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Abstract. Schizophrenia (SZ) and cancer (Ca) have a broad 
spectrum of clinical phenotypes and a complex biological back-
ground, implicating a large number of genetic and epigenetic 
factors. SZ is a chronic neurodevelopmental disorder signified 
by an increase in the expression of apoptotic molecular signals, 
whereas Ca is conversely characterized by an increase in appro-
priate molecular signaling that stimulates uncontrolled cell 
proliferation. The rather low risk of developing Ca in patients 
suffering from SZ is a hypothesis that is still under debate. 
Recent evidence has indicated that microRNAs (miRNAs or 
miRs), a large group of small non‑coding oligonoucleotides, 
may play a significant role in the development of Ca and major 
psychiatric disorders, such as SZ, bipolar disorder, autism 
spectrum disorders, suicidality and depression, through their 
interference with the expression of multiple genes. For instance, 
the possible role of let‑7, miR‑98 and miR‑183 as biomarkers for 
Ca and SZ was investigated in our previous research studies. 
Therefore, further investigations on the expression profiles 
of these regulatory, small RNA molecules and the molecular 
pathways through which they exert their control may provide 
a plausible explanation as to whether there is a correlation 
between psychiatric disorders and low risk of developing Ca.
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Introduction

MicroRNAs (miRNAs or miRs) comprise a class of short RNA 
molecules, 20‑23 nucleotides in length, which play a crucial role 
in the regulation of gene expression at the post‑transcriptional 
level. The majority of miRNA genes are located in intergenic 
regions, behaving in this case as independent transcriptional 
units  (1). However, they may also be found in introns of 
coding and non‑coding regions, as well as in exons of certain 
non‑protein‑coding transcripts, where their transcription is 
regulated together with their host exons (2).

miRNAs specifically function by targeting complementary 
sequences within mRNA molecules through complementary 
base‑pairing, resulting in mRNA destabilization and degrada-
tion, or the downregulation of mRNA translation into proteins 
by ribosomes (3,4). They exert their post‑translational control 
on many basic cellular functions, such as growth, migration 
and death (3,5,6). They target approximately 30% of the human 
genome and 70% of miRNAs identified are expressed in the 
central nervous system (CNS), where specific subtypes are brain 
or brain‑region specific (7). Therefore, they play a pivotal role in 
neural development, differentiation and maturation, brain struc-
ture and synapse plasticity,  dand their dysregulation is possibly 
linked to schizophrenia (SZ) by affecting cellular pathways 
implicated in the expression of associated genes (8‑15).

Many of these genes have been linked with either an increase 
in the cellular apoptotic rate, or the deceleration of growth (16). 
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Since SZ is a disorder characterized by an apoptosis‑promoting 
and proliferation‑inhibiting genetic activity, and cancer (Ca) is 
conversely the result of uncontrolled cellular proliferation, it 
can be hypothesized that patients with SZ may have a lower 
a lower risk of developing Ca (16‑19). Indeed, such an inverse 
correlation has been reported as early as 1909 and has been 
further supported more recently, including a number of popu-
lation‑based incidence studies (20‑29). miRNAs emerge as 
significant etiopathogenetic factors and possible biomarkers for 
both disorders and may mediate this possible negative correla-
tion, probably through their pleiotropic and epistatic function.

2. miRNAs implicated in cancer

The involvement of miRNAs in Ca has been extensively studied 
during the past few years, with particular focus on the potential 
role of these short RNA molecules in therapy and as biological 
markers in diagnosis and prognosis.

For instance, Zhu et al (30) demonstrated that, in prostate 
Ca, miR‑152 suppresses the migration and invasion of Ca cells 
by targeting transforming growth factor‑β (TGF-β). Moreover, 
Qu et al (31) found that both miR‑182 and miR‑203 induce 
mesenchymal-to-epithelial transition  (MET) by targeting 
snail family zinc finger 2 (SNAI2) in prostate Ca. Of note, this 
induction of MET is accompanied by the self‑sufficiency of 
growth signals and the increased survival of prostate Ca cells. 
In addition to the above, the upregulation of miR‑143 has been 
shown to promote prostate Ca cell migration and invasion both 
in vitro and in vivo (metastasis) by suppressing fibronectin 
type  III domain containing 3B  (FNDC3B). This gene is a 
fibronectin family member which regulates cell motility and is 
downregulated in tumor cells with high metastatic potential, a 
fact indicating its oncosuppressive role (32).

