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Abstract. MicroRNAs (miRNAs) are recognized as important 
regulators of gene expression via translational depression or 
mRNA degradation. Previously, dysregulated miRNAs have 
been found in neurodegenerative and neuropsychiatric disor-
ders. Borna disease virus (BDV) is a neurotropic, negative 
single-stranded RNA virus, which may be a cause of human 
neuropsychiatric disease. BDV is regarded as an ideal model to 
analyze the molecular mechanisms of mental disorders caused 
by viral infection. In the present study, 10 miRNAs were 
dysregulated in human oligodendrocytes (OL cells) infected 
with the BDV strain, Hu-H1 (OL/BDV). The predicted target 
genes of those different miRNAs were closely associated with 
DNA binding, receptor activity, cytoplasm and membrane, 
biopolymer metabolic process and signal transduction, which 
were ranked highest using Gene Ontology (GO) analysis, 
and were predominantly involved in ‘Immune system and 
adaptive Immune system pathways’ on pathway analysis. 
Reverse transcription-quantitative polymerase chain reaction 
analysis confirmed that seven miRNAs (miR‑1290, miR‑1908, 

miR‑146a‑5p, miR‑424‑5p, miR‑3676‑3p, miR‑296‑3p and 
miR‑7‑5p) were significantly downregulated in the OL/BDV 
cells, whereas two miRNAs (miR-1244 and miR-4521) showed 
no significant differences between the two groups. The present 
study revealed for the first time, to the best of our knowledge, 
the miRNA profile of BDV Hu‑H1‑infected human OL cells. 
Based on GO and pathway analyses, further investigation of 
the signaling processes in BDV-infected oligodendrocytes 
may offer particular promise in improving understanding of 
the neuropathogenesis of BDV.

Introduction

Borna disease virus (BDV), a neurotropic, non-cytolytic, 
non‑segmented RNA virus, is an enveloped virus of ~8.9 kb 
with six open reading frames (1,2), which infects a wide 
variety of mammalian species, including horses, sheep and 
dogs (3). BDV has been widely investigated in neuroscientific 
fields on account of its numerous unique attributes causing 
neurobehavioral diseases (4) and the ability to introduce 
its RNA transcripts into host genomes (5). Previous epide-
miological studies have shown that there may be a latent 
association between BDV infection and human neuropsychi-
atric diseases (6), encephalitis and other brain diseases (3,7-12). 
In our previous study, BDV infection was reported in Chinese 
neuropsychiatric patients and health care professionals (13,14), 
which supported the hypothesis that BDV can infect humans 
and may be a pathogen in certain mental disorders, although 
the underlying molecular mechanism remains to be fully 
elucidated. However, certain studies have found no direct 
evidence of BDV infection in schizophrenia, bipolar disorder 
or major depressive disorder (15-17). The controversy requires 
resolution prior to use as a diagnostic method to ensure reli-
ability. BDV-associated functional disturbances of neuron and 
glial cells have been evidenced (18‑21) and its potential effects 
cannot be ignored.

MicroRNAs (miRNAs) are small (~22 nucleotides in 
length), non-coding, single-stranded RNAs (22). They regulate 
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gene expression by binding to the complementary sequence in 
the 3'-untranslated region (3'-UTR) of target mRNAs, resulting 
in inhibited protein synthesis or destabilizing of target mRNA 
translation at the post-transcriptional level. miRNAs have 
been shown to be pervasive in several biological processes, 
including cell death, cell proliferation, the function of immune 
cells, hematopoiesis and patterning of the nervous system (23). 
A wide range of studies have revealed that miRNAs are asso-
ciated with several human diseases, including cancer, chronic 
inflammation and viral diseases (24‑26). Previous studies have 
also indicated that miRNAs have an effect on neurodegenera-
tive and neuropsychiatric disorders (27-30), which suggests the 
possibility to associate the mechanisms of BDV infection with 
miRNA dysregulation.

In the present study, miRNA arrays were used to identify 
the differences in miRNA expression between oligoden-
drocytes (OL cells) infected with the Hu-H1 BDV strain 
(OL/BDV cells) and non-infected OL cells. The differentially 
expressed miRNAs were then bioinformatically analyzed 
using Gene Ontology (GO) and pathway analyses, in order to 
determine their biological function and localization. Finally, 
reverse transcription-quantitative polymerase chain reaction 
(RT-qPCR) analysis was performed to validate the expression 
of the differentially expressed miRNAs. The aim of the present 
study was to determine which miRNAs are dysregualted in 
OL/BDV cells, and to facilitate further investigation of the role 
of miRNAs in BDV infection.

