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Abstract. The amiloride‑sensitive sodium channel beta 
subunit (SCNN1B) gene encodes the beta subunit of the 
epithelial sodium channel, which is involved in blood pressure 
homeostasis. The aim of the present study was to investigate 
the association between SCNN1B gene promoter methyla-
tion and essential hypertension (EH), and to explore whether 
SCNN1B methylation was altered by antihypertensive therapy. 
The present study recruited 282  individuals: 94  controls, 
94 incident cases and 94 prevalent cases. Subsequently, the 
methylation status of six CpG sites in the SCNN1B promoter 
region was measured using bisulfite pyrosequencing tech-
nology. Among the six CpG sites, a significant difference in 
CpG1 and CpG2 methylation levels were detected between 
controls and incident cases (CpG1: β‑standardized=0.17, 
adjusted P=0.015; CpG2: β‑standardized=‑0.41, adjusted 
P=0.001). In addition, a significant difference was detected in 
CpG1 methylation levels between incident cases and prevalent 
cases (β‑standardized=‑0.252, adjusted P=3.77E‑04). The 
present study also demonstrated that CpG1 and CpG2 methyla-
tion levels were significantly lower in males compared with in 
females (CpG1: t=‑3.180, P=0.002; CpG2: t=‑2.148, P=0.033). 

CpG1 methylation was also shown to be positively correlated 
with age (controls: r=0.285, P=0.008; incident cases: r=0.401, 
P=0.0001; prevalent cases: r=0.367, P=0.001). These results 
indicated a significant association between EH and SCNN1B 
methylation, which was affected by age, gender and antihyper-
tensive therapy.

Introduction

Blood pressure regulation is a complex, multifactorial process, 
which is associated with physiological, biochemical and 
molecular mechanisms. An increase in Na+ and water retention 
is required for the development of most forms of hyperten-
sion (1). The epithelial sodium channel (ENaC) mediates the 
initial step of active sodium reabsorption, which is essential 
for the maintenance of body salt and water homeostasis (2). 
The ENaC is composed of three different subunits (3), one 
of which is the amiloride‑sensitive sodium channel beta 
subunit (SCNN1B). Mutations in SCNN1B may cause Liddle's 
syndrome (4‑6), which is an autosomal dominant disorder that 
is characterized by early, and frequently severe, hyperten-
sion (7). Essential hypertension (EH), the form of hypertension 
that by definition has no identifiable cause, tends to be familial 
and may be due to an interaction between environmental and 
genetic factors.

DNA methylation refers to the addition of a methyl group to 
the cytosine or adenine DNA nucleotides in mammalian cells, 
and usually occurs at CpG islands, which contain clusters of 
CpG dinucleotides. Promoter hypermethylation often silences 
gene transcription and is an important event during disease 
progression (8). Our previous study demonstrated that reduced 
α‑adducin gene promoter methylation increased the risk of 
essential hypertension (EH) in Chinese men and women (9). 
Furthermore, hypo/hypermethylation of the sulfatase 1 gene 
may serve an important role in the pathogenesis of hyper-
tension in young African American men (10). Altered gene 
methylation has also been observed in other cardiovascular 
diseases (11,12), as well as in type 2 diabetes (13‑16).

DNA methylation has been reported to mediate some of 
the effects of environmental exposure and lifestyle factors on 
disease risk (17). DNA methylation is heritable, but can also 
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be altered by medical therapy. It has previously been reported 
that drugs can alter the gene methylation status in patients 
with cancer and schizophrenia (18). In light of these previous 
studies, the present study aimed to investigate whether 
SCNN1B promoter DNA methylation was associated with 
the risk of EH, and whether antihypertensive drug treatment 
would alter the SCNN1B methylation status in patients with 
EH.

Materials and methods

Sample collection. A total of 282  individuals (94  incident 
cases, 94  prevalent cases and 94  normotensive controls) 
were recruited to the present study from the Ningbo Seventh 
Hospital (Ningbo, China). All individuals selected were 
Han Chinese that had resided in Ningbo for ≥3 generations. 
Incident cases were hypertensive patients who had previously 
never received any antihypertensive drug treatment. Prevalent 
cases were hypertensive patients who had previously received 
antihypertensive drug treatment. The diagnosis of hyperten-
sion was made when the average of ≥2 diastolic blood pressure 
(DBP) measurements on ≥2 subsequent visits was ≥90 mmHg, 
or when the average of several systolic blood pressure (SBP) 
readings on ≥2 subsequent visits was consistently ≥140 mmHg. 
Isolated systolic hypertension is defined as SBP ≥140 mmHg 
and DBP <90 mmHg. Individuals with SBP <120 mmHg 
and DBP <80 mmHg were recruited as controls (19). None 
of the control group had received antihypertensive therapy. 
Furthermore, none of the recruited individuals suffered 
from other diseases, including diabetes mellitus, secondary 
hypertension, myocardial infarction, stroke, renal failure, 
and drug abuse. Blood samples were collected in 3.2% citrate 
sodium‑treated tubes and were then stored at ‑80˚C for DNA 
extraction. The protocol of the present study was approved by 
the ethical committee of the Ningbo Seventh Hospital. Written 
informed was obtained from all subjects.

