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Abstract. Atropine-induced damage is associated with 
enzyme and protein alterations. The aim of the present study 
was to investigate atropine-induced alterations in testicular 
expression levels of angiotensin-converting enzyme (ACE) 
and adenosine 5'-triphosphate binding cassette sub-family 
G member 2 (ABCG2) following atropine treatment. Male 
Wistar rats received 15 mg/kg/day atropine for 7 days; control 
rats received an identical volume of saline, Following treat-
ment, the testes were harvested for immunohistochemistry and 
in situ hybridization to examine the protein and gene expres-
sion levels of ACE and ABCG2 by digital image analysis. ACE 
gene and protein expression levels were significantly reduced 
in the testes of atropine-treated rats, compared with control 
rats (P=0.0001 and P<0.001, respectively). In addition, ABCG2 
gene and protein expression levels were significantly increased 
in the testes of atropine-treated rats, compared with control 
rats (P=0.0017 and P<0.001, respectively). Thus, the results of 
the present study demonstrate that testicular protein and gene 
expression levels of ACE and ABCG2 were altered as a result 
of atropine-induced toxicity in the rats. These alterations may 
result in abnormal testicular function, and the proteins and 
genes identified in the present study may be useful to elucidate 
the mechanisms underlying atropine-induced toxicity and 
provide a direction for further studies. 

Introduction

Atropine sulfate is an anticholinergic drug with a wide spec-
trum of activity (1), exerting diverse effects on numerous 

systems. Rapid administration of atropine during resuscita-
tion may be life-saving (2). Atropine has also been used for 
the treatment of anticholinesterase pesticide poisoning (3), 
bradycardia and associated hypotension (4). In addition, 
atropine may significantly slow the progression of myopia in 
children (5). Furthermore, atropine has been demonstrated to 
have a significant anti‑emetic effect (6).

Although the importance of atropine in the treatment of 
organophosphate poisoning is generally recognized, numerous 
side effects of atropine have been reported, suggesting 
potential toxicity (7). Atropine used in dobutamine stress 
echocardiograms has been reported to cause morbidity (8). 
Atropine has been shown to be cytotoxic to human corneal 
epithelial cells via the induction of cell cycle arrest and death 
receptor-mediated mitochondrion-dependent apoptosis (9). 
In the heart, atropine toxicity resulted in altered expression 
levels of E-cadherin and serotonin (10), and in the lung, atro-
pine decreased pulmonary gas exchange in a dose-dependent 
manner (11). In addition, atropine alters pulse rate, pupil 
diameter and salivary flow (12). The use of atropine eye drops 
has been reported to cause significant toxicity (13), and a dose 
of atropine 1% may result in pupillary mydriasis and accom-
modative paralysis (14). Previous studies have demonstrated 
that atropine is primarily involved in decreasing male fertility 
by inhibiting the transport of sperm and semen in rats (15). 
In addition, the angiotensin-converting enzyme (ACE) and 
adenosine 5'-triphosphate binding cassette sub-family G 
member 2 (ABCG2) were observed to be altered in the testes 
in some conditions, such as selenium-induced toxicity (16,17). 
However, the alterations in ACE and ABCG2 expression levels 
in the testes following atropine-induced toxicity remain to be 
elucidated.

The present study performed immunohistochemistry and 
in situ hybridization (ISH) to evaluate the expression levels of 
ACE and ABCG2 in the testes, and determine whether protein 
and gene expression levels were altered by atropine-induced 
toxicity.

Materials and methods

Animals and study design. A total of 16 healthy adult male 
Wistar rats, (age, 2 months; weight, 210-250 g; Sun Yat-sen 
University, Guangzhou, China), were used for the purposes 
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of the present study. All animals were housed individually in 
stainless-steel wire-bottom cages in an air-conditioned room 
at a temperature of 25˚C, 50% relative humidity and a 12‑h 
light/dark cycle. Rats had free access to standard pellet chow 
and water throughout the experimental period. All procedures 
described in the present study were approved by the ethics 
committee of Dali University (Dali, China).

Animals were randomly assigned to one of two groups 
(n=8 rats/group): The atropine group, which received intra-
peritoneal injections of a physiological dose of 15 mg/kg/day 
atropine for seven days (one injection per day) and the control 
group, which received identical volumes of normal saline for 
seven days (10).