Materials and methods

Cell line and preparation of BDV Hu‑H1 strain solution. 
The BDV Hu-H1 strain (passages 75-76 in OL cells), origi-
nally isolated from PBMCs of a patient with bipolar disorder, 
and a human fetal-derived OL cell line, were provided by 
Professor Hanns Ludwig (Free University of Berlin, Berlin, 
Germany) (31). Dulbecco's modified Eagle's medium (DMEM), 
fetal bovine serum (FBS), penicillin-streptomycin solution, 
phosphate-buffered saline (PBS), 0.25% trypsin-EDTA and 
L-glutamine were purchased from GE Healthcare Life Sciences 
(Logan, UT, USA). The human OL cell line infected with the 
BDV Hu-H1 strain was cultured with DMEM in 10% FBS and 
100 U/ml penicillin/streptomycin in a humidified incubator 
(5% CO2; 37˚C). The preparation and viral titration of the BDV 
Hu-H1 solution were performed, as described previously (32). 
The cells in 20 10-cm dishes (density, 107) were washed twice 
with PBS, and 1 ml fresh growth medium was added when 
the cells in the dishes reached 90% confluence. The cell solu-
tion was then frozen (‑80˚C) and thawed (25˚C) for 15 min, 
and repeated three times. The lysate was then centrifuged at 
3,000 x g for 10 min at room temperature. The resulting super-
natant, which contained infectious viral particles, was used as 
the stock viral solution.

The OL cells were seeded into 96‑well plates 
(3x104 cells/well). At 8 h post‑adherence, the medium was 
removed and 100 µl viral solutions were added to each well. 
The stock viral solution was serially diluted 10‑fold five times, 
with four replicates for each concentration. The cells were 
cultured for 7 days in DMEM/2% FBS, during which the 
cell medium was replaced once every 2 days to maintain the 
extracellular environment. The viral titration was assessed 

using immunohistochemistry. The BDV-infected OL cells 
were fixed in 96‑well plates for 30 min at room temperature 
with 4% paraformaldehyde, followed by permeabilization 
for 10 min in 0.25% Triton X-100. The cells were then rinsed 
three times with PBS (5 min each time) and blocked with 
5% (w/v) skimmed milk solution for 1 h at 37˚C. The cells 
were then incubated overnight with mouse anti‑BDV‑specific 
nuclear-protein (p40) antigen primary monoclonal antibody 
(provided by Professor Ludwig Hanns, 1:1,000 diluted with 
PBS) (33) at 4˚C, followed by incubation for 1 h with secondary 
goat anti-mouse antibody (cat. no. A0216; 1:5,000; Beyotime 
Institute of Biotechnogy, Shanghai, China) at room tempera-
ture. Immunofluorescence was detected using a phase‑contrast 
microscope following three PBS washes (32).

BDV infection of OL cells. A total of 105 non-infected OL cells 
were seeded into four separate 6-well plates (total 24 wells) 
with 10% FBS in DMEM. Half of these wells were infected 
with Hu-H1 stock solution (as above) at a multiplicity of infec-
tion of 1.0. Specifically, following adherence of the OL cells, 
the medium was removed, and 150 µl Hu-H1 strain solution 
was added per well to produce BDV-infected OL (OL/BDV) 
cells. The cells were stored in a humidified incubator (5% 
CO2 at 37˚C) for 1.5‑2 h. Next, the excess viral solution was 
removed by suction at the edge of the plated, and the cells were 
cultured in fresh medium. The remaining 12 wells of OL cells 
were maintained as non-infected control OL cells. The two 
cell groups were incubated under the same conditions for the 
remainder of the experiment. The BDV infection was detected 
and observed using an immunouorescence assay, as described 
previously (32,34).

miRNA arrays. On day 14 post-infection, six wells of the OL 
and OL/BDV cells were used for miRNA arrays, respectively. 
Fluorescent miRNA targets were prepared from 1 or 2.5 µg 
total RNA samples, which were extracted from the OL/BDV 
and non-infected OL cells using an OneArray® Amino Allyl 
miRNA Amplification kit (Phalanx Biotech Group, Hsinchu, 
Taiwan) and Cy5 dyes (GE Healthcare, Piscataway, NJ, USA). 
Fluorescent targets were hybridized to the Human Whole 
Genome OneArray® using a Phalanx hybridization buffer 
on the Phalanx miRNA OneArray® Hybridization system 
(Phalanx Biotech Group). Following 16 h of hybridization 
at 50˚C, non‑specific binding targets were removed through 
three washing steps (42˚C for 5 min, 42˚C for 5 min and 25˚C 
for 5 min, followed by rinsing 20 times), and the slides were 
dried by centrifugation at 1,000 x g for 3 min at room tempera-
ture and scanned using an Axon 4000B scanner (Molecular 
Devices LLC, Sunnyvale, CA, USA). The intensities of each 
probe were obtained using GenePix 4.1 software (Molecular 
Devices LLC). The probes with a log2 ratio ≥0.58 or ≤‑0.58, 
and P<0.05 were defined as differential genes for further 
pathway enrichment analysis. Each experiment was repeated 
three times.