As regards colorectal Ca, miR‑362‑3p has been found to 
induce cell cycle arrest, and a high expression of this miRNA 
has been associated with a good prognosis  (33). Another 
study demonstrated that miR‑29c may play a significant role 
as a new circulating biomarker for the prediction of the early 
relapse of colorectal Ca. In that study, miR‑29c expression 
levels were significantly higher in the samples of the non‑early 
relapsed patients compared to the early relapsed patients (34). 
Furthermore, miR‑218 has been shown to inhibit cell cycle 
progression and promote apoptosis in colorectal Ca through 
the downregulation of BMI1 polycomb ring finger (BMI1), a 
well‑known oncogene (35). More specifically, miR‑218 was 
demonstrated to induce cell cycle arrest in the G2 phase by 
suppressing CDK4 and upregulating p53, two downstream 
targets of BMI1 (35).

In breast Ca, miR‑30a has been shown to suppress tumor 
growth and metastatic potential by targeting metadherin, a mole-
cule with a crucial role in the metastatic cascade. Particularly, 
miR‑30a targets metadherin, leading to the inhibition of cell 
migration and invasion, which means that it possibly acts as 
an oncosuppressor molecule (36). Additionally, miR‑133a has 
been shown to regulate the cell cycle and proliferation rate by 
targeting epidermal growth factor receptor (EGFR) through the 
Akt signal transduction pathway. Thus, miR‑133a suppresses 
EGFR expression, leading to a reduced signal transduction 
through Akt molecular pathway and as a result, reduced cell 
cycle progression and proliferation is observed (37). Moreover, 

miR‑124 negatively regulates CD151, a molecule that is highly 
expressed in breast Ca cells and promotes metastasis, and is 
therefore characterized as a tumor suppressor molecule (38). 
Hwang et al (39) highlighted the promotion of epithelial-to-
mesenchymal transition (EMT) of breast malignant tumors 
via the suppression of its target, adiponectin receptor  1. 
Furthermore, miR‑26a has been shown to inhibit cell prolifera-
tion and migration by suppressing the expression of myeloid 
cell leukemia 1 (MCL‑1), an anti‑apoptotic molecule, whereas 
miR‑153 induces apoptosis in the aggressive breast Ca cell line, 
MDA‑MB‑231 (40). miR‑506 seems to regulate TGF-β‑induced 
EMT (41).

As regards miRNAs that target zeb expression, it has been 
shown that both the miR‑200 family and miR‑205 coopera-
tively regulate the expression of the E‑cadherin transcriptional 
repressors, zeb1 and zeb2 (sip1). Both these molecules have been 
shown to play a role in the promotion of EMT. Additionally, 
the ectopic expression of these miRNAs leads to the opposite 
process of EMT, mesenchymal-epithelial transition (MET) and 
their expression is often lost in invasive breast Ca cell lines with 
the mesenchymal phenotype (42).

Moreover, it has been found that the enforced expression of 
miR‑200 abrogates the capacity of metastatic lung adenocarci-
noma cell lines to undergo EMT, invade and metastasize (43).

In another study  (44), miR‑155 was shown to facilitate 
TGF‑β‑induced EMT and tight junction dissolution, as well as 
cell migration and invasion. This means that miR‑155 is another 
miRNA molecule with a significant potential to enhance 
EMT and, subsequently, metastasis. High expression levels of 
miR‑155 also seem to positively correlate with invasive breast 
carcinomas.

Furthermore, miR‑29a suppresses tristetraprolin, a regu-
lator of epithelial polarity and metastasis. Thus, miR‑29a is 
likely to possess an oncogenic and metastasis‑promoting role 
in breast Ca (45).

A recent study (46) revealed the role of miR‑132 in the 
migration and invasion of lung Ca cells. More precisely, this 
was shown to occur due to the targeting of zeb2 by miR‑132.

As regards the role of miRNAs in tumors of the neural 
system, the expression of miR‑21 has been shown to be 
increased, while the levels of miR‑124 and miR‑128 have been 
repeatedly shown to be decreased in glioblastoma (7).

