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Abstract. The aim of the present study was to determine 
the expression of blood microRNAs (miRNAs) involved 
in PD in humans. For this purpose the following electronic 
databases were selected: MEDLINE by Pubmed, Scopus and 
Web of Science. The search strategy included the proposed 
descriptors in the Medical Subject Headings. There were no 
restrictions with respect to the language of the publication. 
In the study selection two independent reviewers initially 
evaluated studies that were identified by the search strategy 
according to titles and abstracts. The reviewers evaluated 
(also unassisted) the complete articles and selected studies 
according to the eligibility criteria specified above. Studies 
that were not in accordance with the adopted criteria were 
excluded according to the boundaries imposed by the search 
strategy. The following data were extracted from the selected 
studies: Publication identification, location where the study 
was conducted, study design, the sample size, the participants' 
characteristics, the miRNAs involved in PD, the miRNA 
detection and analysis method, and the type of miRNA 
dysregulation in PD. Through this systematic review of the 
literature published over the last 10 years, the expression of 
91 different miRNAs were analyzed in the context of PD, with 
the expression of 39 of these miRNAs differing significantly 
between individuals with PD and healthy controls and/or 
between treated and untreated patients with PD. The miRNAs 
were extracted from mononuclear cells, leukocytes, plasma, 
serum and peripheral blood, and the majority of the studies 
used reverse transcription‑quantitative polymerase chain reac-
tion (RT‑qPCR), which is considered to be the gold standard 
for miRNA analysis.

Introduction

Parkinson's disease (PD) is the second most common 
neurodegenerative disease, and it is estimated to affect ~1% 
of individuals >60 years of age and 4.1‑4.6 million people 
worldwide  (1). PD is a highly heterogeneous, progressive 
neurodegenerative disease, clinically characterized by tremors, 
bradykinesia, stiffness, and eventually postural instability (2). 
These symptoms may have variable progression (3) and are 
attributed to a loss of dopaminergic neurons in the substantia 
nigra (1). The pathology may involve other regions of the brain, 
including the amygdala, the cingulate gyrus and the superior 
cortical regions, resulting in the development of dementia and 
psychosis (1).

Previously, a number of reviews focusing on microRNAs 
(miRNAs) have demonstrated notable underlying molecular 
mechanisms corresponding to the pathogenesis of PD (1‑7). 
It should be noted that the discovery of miRNAs broadened 
the potential of diagnostic markers and therapeutic targets 
for human diseases, influencing the majority of mechanisms 
responsible for neurodegenerative diseases  (1), including 
PD (7).

miRNAs are small, endogenous, non‑coding RNA 
molecules (length, 19‑24 nt) that are cleaved from a partially 
duplexed 70‑80‑nt precursor, known as pre‑miRNA  (7). 
miRNAs regulate gene expression of the target mRNA at 
the post‑transcriptional level via imperfect pairing with 
the 3'‑untranslated region (3'‑UTR). This affects numerous 
biological processes, including the cell cycle, differentiation, 
proliferation, apoptosis and the cellular stress response. Thus, 
as previous studies have suggested the importance of miRNAs 
in PD pathogenesis, and in the disturbance of processes 
associated with the regulation of genes implicated in its devel-
opment (1‑7), the aim of the present study was to determine 
the expression of blood miRNAs involved in PD in humans 
via a systematic review of the literature published over the last 
10 years.

Materials and methods

Eligibility criteria. The present systematic review was regis-
tered on the International Prospective Register of Systematic 
Reviews (PROSPERO; no. CRD42015019973) and follows the 
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recommendations proposed by the Preferred Reporting Items 
for Systematic Reviews and Meta‑analyses: The PRISMA 
Statement (8).

Randomized and non‑randomized studies of miRNAs in 
PD in humans where the miRNAs were obtained from blood 
samples were included. The previous studies were indexed on 
the previously selected databases, had abstracts available, were 
fully accessible online and were published within the past 
10 years. There were no language restrictions.

Search strategy. The electronic databases MEDLINE via 
Pubmed (www.ncbi.nlm.nih.gov/pubmed), Scopus (Elsevier; 
www.scopus.com) and Web of Science (webofknowledge.com) 
were selected. The search strategy included the keywords 
proposed in medical subject headings (Table  I). All the 
searches were conducted in September 2015. EndNote 3.4 
(Thomson Reuters Corporation, Ontario, Canada) was used to 
manage reference material during searches.