DNA isolation and bisulfite treatment. Genomic DNA was 
extracted and underwent bisulfite conversion for subsequent 
polymerase chain reaction (PCR) amplification and pyrose-
quencing, as described previously  (11,13‑15,20). Genomic 
DNA was extracted from peripheral blood samples using a 
nucleic acid extraction analyzer (Lab‑Aid 820; Xiamen Zeesan 
Biotech Co., Ltd., Xiamen, China). The NanoDrop  1000 
spectrophotometer (NanoDrop; Thermo Fisher Scientific, Inc., 
Wilmington, DE, USA) was used to measure the concentra-
tions of extracted DNA. Subsequently, ~500 ng genomic DNA 
isolated from whole blood cells was bisulfite‑treated using 
the EZ DNA Methylation‑Gold™ kit (Zymo Research Corp, 
Irvine, CA, USA), according to the manufacturer's protocol. 
This treatment involves converting unmethylated cytosines 
into uracil, whereas methylated cytosines remain unchanged. 
Once converted, the methylation profile of the DNA can 
be determined by PCR amplification followed by DNA 
sequencing.

DNA methylation assay. Ten primer sets (including forward, 
reverse and sequencing primers) were designed by PyroMark 
Assay Design software v2.0.1.1 (Qiagen, Inc., Valencia, 
CA, USA) to amplify the CpG island region in overlapping 

fragments and to sequence target DNA fragments. Each 
primer set was given a score and these primer sets were ranked 
from high to low. According to the rank, the top three primer 
sets were synthesized and purified by high‑performance 
liquid chromatography by Sangon Biotech (Shanghai) Co., 
Ltd. (Shanghai, China) for PCR. Subsequently, 2% agarose 
gel electrophoresis was used to analyze the PCR products. 
The results indicated that primer set one exhibited the best 
amplification effects. Detailed information regarding this 
primer set is presented in Table I. PCR was conducted in a 
final volume of 20 µl containing 10 µl Zymo Taq™ PreMix, 
1.5 µl forward primer (10 µM), 1.5 µl reverse primer (10 µM) 
and 40 ng DNA and water was used to raise volume to 20 µl. 
The PCR process began with an initial denaturation step at 
95˚C for 10 min, followed by 40 cycles of denaturation at 
95˚C for 30 sec, annealing at 58˚C for 40 sec and extension 
at 72˚C for 50 sec. The final extension step was performed at 
72˚C for 7 min. Following amplification, PCR products were 
maintained at 4˚C for ≥4 min. The target sequence was finally 
sequenced by synthesis assay (Pyromark Gold Q24 Reagents; 
#970802; Qiagen, Inc.).

Statistical analysis. Statistical analyses were performed using 
PASW Statistics 18.0 software (SPSS, Inc., Chicago, IL, USA). 
The mean of continuous variables [including age, body mass 
index (BMI), DNA methylation level, total cholesterol (TC), 
triglycerides (TG), glucose and alanine aminotransferase 
(ALT)] between case and control groups was analyzed using 
two‑tailed unpaired t test or one‑way analysis of variance 
followed by least significant difference multiple comparison 
tests. Either Pearson χ2 test or Fisher exact test were used to 
analyze the association between EH and categorical variables 
including gender, and smoking and drinking habits. Partial 
correlative test was used to analyze the relationship between 
continuous variables. Logistic regression was implemented 
for controlling the possible confounding factors to analyze 
the correlation between independent variables and depen-
dent variables. Meanwhile, R software and GraphPad Prism 
(version 5.01; GraphPad Software, Inc., La Jolla, CA, USA) 
were used for statistical computing and graphical repre-
sentation. P<0.05 was considered to indicate a statistically 
significant difference.

Results

As presented in Fig.  1, PCR primers were designed for 
amplification of the CpG island region of SCNN1B, whereas 
the sequencing primer was set to sequence the fragment 
containing seven CpG dinucleotides (Fig. 1 and Table I). Since 
the last CpG dinucleotide (CpG7) was not well sequenced, 
the remaining six CpG sites (CpG1‑6) were analyzed in the 
present study (Fig. 1). Significant correlations were found 
among CpG1‑6 (Fig. 1; r>0.30; P<0.01) in DNA methylation 
levels.