3. miRNAs and schizophrenia

The architecture of the brain nervous system and the ability 
of the neurons for post-synaptic remodeling requires the 
implication of complex intracellular networks consisting of 
molecular signal tranduction systems, whereas miRNAs play 
an important and crucial role through their regulatory func-
tion on specific genes, therefore shaping the topography of 
the brain neural networks. Almost 70% of miRNAs identified 
have been shown to be highly or exclusively expressed in the 
brain, a number of which have been implicated in important 
aspects of neuronal function (47). Specifically, miR‑124 and 
miR‑9 have been shown to play a crucial role in neurogenesis; 
the overexpression of these miRNAs decreases the number of 
astrocytes, whereas the inhibition of these miRNAs reduces 
the number of neurons  (48). Other genetic studies support 
the hypothesis that miRNAs play an important role not only 
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in human brain development, but also in brain‑diseases (8). 
Specifically, miRNAs may serve as a unifying link among the 
structural developmental anomalies, neurotransmitter altera-
tions and finally, the treatment of SZ (49). In another study, the 
researchers compared the expression of 264 miRNAs from the 
pre-frontal cortex of schizophrenic patients and 21 individuals 
as a control non-schizophrenic sample population. The authors 
identified that the expression of 15 miRNAs decreased and the 
expression of one miRNA increased in the pre-frontal cortex 
of the schizophrenic patients, when compared with the control 
group of individuals (50). In a study on the Chinese population, 
even though the samples were obtained from peripheral blood, 
the authors found a potentially functional variant that affected 
pre‑miR‑30e and was closely associated with SZ (51).

SZ is a neurodevelopmental disorder and evidence of 
progressive clinical deterioration and neurostructural and 
molecular alterations following the onset of psychosis has 
led to the hypothesis that apoptosis may contribute to its 
pathophysiological background (52). Neuroimaging data from 
schizophrenic patients suggest progressive loss of cortical brain 
tissue in first‑episode psychosis and the role of apoptosis on this 
phenomenon appears plausible (53). In addition, the data seem 
to indicate an increase in apoptosis in several brain cortical 
regions in SZ, particularly during the earlier stages of the 
disease (18,54) and miRNAs, as part of the epigenetic mecha-
nisms, play a crucial role in this process through their regulatoy 
effects on many mechanisms in the CNS networks (55).

4. miRNAs implicated in both cancer and schizophrenia

The rather rare co‑morbidity of Ca and SZ is an old hypothesis 
which requires further investigation of miRNAs as molecules 
that regulate apoptotic signaling in both disorders. It is gener-
ally known that in neurodegenerative disorders, such as SZ, 
bipolar disorder, depression, autism, Parkinson's disease and 
dementia, an increase in apoptosis is observed, whereas Ca cells 
exhibit a decrease in apoptotic levels. In the present review, we 
aimed to analyze data from clinical studies implicating certain 
miRNA expression profiles as possible molecular pathways for 
the poor association between Ca and SZ. At the clinical level, 
two of the studies retrieved focused on the co‑morbidity of SZ 
and Ca with respect to the role of miRNAs (53,56). In the first 
of these studies, miRNA expression patterns were compared 
between patients suffering from SZ and patients with SZ and a 
solid tumor (56). It was shown that in total of the 345 different 
miRNAs which were analyzed by the miRCURY LNA miRNA 
array system (Exiqon A/S, Vedbaek, Denmark), only miR‑183 
was upregulated significantly in the first group, indicating a 
possible protective function of this miRNA against Ca in SZ 
patients. These results suggested the possibility that the expres-
sion level of miR‑183 may be directly related to the absence 
of a solid tumor in the presence of SZ. On the contrary, the 
absence of miR‑183 expression in the group of patients with SZ 
and Ca may be an indication that this miRNA is a protective 
factor against Ca. Additionally, this finding is in line with other 
studies which support the anti‑mitotic properties of miR‑183 
through its involvement in the modulation of different stages of 
apoptosis and autophagy‑related genes (57,58). Specifically, the 
knockdown of miR‑183 expression has been shown to induce 
autophagic cell death in medullary thyroid Ca through the regu-