Study selection and data extraction. The titles and abstracts 
of all of the articles identified by the search strategy were 
independently evaluated by two authors of the present study. 
These authors also evaluated the full articles and made their 
selections according to the pre‑specified eligibility criteria. 
Disagreements between the reviewers were resolved by 
consensus.

The following data were extracted: Publication identifica-
tion (first author and year of publication), location where the 
study was conducted (country), study design, the sample size, 
the participants' characteristics (gender, mean age, disease 
stage, mean disease duration), the miRNAs involved in PD, 
the miRNA detection and analysis method, and the type of 
miRNA dysregulation in PD.

Results

Literature search evaluated a total of 289 articles. The search 
enabled the identification of 289 articles, 76 of which were 
excluded as duplicates; 155 studies did not meet the eligibility 
criteria based on the titles and abstracts. A detailed evaluation 
indicated that nine studies were potentially relevant, and these 
were included in the review. Fig. 1 indicates the flowchart of 
this process.

Patient characteristics, analysis methods and miRNAs investi-
gated were considered. The major characteristics of the studies 
included are described in Table II. Two studies were conducted 
in Spain (9,10), and two were conducted in Italy (11,12). The 
majority of the previous studies were cross‑sectional (10‑16). 
The sample size ranged from 7 (17) to 125 (10) individuals 
with PD. One study involved only male patients  (17). The 
mean age of the participants ranged from 45 (13) to 72 (15) 
years. The PD stage (according to Hoehn and Yahr) ranged 
from I to V, and the mean duration of the disease ranged from 
3 (13) to 9.6 (10) years.

Table III indicates the miRNAs involved in PD, the detec-
tion and analysis methods, and the identified microRNA 
dysregulation in PD. The expression of 91 different miRNAs 
was observed. miRNAs were extracted from mononuclear 
cells (14), leukocytes (17), plasma (9,15), serum (10,11), and 

peripheral blood (12,13,16). The majority of the analyses used 
reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR), which is considered to be the gold standard 
analysis method.

miR‑30b, miR‑30c and miR‑26a were downregulated in the 
previous study by Martins et al (14). Khoo et al (15) demon-
strated that miR‑1826, miR‑626, and miR‑505 were upregulated, 
and miR‑450b‑3p was downregulated. Upon comparison of 
patients with PD and healthy controls, Cardo et al (9) observed 
that miR‑331‑5p was elevated. Botta‑Orfila et al (10), when 
comparing patients with idiopathic PD and controls, observed 
a downregulation of miR‑29c, miR29‑a and miR‑19b. 
Vallelunga et al (11) observed a downregulation of miR‑30c 
and miR‑148b in patients with PD compared with patients with 
multiple system atrophy (MSA).

miR‑1, miR‑22* and miR‑29a were downregulated and 
differed between patients with PD and healthy controls, and 
miR‑16‑2a*, miR‑26a2* and miR‑30a were upregulated with 
a significant difference between patients with treated and 
untreated PD (13). Serafin et al (12) demonstrated the patients 
treated with L‑dopa exhibited decreased miR‑103a‑3p, 
miR‑30b‑5p and miR‑29a‑3p levels. Alieva et al (16) observed 
an upregulation of miR‑7, miR‑9‑3p, miR‑9‑5p, miR‑129 and 
miR‑132 in patients with treated PD compared with untreated 
patients.

Comparing gene expression in patients with PD and 
healthy controls prior to and following electrical stimula-
tion (deep brain stimulation‑DBS) and 1  h after stimulus 
cessation, Soreq et al (17) observed that miR‑1249, miR‑20a, 
miR‑18b, miR‑378c and miR‑4293 decreased following elec-
trical stimulation, and 1 h after stimulus cessation, miR‑423, 
miR‑365, miR‑486, miR‑1260 and miR‑218 were increased 
and miR‑652, miR‑15a*, miR‑29c, miR‑29a, miR‑376c and 
were miR‑143 decreased.

Discussion

The main aim of the present study was to determine the expres-
sion of miRNAs that are involved in human PD and present 
in the blood. The analysis consisted of a systematic review 
of the literature of the past 10 years, and in the nine studies 
considered, 91 different miRNAs were identified. Among 
these miRNAs, 39 were significantly differentially expressed 
between groups as follows; i) Individuals with PD and healthy 
controls (9,10,14,15); ii) patients with PD and patients with 
systemic muscular atrophy (11); iii) patients with PD treated 
with levodopa and untreated PD (12,13,16); and iv) patients 
who received electrical stimulation and those who did not (17).

