods

Collection of clinical samples. Human lung tissues were 
collected from participants during palliative surgery at 
the Affiliated Hospital of Guangdong Medical College 
(Guangdong, China). The participants comprised patients 
with PAH (mPAP >30 mmHg; n=5) and a control group of 
individuals with mPAP ≤20 mmHg (n=4). A total of 9 patients 
including 4 male and 5 female patients aged 15-53 years old 
(mean, 33.1±15.9 years old) were recruited. According to the 
updated clinical classification of pulmonary hypertension, 

and the guidelines of the American College of Cardiology 
and American Heart Association, PAH was diagnosed using 
right heart catheterization (36). The lung tissues collected 
from the inferior lobes of left lungs were stored at ‑80˚C for 
further manipulation. All clinical protocols and experimental 
procedures were approved by the ethics committee of the 
Affiliated Hospital of Guangdong Medical College, and a 
written informed consent form was obtained from each indi-
vidual participant.

Gene cloning. The cDNA fragments of HIF‑1α and HIF‑1β 
of patients with PAH were amplified using the Takara RNA 
LA PCR kit (AMV). PCR amplification was conducted 
at 94°C for 4 min, followed by 35 cycles at 94°C for 40 s, 
at 60°C for 50 s, at 72°C for 3 min, and a final extension at 
72°C for 10 min. The primer sequences of human HIF-1α 
were 5'‑CGAACGACAAGAAAAAGATAAG-3' (sense) and 
5'-CCACAGAAGATGTTTATTTGATG-3' (antisense), and 
HIF‑1β were 5'‑CCGAAATGACATCAGATGTAC‑3' (sense) 
and 5'‑GTTAGATCAGGGAATTCTTCATTG‑3' (antisense). 
The PCR products were sequenced by Invitrogen (Thermo 
Fisher Scientific, Inc., Shanghai, China). The sequencing 
results were used as queries in the BLAST searches (http://
blast.ncbi.nlm.nih.gov/Blast.cgi).

Bioinformatic analyses. The sequences containing the 
complete coding regions of the human HIF‑1α and HIF‑1β 
genes, and the corresponding amino acid sequences were 
obtained from the GenBank (http://www.ncbi.nlm.nih.
gov/genbank) and GenPept (http://www.ncbi.nlm.nih.gov/
protein) databases (HIF‑1α, GenBank accession no. U22431; 
GenPept accession no. AAC50152; HIF‑1β, GenBank acces-
sion no. M69238; GenPept accession no. AAH60838 (37,38).

Comparative bioinformatics analyses of HIF‑1α and 
HIF‑1β were performed online (http://www.ncbi.nlm.nih.
gov and http://www.expasy.org). The protein physical and 
chemical parameters were circulated using the Protparam 
tool (http://web.expasy.org/protparam) (39). The motifs and 
structural domains were searched in the amino acid sequences 
using the NCBI conserved domain database  (CDD; http://
www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) (40‑43) and 
the secondary structures were predicted using the self‑opti-
mized prediction method (SOPMA; https://npsa-prabi.ibcp.
fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html) (44).

RT‑qPCR analysis. The lung tissues were homogenized on ice 
with a Teflon‑pestle homogenizer in TRIzol reagent (Invitrogen; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA), and total 
RNAs were isolated following the manufacturer's instructions. 
A 1 µg sample of total RNA was reverse‑transcribed into cDNA 
using AMV Reverse Transcriptase XL (Takara Bio, Inc., Otsu, 
Japan) and olido (dT) primers at 42˚C for 1 h. The primers for 
RT‑qPCR are listed in Table I; GAPDH was selected as the 
internal control gene for normalization. The qPCR analysis 
was performed using 2 µl of cDNA in a total volume of 20 µl 
containing 10 µl 2X SYBR Premix Ex Taq II (Takara Bio, 
Inc.,), 0.8 µl forward primer (10 µM) and 0.8 µl reverse primer 
(10 µM), in a LightCycler® 480 System Real‑Time PCR system 
(Roche Diagnostics GmbH, Mannheim, Germany) using the 
following thermal cycling profile: 95˚C for 30 sec, followed by 
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40 cycles of amplification (95˚C for 5 sec and 60˚C for 20 sec). 
The qPCR reactions were performed in triplicate. Fluorescence 
was detected during annealing and extension, and melting 
curve analysis was performed immediately following the PCR 
cycling. The relative transcript levels were analyzed using the 
2‑ΔΔCq method (45).