lation of certain tumor suppressor signaling pathways (59), while 
in another study, the overexpression of miR‑183 was shown to 
correlate with the metastatic potential of lung Ca cells (60). 
Furthermore, the overexpression of miR‑183 has been shown 
to inhibit the migration and invasion of lung Ca cells. Thus, 
miR‑183 seems to play a tumor suppressor role, possibly by 
activating the expression of tumor suppressor genes that control 
cell differentiation or apoptosis (61). In another study, a group 
of patients suffering from Ca only participated in conjunction 
with two other groups: one consisting of patients with SZ only 
and another one of patients with SZ and Ca (53). A substantial 
downregulation of let‑7p‑5p, miR‑98‑5p and of miR‑183‑5p was 
observed in those with a solid tumor or with a solid tumor and 
SZ, but not in those with SZ alone, providing an indication of 
their role in the occurrence of Ca. High expression levels of 
these miRNAs may possibly lead to high levels of apoptosis, 
and may thus enable the incidence of SZ. Additionally, the 
observed low levels of expression of the same miRNAs in a 
sample of patients suffering from SZ and Ca possibly caused a 
decrease in apoptotic activity and thus, made them vulnerable 
to the development of malignant tumors. Furthermore, this may 
indicate the development of SZ due to other molecular pathways 
independent of these miRNAs. Let‑7 is an miRNA that has been 
shown to play a role in other neurodegenerative disorders, such 
as Parkinson's disease and Alzheimer's disease. However, this 
was the first clinical study to implicate this specific miRNA in 
SZ (53).

Finally, the possibility of an miRNA‑mediated association 
between the two disorders has been further highlighted by Taba
rés‑Seisdedos and Rubenstein (62) who supported that chromo-
some 8p might be a copy‑number variant (CNV) hub for both 
SZ and Ca. This chromosomic region has a well‑known genetic 
significance for both tumorigenesis and neuropsychiatric disor-
ders, including oncogenes, tumor suppressor genes and at least 
7 miRNA coding sequences.

5. Conclusion

In this review, we attempted to investigate the intervention of 
miRNAs in the comorbidity of Ca and SZ on the basis of the 
hypothesis that the incidence of malignancies in patients with 
SZ is reduced. In doing so, one should keep in mind that Ca 
constitutes a heterogeneous group of conditions of multivalent 
etiopathogenesis, with different responses to environmental, 
immunochemical and hormonal stimuli. Several miRNAs 
have been found to be either upregulated or downregulated, 
depending on the Ca type, and the miRNA pathways in 
tumorigenesis have not yet been fully elucidated (61). Similarly, 
it has been hypothesized that SZ genetics follow a polygenic 
model which includes both shared genetic abnormalities and 
variants that may contribute to different subtypes and to the 
heterogeneity of the disorder (63‑65). Therefore, the pattern of 
the SZ‑associated miRNAs is complex and their exact function 
largely unknown (66).

In practice, this means that the utility of a single miRNA 
is limited in predicting the risk for Ca in patients with SZ. 
A group of miRNAs which constitutes the ‘signature’ of a 
disorder would provide more robust evidence when investi-
gating the molecular basis of phenotypic correlations. Such 
a task is particularly challenging for SZ, since there is no 
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identified specific genetic profile of the disease (12). Moreover, 
technicalities concerning the methods of miRNA measurement 
and the tissue origin explain at least partially the lack of an 
accordance thus far on a precise SZ‑related miRNA group. In 
particular, microarray platforms, northern blot analysis, PCR or 
a combination of these have all been used in different studies. 
As regards the specimen source, the analyses of brain tissue 
including dorsolateral pre-frontal cortex  (DLPFC), frontal 
cortex (FC), superior temporal gyrus (STG) and hippocampus, 
of cerebrospinal fluid and of peripheral blood mononuclear 
cells, including genome-wide association studies (GWAS) have 
been utilized. Antipsychotic treatment also has an effect on the 
levels of some miRNAs, so the timing of the sampling affects 
the result (67,68).

Hence, these limitations need to be considered when 
looking into the miRNA‑intervened correlation of the two 
conditions. Ideally, future research should focus on more 
targeted comparisons including a larger sample size. Although 
there is evidence that there are common biological background 
and mechanisms (17,62,67,69), the molecular implication of 
miRNAs in the discussed co‑morbidity remains to be further 
explored in order to shed light on their promising role as a 
diagnostic, prognostic and therapeutic target.
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