On day eight, the control and experimental animals were 
deeply anesthetized with 1% sodium pentobarbital, (Harbin 
Pharmaceutical Group, Co., Ltd., Harbin, China) and the testes 
were removed. The testes were harvested for histopathology, 
immunohistochemistry and ISH.

Histopathology. Testicular tissues were fixed in phos-
phate-buffered 4% formalin (pH 7.4) for 24 h and embedded 
in paraffin. Testes were sectioned (4‑µm) on a microtome and 
stained with hematoxylin and eosin. The slides were coded, 
and semiquantitative analysis of the sections was performed 
in a blinded manner by a pathologist using a light microscope. 
Histopathological alterations were evaluated as described 
previously (18,19).

Immunohistochemistry. Testes were immersed in 4% 
formaldehyde in phosphate-buffered saline (PBS; pH 7.2), 
embedded in paraffin and sectioned coronally (4‑µm) on a 
microtome. Sections were deparaffinized, and immersed in 
0.3% H2O2 in PBS for 10 min followed by 1% normal goat 
serum in PBS for 3 min to reduce nonspecific reactions. 
Primary mouse anti-ACE (dilution, 1:400; cat. no. sc-23908; 
Santa Cruz Biotechnology, Inc., Dallas, TX, USA) or rabbit 
anti-ABCG2 (dilution, 1:400; cat. no. sc-130933; Santa Cruz 
Biotechnology, Inc.) antibodies were added to sections and 
incubated overnight at 4˚C. Subsequently, sections were 
washed three times in PBS and incubated with biotin-conju-
gated goat anti-mouse and goat anti-rabbit IgG secondary 
antibodies (cat. nos. sc-23908 and sc-130933, respectively; 
dilution, 1:400; Santa Cruz Biotechnology, Inc.) for 1 h at 
room temperature. Following five washes with PBS, tissue 
sections were incubated for 10 min in streptavidin-peroxidase 
(horseradish peroxidase; Santa Cruz Biotechnology, Inc.) and 
then washed three further times with PBS. Bound antibody 
was visualized with diaminobenzidine (DAB), and sections 
were counterstained with hematoxylin according to the 
methods described previously (20-22). PBS was substituted 
for primary antibody as the negative control.

ISH. ACE and ABCG2 genes were detected using ISH kits 
purchased from Wuhan Boster Biological Technology, Ltd., 
Wuhan, China (catalog nos. MK-2335 and MK-2675, respec-
tively). ISH was performed according to the manufacturer's 
instructions, with slight modifications. Briefly, slides were 
denatured with 70% formamide in 2X saline sodium citrate 
buffer at 65˚C for 10 min. The probe mixture was denatured 
at 65˚C, incubated at 37˚C for 10 min and subsequently 

applied to the slides in a moist chamber. Following overnight 
hybridization, slides were washed with PBS for 5 min. Positive 
signals were visualized with DAB and sections were coun-
terstained with hematoxylin. The slides were dried at room 
temperature (23).

Image processing. Total integrated optical density (IOD), a 
parameter representing ACE and ABCG2 expression levels 
in testicular tissue, was determined using a microscope 
(BX41; Olympus Corporation, Tokyo, Japan), digital camera 
(DP-10; Olympus Corporation) and image-analysis program 
(MetaMorph software version 4.65; Molecular Devices, 
LLC, Sunnyvale, CA, USA). A total of five images were 
captured of each immuno- and ISH-stained section (magni-
fication, x200) from eight rats, which were used to calculate 
the mean (21,22).

Statistical analysis. Data are expressed as the mean ± stan-
dard error. The total IOD of the two groups was compared 
using Kruskal-Wallis analysis. P<0.05 was considered to 
indicate a statistically significant difference. All analyses 
were performed in SPSS version 12.0 (SPSS Inc., Chicago, IL, 
USA).

Results

Histological examination. Hematoxylin and eosin staining did 
not reveal any morphological differences in rat testes between 
the two groups (data not shown).

Expression levels of ACE protein. ACE staining was detected 
primarily in the tubule lumen, as fine brown granular staining. 
Sections were independently verified by two observers in order 
to confirm the results.