Prediction of target genes and bioinformatic analysis. GO 
analysis (www.geneontology.org) was applied to determine the 
functions of the intersecting genes on the basis of molecular 
function, cellular component and biological process. To 
ensure understanding of the gene expression information, 
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the pathways (www.reactome.org/ReactomeGWT/entrypoint.
html and www.genome.jp/kegg/) of the target genes of the 
different miRNA were also analyzed.

RT‑qPCR analysis. On day 14 post-infection, the remaining six 
wells of OL and OL/BDV cells were used for RT-qPCR assays, 
respectively. Total RNA was extracted using the miRNEasy 
Mini kit (cat. no.217004; Qiagen, Hilden, Germany). RT-qPCR 
was performed on a Corbett Research Rotor-Gene 6000 
thermocycler (Corbett Life sciences, Sydney, Australia). 
The All-in-OneTM First-Strand cDNA Synthesis kit (cat. 
no. AOPT-0020) and All-in-One™ miRNA qPCR Detection 
kit (cat. no. AOPR-0200) was purchased from GeneCopoeia, 
Inc. (GeneCopoeia Inc., MD, USA). All 10 pairs of miRNA 
primers and the U6 primers for the RT-qPCR were purchased 
from GeneCopoeia, Inc. (GeneCopoeia, Inc. Guangzhou, 
China). Briefly, the volume used for RT was 25 µl, comprising 
5 µl 5X RT buffer, 1 µl 2.5 U/µl PolyA polymerase, 1 µl RTase 
Mix, 2,000 ng total RNA template and RNase-free water. RT 
was performed using a Gene Amp PCR system 9700 (Applied 
Biosystems Life Technologies; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) at 37˚C for 60 min and 85˚C for 5 min.

The RT-qPCR assays used a total volume of 20 µl, 
according to protocol, comprising 10 µl 2X All-in-One 
qPCR mix, 2 µl All-in-OneTM miRNAqPCR primer (2 µM), 
2 µl Universal Adaptor PCR primer (2 µM) and 2 µl cDNA 
(diluted 1:5). All reactions were run in a Corbett Research 
Rotor-Gene 6000 thermocycler for 40 cycles, which consisted 
of 94˚C for 5 min, followed by 35 cycles of 94˚C for 30 sec, 
58˚C for 30 sec and 68˚C for 30 sec. The melting analysis of 

the PCR products was performed as follows: Temperature 
was increased between 50 and 99˚C (1˚C increase at each 
step), with a 90 sec period of pre‑melt conditioning in the 
first step, and 5 sec for each subsequent step. Each experi-
ment was repeated three times. Values were normalized 
against the expression levels of U6, and ΔΔCq values were 
calculated. The relative abundance of each miRNA was 
calculated using the 2-ΔΔCq method (35-37).

Statistical analysis. For all miRNA quantification experiments, 
quantification cycle (Cq) values >35 were excluded. Values 
were normalized against the expression levels of U6, and ΔΔCq 
values were calculated. Statistical analysis was performed 
using SPSS 19.9 software (IBM SPSS, Armonk, NY, USA). 
Student's t-test was used to analyze the differences in miRNA 
expression between the OL/BDV and non-infected OL cells. 
P<0.05 was considered to indicate a statistically significant 
difference. All experiments were repeated at least three times.

Results

miRNA expression profiling. To evaluate the different miRNAs 
between the OL/BDV cells and non-infected OL cells, the 
present study profiled the expression levels of 657 miRNAs in 
the two groups using an miRNA array. Compared with the 
non-infected OL cells, a total of 10 miRNAs were differentially 
expressed in the OL/BDV cells (four upregulated; six down-
regulated). miR-146a-5p showed the highest expression level 
in the OL/BDV cells, whereas miR-4521 and miR-3676-3p 
showed the lowest expression levels (Fig. 1).