Martins et al (14) demonstrated miR‑30b, miR‑30c and 
miR‑26a were downregulated. According to these authors, 
these three miRNAs are involved in the regulation of 
α‑synuclein. The authors also discussed three common genes 
that are putative targets of these miRNAs, namely, ubiquitin 
specific peptidase (USP)6, E3 ubiquitin‑protein ligase NEDD4 
and USP3, and the roles of these proteins in glycosphingolipid 
biosynthesis and protein ubiquitination. Glycosphingolipids 
are related to ceramide metabolism, which has been associ-
ated with PD with regard to the glucocerebrosidase gene (18). 
Another important characteristic of PD is the presence of 
Lewy bodies and the ubiquitination of α‑synuclein, which is 
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a pathological event directly associated with the formation of 
Lewy bodies (19,20).

Khoo et al (15) identified that miR‑1826, miR‑626, and 
miR‑505 were upregulated and miR‑450b‑3p downregulated. 
miR‑1826 was also observed to be upregulated in the plasma 
of patients with multiple sclerosis. This miRNA targets the 
neuronal PAS domain protein 3 gene and regulates neurogen-
esis, in particular in the hippocampus (21). miR‑505 inhibits 
cell proliferation via induction of apoptosis (22) and regulates 
fibroblast growth factor (FGF)18, a pro‑angiogenic factor (23). 

However, dopamine depletion in PD is due to the apoptosis 
of dopaminergic neurons, an effect that may result from the 
increased apoptosis induction as a result of miR‑505. Currently, 
no studies on miR‑626 or miR‑450b‑3p have investigated their 
association with any disease or cell function, or have evaluated 
whether these biomarkers directly or indirectly function in PD 
pathogenesis (15).

When comparing patients with PD and healthy controls, 
Cardo et al (9) observed that miR‑331‑5p was significantly 
more elevated in the patients. The previous study also 

Table I. Descriptors used in the search strategy.

Topic	 Descriptors

MicroRNAs	 ‘MicroRNAs’ (MeSH), ‘MicroRNAs’, ‘MicroRNA’, ‘miRNAs’, ‘Micro RNA’, ‘RNA, Micro’, ‘miRNA’, 
	 ‘Primary MicroRNA’, ‘MicroRNA, Primary’, ‘Primary miRNA’, ‘miRNA, Primary’, ‘pri‑miRNA’,
	 ‘pri miRNA’, ‘RNA, Small Temporal’, ‘Temporal RNA, Small’, ‘stRNA’, ‘Small Temporal RNA’,
	 ‘pre‑miRNA’, ‘pre miRNA
Parkinson disease	 ‘Parkinson Disease’ (MeSH), ‘Parkinson Disease’, ‘Idiopathic Parkinson's Disease’, ‘Lewy Body
	 Parkinson Disease’, ‘Lewy Body Parkinson's Disease’, ‘Primary Parkinsonism’, ‘Parkinsonism,
	 Primary’, ‘Parkinson Disease, Idiopathic’, ‘Parkinson's Disease’, ‘Parkinson's Disease, Idiopathic’,
	 ‘Parkinson's Disease, Lewy Body’, ‘Idiopathic Parkinson Disease’, ‘Paralysis Agitans’

MeSH, medical subject headings.
  

Figure 1. Flow diagram to summarize the search strategy. PD, Parkinson's disease; miRNA, microRNA.
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reported that this miRNA may be associated with neurogen-
esis and neurodegeneration and may be a useful biomarker 
of diagnosis, disease progression, and treatment response. 
Botta‑Orfila et al (10) observed a downregulation of miR‑29c, 
miR‑29a and miR‑19b when patients were compared with 
idiopathic PD and controls. Fernández‑Santiago et al  (24) 
indicated that miR‑19b dysregulation occurs in the prodromal 
phase of synucleinopathies. The accumulation of α‑synuclein 
in the form of intracellular filamentous aggregates is one of 
the pathological features of the neurodegenerative diseases 
designated synucleinopathies, which include PD  (25). 
Vallelunga et al (11) observed a downregulation of miR‑30c 
and miR‑148b in patients with PD compared with patients with 
MSA. miR‑148b is important in neurological development and 
apoptosis (26).