The photomicrographs in Fig. 1 reveal ACE staining in 
control (Fig. 1A) and atropine-injured (Fig. 1B) testes. Total 
IOD of ACE in testes from rats that had undergone atro-
pine intoxication was significantly reduced compared with 
control rats (0.0049±0.00057 vs. 0.0063±0.00039; P=0.0001; 
Table I).

Expression levels of ABCG2 protein. ABCG2 staining was 
detected primarily in the tubule lumen, as fine brown granular 
staining.

ABCG2 staining was performed on the testes of control 
(Fig. 2A) and atropine-treated (Fig. 2B) rats. Total IOD of 
ABCG2 in testes from rats subjected to atropine intoxica-
tion was significantly increased compared with control rats 
(0.0072±0.00063 vs. 0.0059±0.00071; P=0.0017; Table I).

Expression levels of ACE DNA. ISH of ACE DNA was 
detected primarily in the tubule lumen of testicular tissue 
from control (Fig. 3A) and atropine-exposed (Fig. 3B) rats. 
Total IOD of ACE in testes from rats subjected to atropine 
exposure was significantly reduced compared with control rats 
(0.0047±0.00046 vs. 0.0062±0.00035: P<0.001; Table II).

Expression levels of ABCG2 DNA. ISH of ABCG2 DNA was 
detected primarily in the tubule lumen of testicular tissue 
from control (Fig. 4A) and atropine-exposed (Fig. 4B) rats. 
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Total IOD of ABCG2 in testes from rats subjected to atropine 
exposure was significantly increased compared with control 
rats (0.0070±0.00027 vs. 0.0059±0.00016; P<0.001; Table II).

Discussion

Although atropine is widely used, its undesirable side effects 
may markedly decrease quality of life.

ACE is involved in the physiology of the vasculature, blood 
pressure and inflammation (24). It has been demonstrated that 
the insertion/deletion (I/D) ACE gene polymorphism is associ-
ated with coronary restenosis (25), and may also affect blood 

Figure 1. Effect of atropine exposure on ACE protein expression levels in rat 
testes. Photomicrographs reveal ACE staining in testes from (A) control and 
(B) atropine-treated rats. Positive immunostaining appears as brown staining. 
Total ACE integrated optical density in the testes of rats subjected to atro-
pine exposure was significantly reduced compared with control rats (Table I; 
P<0.05). Magnification, x200. ACE, angiotensin‑converting enzyme.

Figure 2. Effect of atropine exposure on ABCG2 protein expression levels 
in rat testes. Photomicrographs reveal ABCG2 staining in testes from 
(A) control and (B) atropine-treated rats. Positive immunostaining appears 
as brown staining. Total ABCG2 integrated optical density in the testes of 
rats subjected to atropine exposure was significantly increased compared 
with control rats (Table I; P<0.05). Magnification, x200. ABCG2, adenosine 
5'-triphosphate binding cassette subfamily G member 2.

Table I. IOD of ACE and ABCG2 proteins in rat testes.

Group ACE ABCG2

Control 0.0063±0.00039 0.0059±0.00071
Atropine-treated
P-value 0.0049±0.00057 0.0072±0.00063
 0.0001 0.0017

ACE and ABCG2 were detected in rat testes by immunohistochem-
istry. IOD is a measure of staining levels. A total of five images were 
captured of each section. Data are expressed as the mean ± standard 
error. IOD, integrated optical density; ACE, angiotensin-converting 
enzyme; ABCG2, adenosine 5'-triphosphate binding cassette sub-
family G member 2.

Figure 3. Effect of atropine exposure on ACE gene expression levels in rat 
testes. Photomicrographs reveal ISH of ACE DNA in testes from (A) con-
trol and (B) atropine-treated rats. Positive ISH staining appears as brown 
staining. Total ACE integrated optical density in the testes of rats subjected 
to atropine exposure was significantly reduced compared with control rats 
(Table II; P<0.05). Magnification, x200. ACE, angiotensin-converting 
enzyme; ISH, in situ hybridization.
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pressure (26) and pregnancy-induced hypertension (27). ACE 
is one of the factors controlling blood pressure (28). The I/D 
polymorphism has been associated with nitric oxide metabolite 
levels and systolic blood pressure in men (29), and high blood 
pressure at the end of pregnancy in women (30). Abnormal 
expression of ACE in rats resulted in inflammation, pulmonary 
edema and histological changes in smoke inhalation-induced 
lung injury (31). In humans, the I/D polymorphism of the ACE 
gene has been associated with the development of high altitude 
pulmonary edema (32).