Figure 1. Differentially expressed miRNAs in BDV-infected OL cells (OL/BDV) and non-infected OL cells. A total of 10 miRNAs were differentially 
expressed between the OL/BDV and non-infected OL cells. The color scale (top) shows the grading of relative expression: Red denotes a higher relative 
expression level, green denotes a lower relative expression level. miRNA/miR, microRNA; OL, oligodendrocytes; BDV, borna disease virus.
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GO and pathway analyses of miRNA target genes. The 
target genes of the differentially expressed miRNAs were 
predicted using the online database (http://targetscan.org/ 
and http://www.mirbase.org/), and then submitted for GO 
functional classification and pathway analysis (http://www.
broadinstitute.org/gsea/msigdb/annotate.jsp). The molecular 
functions of the target genes were predominantly associated 
with ‘DNA binding and receptor activity’, and involved in 
certain biological process, including ‘biopolymer metabolic 
process’ and ‘signal transduction’ (Fig. 2A-C; Table I). In 
terms of pathway analysis, the immune system and adaptive 
immune system were the most significant pathways (Fig. 2D; 
Table I).

Validation of differential miRNA expression using RT‑qPCR 
analysis. RT-qPCR analysis was performed to validate the 
expression levels of the 10 differentially expressed miRNAs in 
the OL/BDV cells. The relative expression levels of miRNAs 
were normalized against the expression levels of U6. Of the 
10 miRNAs, seven exhibited significantly lower levels of 
expression in the OL/BDV cells: miR‑1908, miR‑3676‑3p, 
miR‑296‑3p, miR‑146a‑5p, miR‑1290, miR‑424‑5p and 
miR-7-5p (Fig. 3). No differences in expression were found 
in miR-1244 or miR-4521 between the two groups (Fig. 3), 

and only one miRNA (miR-4433-3p) was undetected in the 
RT-qPCR analysis. Of note, RT-qPCR showed that the expres-
sion of miR-146a-5p, which was upregulated in the miRNA 
array, was downregulated in the OL/BDV cells.

Discussion

BDV is a neurotropic virus, which can cause central 
nervous system dysfunction in several mammalian species, 
including humans (3,36). BDV Hu-H1, originally derived 
from a human bipolar patient (31), can induce apoptosis and 
metabolic dysfunction in human OL cells in vitro (32,38). 
Proteomic analyses have indicated that BDV Hu-H1 can 
activate the downstream extracellular signal-regulated kinase 
(ERK)-ribosomal S6 kinase complex of the Raf/mitogen-acti-
vated protein kinase (MAPK) kinase/ERK signaling cascade 
in human OL cells (39). Additionally, BDV Hu‑H1 can result 
in brain metabolic dysfunction in Sprague-Dawley rats (40). 
Despite these findings, the mechanisms underlying BDV 
Hu-H1 infection in the human brain remain to be fully eluci-
dated. miRNAs may provide a novel approach to addressing 
remaining question. Thus, the present study profiled and 
analyzed miRNA expression in BDV Hu-H1-infected human 
OL cells.

Table I. Gene Ontology analyses and pathway analyses of microRNA target genes.

Gene function Genes (n) P-value

Molecular function
  DNA binding 602 3.53E-13
  Receptor activity 583 8.94E‑14
  Transferase activity, transferring 
  phosphorus-containing groups 424 6.75E-21
  Transmembrane receptor activity 419 1.34E‑08
  Substrate‑specific transporter activity 392 1.22E‑05
Cellular component
  Cytoplasm 2,131 1.88E‑43
  Membrane 1,994 9.85E‑30
  Membrane part 1,670 6.37E-25
  Nucleus 1,430 1.37E-25
  Plasma membrane 1,426 6.07E-21
Biological process
  Biopolymer metabolic process 1,684 1.98E‑40
  Signal transduction 1,634 1.46E-36
  Nucleobase, nucleoside, nucleotide and
  nucleic acid metabolic process 1,244 5.47E-21
  Protein metabolic process 1,231 1.89E‑32
  Cellular macromolecule metabolic process 1,131 6.78E‑31
Pathway analyses
  Immune system 933 5.06E‑16
  Adaptive immune system 539 1.03E‑14
  Metabolism of lipids and lipoproteins 478 2.37E‑11
  Hemostasis 466 3.29E‑11
  Developmental biology 396 1.52E‑17
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An miRNA array is a high throughput and versatile 
screening tool for analyzing the expression of miRNA, however, 
its false positives cannot be ignored. Therefore, microarray 
data requires validation using RT-qPCR analysis, which has 
higher specificity and provides reliable quantity. It was reported 

in previous studies that preliminary results were inconsistent 
with the results of RT-qPCR analysis (41,42). Similarly, in 
the present study, miR‑146a‑5p, miR‑1290, miR‑1908 and 
miR-424-5p showed downregulation in expression levels using 
RT-qPCR analysis, which was inconsistent with the results of 