Western blot analysis. The lung tissues were homogenized 
in ice‑cold cell lysis buffer for western blot analysis and IP 
(Beyotime Institute of Biotechnology, Shanghai, China), and 
were centrifuged at 10,000 x g for 5 min at 4˚C. The super-
natants were used for sodium dodecyl sulfate‑polyacrylamide 
gel electrophoresis (SDS‑PAGE) and western blot analysis. 
The concentrations of the proteins in the supernatants were 
detected using an Enhanced BCA Protein Assay kit (Beyotime 
Institute of Biotechnology). The protein (~50 µg) was separated 
using 10% SDS‑PAGE and transferred onto PVDF membranes 
(EMD Millipore, Billerica, MA, USA). The membranes were 
blocked with 5% fat‑free milk in Tris‑buffered saline with 0.1% 
Tween‑20 (TBS‑T) and probed with the following primary 
antibodies: Mouse monoclonal HIF‑1α (610958; 1:500; BD 
Biosciences, San Jose, CA, USA), rabbit polyclonal HIF‑1β 
(bs‑1407R; 1:500, BIOSS, Beijing, China), rabbit monoclonal 
ERK (#4695; 1:1,000; Cell Signaling Technology, Inc., Danvers, 
MA, USA), rabbit monoclonal phosphorylated (p)‑ERK 
(Thr202/Tyr204; #4370; 1:2,000; Cell Signaling Technology, 
Inc.), rabbit monoclonal Akt (#4691; 1:1,000; Cell Signaling 
Technology, Inc.) and p‑Akt (ser473; #4060; 1:2,000; Cell 
Signaling Technology, Inc.) in TBS‑T containing 5% bovine 
serum albumin (Beyotime Institute of Biotechnology) over-
night at 4˚C. Following rinsing in TBS‑T three times, the 
membranes were incubated with goat anti‑mouse (#7076) 
and goat anti‑rabbit (#7074) horseradish‑peroxidase‑coupled 
secondary antibodies (Cell Signaling Technology, Inc.) for 1 h 
at room temperature. Immunodetection was performed using 

BeyoECL Plus (Beyotime Institute of Biotechnology). Bands 
were visualized using the Bio‑Rad ChemiDoc MP system 
(Bio‑Rad Laboratories, Inc., Hercules, CA, USA) and analyzed 
using Quantity One software (Bio‑Rad Laboratories, Inc.).

Statistical analysis. Data were analyzed using an indepen-
dent‑samples t‑test with SPSS 20.0 software (IBM SPSS, 
Armonk, NY, USA. The data are presented as the mean ± stan-
dard deviation. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Bioinformatics analysis of HIF‑1α and HIF‑1β. The cDNA 
sequences of human HIF‑1α and HIF‑1β were aligned using 
the Basic Local Alignment Search Tool (BLAST) in the nucle-
otide database, and the results showed that they were 100% 
homologous with homo sapiens HIF‑1α and HIF‑1β mRNAs, 
respectively. The biochemical properties and molecular struc-
tures of human HIF‑1α and HIF‑1β were analyzed using the 
online tools, ProtParam and SOPMA, the results of which are 
listed in the Table II. As the dimer of these two subunits, the 
HIF protein was found to consist of 1,244 amino acids with a 
molecular weight of 138.592 Da; the most frequent residues 
were Leu and Ser. The functional domains were scanned in 
the CDD database (Fig. 1), following which three motifs were 
obtained, including a basic‑helix‑loop‑helix (bHLH) region 
and two PAS repeat profiles, which have been previously 
demonstrated to be transcriptional activators of HIF‑1α and 
HIF‑1β in mammals (46,47).