The levels of miR‑1, miR‑22* and miR‑29a were lower in 
untreated patients than in healthy individuals, whereas the 
levels of miR‑16‑2a*, miR‑26a2* and miR‑30a were higher in 
patients treated with levodopa than in untreated patients (13). 
These miRNAs may be indirectly associated with the func-
tioning of the α‑synuclein gene, synuclein‑α (SNCA), which 
is responsible for coding the α‑synuclein protein (5). SNCA 
is one of the primary genes implicated in the development 
of PD (27). The specific role of this protein remains to be 
elucidated, however, data has suggested that it is a molecular 
chaperone that regulates protein‑protein and protein‑lipid 
interactions, and that it may be important in the metabolism 
of synaptic vesicles and the storage and compartmentalization 
of neurotransmitters, particularly dopamine (28). High SNCA 
expression is characteristic of PD (29).

miR‑1 and miR‑30a are involved in the regulation of dopa-
mine transport and are therefore implicated in the pathogenesis 
of PD (5). Furthermore, miR‑30 may bind FGF20, which is 
also associated with miR‑16‑2a* (13). FGF20 is preferentially 
expressed in the substantia nigra and stimulates dopaminergic 
neuron maturation  (30). These results would explain the 
correlation observed between high SNCA expression and high 
FGF20 translation in cultures of brain cells and tissues from 
patients with PD (30).

Margis and Rieder (13) demonstrated miR‑29a was the 
only miRNA which exhibited reduced expression following 
treatment with levodopa. The authors suggest that miR‑29a 
expression may not be directly associated with the occurrence 
of motor symptoms given that downregulation was maintained 
following administration of the therapeutic agent. However, 
the authors highlighted the importance of miR‑29a in PD.

Cell division cycle 42 is a protein associated with septin 4, 
and a target of miR‑29a. Shehadeh et al (31) observed that 
in addition to increased septin 4 levels, α‑synuclein levels 
were also increased in the substantia nigra post mortem in 
patients with PD. Decreased miR‑29a expression also occurs 
in Alzheimer's disease in association with an increase in 
β‑secretase (BACE1) (32,33). The levels of insulin‑like growth 
factor  1 (IGF‑1) are associated with the preservation and 
homeostasis of the nervous system, and IGF‑1 is also a target 
of miR‑29a. IGF‑1 levels in the serum and brain differ in a 
number of human neurodegenerative diseases (34). A previous 
study demonstrated that blood IGF‑1 levels were slightly 
elevated in treated patients with PD compared with controls, 
although this effect was not statistically significant (35).

Eacker et al (36) demonstrated a significant association 
between lower miR‑29a expression and higher BACE1 expres-
sion in brain tissue. miR‑29a is expressed in neurons and 
astroglia, suggesting that the specific reductions in its expres-
sion are not a secondary consequence of the death of specific 
neurons.

Serafin  et  al  (12) observed that patients treated with 
levodopa exhibited decreased levels of miR‑103a‑3p, 
miR‑30b‑5p and miR‑29a‑3p. The results suggest a role of the 
treatment with levodopa for the expression of miR‑103a‑3p, 
indicating a potential association with the occurrence of motor 
symptoms. Other studies have demonstrated an association 
between miRNAs 103a‑3p and 29a‑3p and insulin resistance, 
a process that may be associated with neurodegeneration in 
PD (37,38).

Alieva  et  al  (16) observed an upregulation of miR‑7, 
miR‑9‑3p, miR‑9‑5p, miR‑129 and miR‑132 in treated patients 
with PD when compared with untreated patients. The authors 
hypothesize that miRNAs are sensitive to therapy and that 
an effect of treatment may be observed in changes in their 
levels as well as those of their target genes in patients with 
PD. In addition to administration of therapeutic agents, other 
factors may influence miRNA expression, such as the pres-
ence of comorbidities, disease severity, disease duration, and 
gender (10,15).

miR‑7 is abundantly expressed in the brain and binds 
preferentially to the 3'UTR of the SNCA gene, which 
significantly decreases the synthesis of α‑synuclein and 
inhibits α‑synuclein‑mediated cell death (6). miR‑9‑3p was 
identified as a tumor suppressor in hepatocellular carci-
noma (39). miR‑9‑5p has an inhibitory effect on transforming 
growth factor beta receptor type II and on the expression of 
NADPH‑oxidase 4 (40). The ectopic expression of miR‑129 
promoted apoptosis, cell proliferation and cell cycle inhibi-
tion in colorectal cancer cells (41). miR‑132 is enriched in the 
central nervous system and may be involved in neuron devel-
opment, maturation, and function (42).