Figure 2. GO and pathway analysis of the differentially expressed miRNAs. The horizontal axes show the top 10 targeted GENE SET name by GO analysis 
and Pathway analysis: (A) molecular function, (B) cellular component and (C) biological process. (D) pathway analysis. Horizontal axes showed the targeted 
genes overlapped in Gene Set names of different miRNAs. miRNA, microRNA; GO, Gene Ontology.

  A   B

  C   D
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the miRNA array. In addition, miR-4433-3p was not detected 
using RT-qPCR analysis, and no differences were found in the 
expression of miR-1244 or miR-4521 between the BDV-infected 
and non-infected OL cells. However, three consistently down-
regulated miRNAs were found: miR‑7‑5p, miR‑296‑3p and 
miR-3676-3p.

In the dysregulated miRNAs, the present study focused 
on miR‑7‑5p, miR‑424‑5p and miR‑296‑3p, which are closely 
associated with neural cell proliferation and apoptosis. 
miR-7-5p has been reported in a wide range of signaling 
pathways, including the MAPK and phosphoinositide 3-kinase 
(PI3K)/Akt pathway (43,44). miR-7-5p can inhibit vascular 
endothelial cell proliferation via directly targeting the 3'-UTR 
of RAF1, an upstream element of the Ras-Raf-MAPK pathway, 
which has a key effect on nervous system function. However, 
miR-7-5p is frequently downregulated in glioblastoma micro-
vasculature (43). miR‑7 can efficiently affect cell proliferation 
and metastasis in hepatocellular carcinoma, through regula-
tion of the PI3K/AKT pathway by suppressing PIK3CD, 
mammalian target of rapamycin and p70S6 K (44). In addi-
tion, miRNA-7-5p can inhibit melanoma cell migration and 
invasion by regulating insulin receptor substrate-2 (45). The 
functions of miR-7-5p have also been reported in other types 
of cancer by targeting different signaling pathways (46-50). 
These results provide novel information for further investi-
gating the function of miR-7-5p in BDV-infected nervous cells.

miR-424-5p is upregulated and modulates the ERK1/2 
signaling pathway by targeting suppressor of cytokine induced 
signaling 6 in pancreatic cancer (51). However, its downregula-
tion can lead to the progression of liver cancer, and regulate 
the resistance to anoikis and epithelial mesenchymal transi-
tion during the metastatic process of hepatocellular carcinoma 
cells by targeting inhibitor of β-catenin and T cell factor (52). 
In addition, previous studies have shown that activation of the 

ERK1/2 pathway may hinder nerve growth factor-induced cell 
differentiation in BDV‑infected PC12 cells (19). Therefore, 
whether dysregulated miR-424-5p affects BDV-infected 
nervous cells through the ERK1/2 signaling pathway requires 
further investigation. Although reports of miR‑296‑3p are 
limited, miR‑296‑3p has been found to regulate cell growth 
by targeting the potassium channel, EAG1 (53), in human 
glioblastoma, which presents a novel view in understanding 
the pathogenic mechanisms of BDV infection.

Previous studies have reported that human OL cells infected 
with the BDV H1766 strain, isolated from a horse, revealed down-
regulated expression levels of miR-122 and miR-155 (54,55), 
which differed from the results of the BDV Hu-H1 infected and 
non-infected OL cells in the present study. Of note, miRNA 
expression profiling may be unique due to the possible divergent 
mechanisms of human OL cells infected with different BDV 
strains; this requires further investigation.

In conclusion, the present study screened 10 of 657 
dysregulated miRNAs in BDV Hu-H1-infected human OL 
cells using an miRNA array. Of the 10 miRNAs validated 
using RT‑qPCR, the expression levels of seven were signifi-
cantly downregulated: miR‑1908, miR‑3676‑3p, miR‑296‑3p, 
miR‑146a‑5p, miR‑424‑5p, miR‑7‑5p and miR‑1290. The 
biological functions of the dysregulated miRNAs require 
further investigation, however, based on GO and pathway 
analyses, further investigation of BDV-infected OL cells 
offers promise in improving current understanding of the 
neuropathogenesis of BDV.
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