Expression of the PI3K/Akt pathway. The relative mRNA 
expression level of PI3K was significantly elevated (2.6‑fold) 
in the PAH group, compared with that in the control group 
(P<0.01; Fig. 2). No significant differences in the mRNA or 

Table I. Sequences of primers.

Gene	 Primer sequence	 Size (bp)

GAPDH	 Forward 5'‑GGCACAGTCAAGGCTGAGAATG‑3'	 143
	 Reward 5'‑ATGGTGGTGAAGACGCCAGTA‑3'	
PIK3CA	 Forward 5'‑TCTGTCTCCTCTAAACCCTG‑3	 103
	 Reward 5'‑TTCTCCCAATTCAACCAC‑3'	
Akt1	 Forward 5'‑TCTTTGCCGGTATCGTGT‑3'	 150
	 Reward 5'‑TGTCATCTTGGTCAGGTGGT‑3'	
Erk1	 Forward 5'‑GGGGAGGTGGAGATGGTGA‑3'	 175
	 Reward 5'‑GCTGGCAGTAGGTCTGATGTT‑3'	
Erk2	 Forward 5'‑TGTTCCCAAATGCTGACT‑3'	 160
	 Reward 5'‑AACTTGAATGGTGCTTCG‑3'	
HIF‑1α	 Forward 5'‑GCTCATCAGTTGCCACTTCCAC‑3	 144
	 Reward 5'‑CATCTGTGCTTTCATGTCATCTTC‑3'	
HIF‑1β	 Forward 5'‑TGTGGACCCAGTTTCTGTGA‑3	 100
	 Reward 5'‑GACCACCACGAAGTGAGGTT‑3'	

PIK3CA, phosphatidylinositol‑ 3‑kinase catalytic subunit α; Erk, exrtracellular signal‑regulated kinase; HIF, hypoxia inducible factor.



LEI et al:  EXPRESSION AND ANALYSES OF THE HIF-1 PATHWAY4386

protein levels of Akt were found between the two groups 
(P>0.05), however, the level of p‑Akt in the PAH group was 
significantly increased (5.89‑fold), compared with that in the 
control group, indicating that Akt was activated though phos-
phorylation by PI3K (P<0.01; Figs. 2 and 3).

Expression of the Erk1/2 pathway. The mRNA level of Erk2 
in the PAH group was 3.06‑fold higher, compared with that 
of control group (P<0.05), however, no significant difference 
in the mRNA level of Erk1 was observed between the two 
groups (P>0.05; Fig. 2). The results of the western blot analysis 
showed that the protein levels of Erk1/2 and p‑Erk1/2 in the 
PAH group were significantly upregulated, compared with 
those in the control group (P<0.01 and P<0.05, respectively; 
Fig. 3).

Expression levels of HIF‑1α and HIF‑1β. The mRNA and protein 
levels of HIF‑1α in the PAH group were respectively increased 
by 1.64‑ and 1.46‑fold, compared with the control group (P<0.01 
and P<0.05, respectively), suggesting that a higher mRNA level 
of HIF‑1α increased synthesis of the HIF‑1α protein (Figs. 2 
and 3). No significant difference in the mRNA level of HIF‑1β 
was found between the two groups, however, the protein level of 
HIF‑1β was significantly elevated (by 92%) in the PAH group, 
compared with that in the control group (P<0.05; Figs. 2 and 3).

Discussion

Pulmonary vascular remodeling, including hyperplasia of 
pulmonary artery endothelial cells and pulmonary artery 
smooth muscle cells is the major pathological change in PAH. 
Multiple cytokines, including platelet‑derived growth factor, 
vascular endothelial growth factor and transforming growth 
factor‑β can promote cell proliferation and migration in the 
physiopathological processes of PAH (48‑50).