By comparing gene expression in patients with PD and 
healthy controls prior to and following DBS and 1 h after 
stimulus cessation, Soreq et al (17) observed that miR‑1249, 
miR‑20a, miR‑18b, miR‑378c and miR‑4293 were reduced 
following electrical stimulation, and 1 h after stimulus cessa-
tion, miR‑423, miR‑365, miR‑486, miR‑1260 and miR‑218 
were increased and miR‑652, miR‑15a*, miR‑29c, miR‑29a, 
miR‑376c and miR‑143 were decreased.

miR‑365 is a negative regulator of interleukin‑6 (IL‑6) (43). 
A cohort study involving 53 patients with PD demonstrated that 
high levels of IL‑6 may be a marker of mortality in patients 
with PD (44). Scalzo et al (45) demonstrated that high levels of 
IL‑6 may be involved in the acceleration of muscle catabolism, 
leading to sarcopenia, and thus may contribute to weakness and 
fatigue and be associated with functional impairment in PD.

Previous studies have associated miR‑20a, miR‑18b, 
miR‑365, miR‑486, miR‑218, miR‑652, miR‑15a*, miR‑29c, 
miR‑376c, and miR‑143 with hepatocellular carcinoma (46,47), 
breast cancer (48), liver disease (49), lung cancer (50), and mela-
noma (51), but these miRNAs were not associated with PD.

The miRNAs in the reviewed previous studies were 
extracted from mononuclear cells, leukocytes, plasma, serum 
and peripheral blood. Thus, it has been demonstrated that blood 
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samples are a useful source in the identification of miRNAs 
associated with PD. Lawrie et al (52) were the first to investigate 
the presence of miRNAs in serum, comparing patients with 
diffuse lymphoma and healthy individuals. Another study has 
demonstrated the presence of miRNAs in other biological fluids, 
including urine, saliva, amniotic fluid, and pleural fluid (53).

An ideal biomarker must be specific, sensitive, minimally 
invasive, quantifiable, cost‑effective and reproducible. Therefore, 
blood analysis may provide an ideal resource for the develop-
ment of biomarkers that fit these requirements and enable patient 
monitoring over time. By contrast, a biopsy for PD is almost 
impossible, and neuroimaging every three months is financially 
prohibitive (15). The use of miRNAs as biomarkers has certain 
advantages. miRNAs are easy to detect, and the methods are 
extremely specific. Furthermore, as reliable data analysis is 
essential to the outcome of a given study, it is important to select 
adequate normalization methods to remove variations and to 
increase precision in miRNA quantification (54).

The miRNA analysis used in the majority of the reviewed 
studies was RT‑qPCR. The RT‑qPCR technique is the gold 
standard in nucleic acid quantification, due to its sensitivity 
and specificity (55). Briefly, the procedure involves four major 
steps: i) Sample collection and preparation; ii) the generation 
of global miRNA profiles using RT‑qPCR; iii) data normal-
ization and analysis; and iv) miRNA biomarker selection and 
validation (56).

In summary, there is a general lack of studies that confirm 
the involvement in PD of the majority of miRNAs presented in 
the reviewed studies. Novel analyses are important to establish 
the expression profile of miRNAs in PD in order to more accu-
rately determine the ideal treatment strategy and to improve 
the role of miRNAs as biomarkers in clinical practice.

In conclusion, this systematic review of literature from the 
past 10 years analyzed the expression of 91 different miRNAs 
in the context of PD, with the expression of 39 of these miRNAs 
differing significantly between individuals with PD and healthy 
controls and/or between treated and untreated patients with 
PD. The downregulated miRNAs were as follows: miR‑30b, 
miR‑30c, miR‑26a, miR‑450b‑3p, miR‑148b, miR‑1, miR‑22*, 
miR‑29a, miR‑103a‑3p, miR‑30b‑5p, miR‑29a‑3p, miR‑1249, 
miR‑20a, miR‑18b, miR‑378c, miR‑4293, miR‑652, miR‑15a*, 
miR‑29c, miR‑376c, miR‑143, and miR‑19b. The upregulated 
miRNAs were as follows: miR‑1826, miR‑626, miR‑505, 
miR‑16‑2a*, miR‑26a2*, miR‑30a, miR‑7, miR‑9‑3‑p, miR‑9‑5p, 
miR‑129, miR‑132, miR‑423, miR‑365, miR‑486, miR‑1260, 
miR‑218, and miR‑331‑5p. The miRNAs were extracted from 
mononuclear cells, leukocytes, plasma, serum and peripheral 
blood, and the majority of the studies used RT‑qPCR, consid-
ered to be the gold standard, for miRNA analysis.
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