The I/D ACE polymorphism has been demonstrated to be 
independent of thrombosis formation (33); however, it may 

be associated with osteoporosis (34), panic disorder (35) and 
vitiligo (36).

In the present study, the expression levels of ACE in the 
testes of atropine-exposed rats were significantly reduced 
when compared with control rats. This suggests the ACE may 
be associated with testicular injury (37). For example, atropine 
may inhibit the muscarinic acetylcholine receptor (mACh) 
-receptor leading to abnormal gland function (38). These 
alterations may influence ACE expression and the subsequent 
conversion of angiotensin (39,40).

ABCG2 actively transports numerous endogenous and 
exogenous substrates across membranes (41). ABCG2 is 
involved in drug-resistance in cancer (42), as overexpres-
sion results in the ejection of drugs from cancer cells (43). 
In addition, ABCG2 overexpression promotes proliferation 
and suppresses apoptosis (44,45). Furthermore, ABCG2 may 
affect the oral availability, tissue distribution and excretion of 
its substrates (46).

ABCG2 has been demonstrated to be overexpressed in 
various solid tumors, acute myelogenous leukemia and chronic 
myeloid leukemia (47), and is a potential biomarker of multi-
drug resistance in non-small cell lung cancer (48). In addition, 
ABCG2 is involved in amyloid β transport and was revealed 
to be significantly upregulated in Alzheimer's disease (49). 
ABCG2 staining may be a potential novel independent prog-
nostic factor in colorectal cancer (50) and may be involved 
in hepatocellular carcinoma drug resistance (51) It has been 
demonstrated that ABCG2 is critical in cardiovascular and 
cancer pathophysiology (52). Furthermore, ABGG2 is overex-
pressed in acute myeloid leukemia patients with an increased 
risk of relapse (53).

Targeted inhibition of ABCG2 has been demonstrated to 
improve the efficacy of cancer therapeutics (54). Statins may 
downregulate ABCG2 expression and function by reducing 
low-density lipoprotein cholesterol levels (55). However, ABCG2 
deficiency may increase oxidative stress, alter the inflammatory 
response in the brain and exacerbate cognitive deficits (56).

In the present study, the expression levels of ABCG2 in 
the testes of atropine‑exposed rats were significantly increased 
compared with control rats. This suggests that ABCG2 may be 
associated with testicular injury, and influence the homeostasis 
of testes tissues and cells, such as the blood-testis barrier (57).

In conclusion, the results of the present study demon-
strate that ACE expression levels were significantly reduced, 
while ABCG2 expression levels were significantly elevated, 
in response to atropine exposure. These alterations may be 
reflected in abnormal testicular function, including sperm 
production and motility, due to disruption of the normal 
homeostasis of testes tissues and cells. The proteins and genes 
investigated in the present study may be useful to elucidate 
the mechanisms underlying atropine-induced toxicity and 
provide directions for future studies, such as the development 
of therapies that activate the mACh receptor, as well as protect 
sperm production and motility during atropine treatment.
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Figure 4. Effect of atropine exposure on ABCG2 gene expression levels in rat 
testes. Photomicrographs reveal ISH of ABCG2 DNA in testes from (A) con-
trol and (B) atropine-treated rats. Positive ISH staining appears as brown 
staining. Total ABCG2 integrated optical density in the testes of rats subjected 
to atropine exposure was significantly increased compared with control rats 
(Table II; P<0.05). Magnification, x200. ABCG2, adenosine 5'‑triphosphate 
binding cassette subfamily G member 2; ISH, in situ hybridization.

Table II. IOD of ACE and ABCG2 genes in rat testes.

Group ACE ABCG2

Control 0.0062±0.00035 0.0059±0.00016
Atropine-treated 0.0047±0.00046 0.0070±0.00027
P-value <0.001 <0.001

ACE and ABCG2 were detected in rat testes by in situ hybridiza-
tion. IOD is a measure of staining levels. A total of five images were 
captured of each section. Data are expressed as the mean ± standard 
error. IOD, integrated optical density; ACE, angiotensin-converting 
enzyme; ABCG2, adenosine 5'-triphosphate binding cassette sub-
family G member 2.
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