The MAPK family comprises key factors for regu-
lating the proliferation, differentiation and apoptosis 
of cells in response to certain environmental stresses 
and cytokines  (51,52). MAPKs usually exist in forms of 
non‑phosphorylated proteins in mammalian cells. As a 
member of the MAPK family, Erk1/2 can be activated 
though phosphorylation of the Thr185 and Tyr187 residues 
to produce a dimer, which is then translocated into the cell 
nucleus to activate various transcription factors (53). In the 
present study, it was found that Erk1/2 and p‑Erk1/2 were 
upregulated in the patients with PAH, suggesting that Erk1/2 
signaling pathway may be important for pulmonary vascular 
remodeling in PAH.

Si m i l a r  t o  t he  M A PK  s ig na l i ng  pa t hway, 
PI3K/Akt also induces cell growth, triggered by certain 
growth factors (54). Activated PI3K drives the production of 

Table II. Biochemical properties and molecular structures of HIF‑1α and HIF‑1β.

Index	 HIF‑1α	 HIF‑1β

Amino acids (n) 	 826	 416
Molecular weight (Da)	 92,670.4	 45,921.6
Theoretical isoelectric point	 5.17	 5.79
Formula	 C4027H6410N1108O1309S43	 C1963H3146N584O637S25
Atoms (n)	 12,897	 6,355
Extinction coefficients	 50,155	 20,690
Estimated half‑life (h)	 30	 30
Instability index	 55.97	 52.65
Aliphatic index	 74.96	 71.44
Grand average hydropathicity	‑ 0.573	‑ 0.508
Charged amino acids (%)	 31.72	 31.97
Acidic amino acids (%)	 14.29	 13.46
Basic amino acids (%)	 10.29	 11.78
Polar amino acids (%)	 31.60	 29.09
Hydrophobic amino acids (%)	 27.60	 28.13
Major amino acids (%)
	 Leu 10.05	 Ser 9.86
	 Ser 9.44	 Leu 7.69
	 Thr 7.99	 Asp 7.69
Secondary structure (%)	
  α‑helix	 30.87	 30.29
  Extended strand	 18.28	 19.71
  Random coil	 43.83	 41.11

HIF, hypoxia inducible factor.
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phosphatidyl‑inositol‑3,4,5‑trisphosphate, which can bind to 
pleckstrin homology domains of Akt, and promote Akt phos-
phorylation at Thr308 and Ser473 residues, which induces 
the translocation of Akt into the nucleus to provide signals 
for cell survival (55). In addition, the second messenger PIP3 
interacts with several cytoskeletal proteins, including paxilin, 
profilin, vinculin and filamin, to promote the polymeriza-
tion of actin filaments, which can affect cell morphosis and 
migration (56‑59). The present study showed that the levels 
of PI3K and phosphorylated Akt were markedly elevated in 
the patients with PAH, suggesting that the PI3K/Akt pathway 
may be involved in the pathological lesion of PAH by regu-
lating cell proliferation, migration and adhesion, and even 
vascular stability.

HIF‑1α and HIF‑1β belong to the bHLH/PAS protein 
family, functioning as modulators in cell proliferation and 
differentiation  (60). As HIF‑1α lacks a transmembrane 
domain, HIF‑1β is recruited to dimerize with HIF‑1α for 
nuclear translocation. The degradation of the HIF‑1α is 
suppressed by hypoxia, whereas the expression of HIF‑1β 
in cells is commonly considered to be oxygen‑independent. 
However, Wolff et al (61) found that the regulation of HIF‑1β 
is more complex, and showed that the protein levels of HIF‑1β 
are affected by hypoxia and hypoxia mimetics (61). In addition 
to HIF‑1α, the present study found that the protein levels of 
HIF‑1β were also elevated in the lungs of patients with PAH, 
suggesting that these two molecules may be involved in the 
pathogenesis of PAH. Therefore, the present study hypoth-
esized that HIF‑1β may exhibit corresponding responses to the 
changes of HIF‑1α.

The present study demonstrated for the first time, to the 
best of our knowledge, changes in the expression levels of 
ERK1/2, PI3K, Akt and HIF‑1 in the lungs of patients with 

PAH. However, the roles of these signaling molecules in 
the pathogenesis of PAH and the associations among these 
signaling molecules require further investigations in the 
future.
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