A series of EH risk factors (including BMI, TC, TG and 
glucose) were compared among the three groups using the 
variance analysis. As shown in Table II, there were signifi-
cant differences among the three groups in the mean levels 
of BMI (F=12.478, P=6.45E‑06), TG (F=4.631, P=0.011) and 
glucose (F=3.982, P=0.02). In addition, alcohol and smoking 
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consumption were compared among the three groups, since 
they are known to be associated with hypertension  (21). 
The results demonstrated that the ratio of alcohol drinking 
(χ2=9.189; P=0.011) was inconsistent among the three groups 
using the χ2 test (Table II).

Among the six CpG sites, CpG1 (F=3.555, P=0.03) and CpG2 
(F=4.952, P=0.008) methylation levels exhibited a significant 
difference among the three groups. Increased methylation levels 
of CpG1 were detected in the incident cases compared with in 
the other two groups. Conversely, lower methylation levels of 
CpG2 were detected in the cases compared with in the controls 
(Table II). In addition, higher methylation levels of the two CpG 
sites were detected in women compared with in men for controls 
(CpG1: t=‑2.283, P=0.025; CpG2: t=‑2.568, P=0.012, Fig. 2) 
and incident cases (CpG1: t=‑2.694, P=0.009; CpG2: t=‑2.583, 
P=0.011, Fig. 2). Notably, for the two CpG sites no significant 
difference was observed between males and females in the 

prevalent cases group (CpG1: t=0.409, P=0.068; CpG2: t=0.621, 
P=0.536), thus suggesting a role for antihypertensive therapy in 
the modification of DNA methylation.

Since aging is able to alter levels of DNA methylation (22), 
the present study further explored the association of SCNN1B 
CpG methylation with age using the partial correlative test. 
Significant correlations were found between age and CpG1 
(Controls: r=0.285, P=0.008; Incident cases: r=0.401, P=0.0001; 
Prevalent cases r=0.367, P=0.001, Fig. 3) with an adjustment for 
other metabolic phenotypes (including BMI, TC, TG, glucose, 
ALT, and smoking and alcohol drinking habits). In addition, no 
correlations were detected between SCNN1B methylation and 
these aforementioned metabolic phenotypes.

In the present study, EH cases were separated into two 
groups: Incident cases without antihypertensive therapy and 
prevalent cases with antihypertensive therapy, since drug treat-
ment may influence DNA methylation (23‑26). The current 
study compared the two case groups to explore whether anti-
hypertensive therapy may affect SCNN1B CpG methylation 
status using a logistic regression test.

As shown in Table  III, the P‑values and odds ratio 
(OR) values were all adjusted by other parameters. When 
analyzing the association between a specific independent 
variable and dependent variable, the other independent 
variables are controlled in a logistic regression model. When 
the P‑value is <0.05, this suggests that the variable has an 
effect on the dependent variable. When the OR value in a 
logistic regression model is >1, this variable acts as a risk 
factor for the dependent variable. Conversely, when the 
OR value is <1, this variable acts as a protective factor. As 
determined using this analytical model, methylation of CpG1 
(β‑standardized=0.17, OR=1.185, adjusted P=0.015) and 
CpG2 (β‑standardized=‑0.41, OR=0.663, adjusted P=0.001) 
were significantly associated with EH, since both P‑values 
were <0.05 in the logistic regression analysis of controls and 
incident cases. In this model, the OR of CpG1 was 1.185, 
which suggests that hypermethylation of CpG1 is associated 
with EH; however, the OR of CpG2 was 0.663, which suggests 
that hypomethylation of CpG2 may increase the probability 
of EH. In addition, according to this statistical model, 

Figure 1. Correlations among the six CpGs in the SCNN1B gene promoter. 
SCNN1B, amiloride‑sensitive sodium channel beta subunit.

Table I. Oligonucleotides for bisulfite sequencing.

Variable	 Sequence	 Nucleotides
		  (bp)

Forward primer	 5'‑GGATGAGGGGTTTGTGGATA‑3'	‑ 227 to ‑207
Reverse primer	 5'‑ ACCTCCCTCCCCT CCCAATAAACT‑3'	‑ 66 to ‑42
Amplicon sequence	 5'‑GGATGAGGGGTTTGTGGATA TATTCGTGG
	 CGTATGTGGGTATCGTTGGTGTTTCGAGGTG 
	 GGGAGGGAGAATGCGGAGCGCGTGCGTGCG
	 GGGGGCGTTTAGTGTTTTTGAATTTGGCGTGT
	 GGGGGTTGGAGTTTATTGGGAGGGGAGGGAGGT‑3'	‑ 227 to ‑42
Sequencing primer	 5'‑GGTGGGGAGGGAGAA‑3'	‑ 172 to ‑158
Sequence to analyze	 5'‑TGCGGAGCGCGTGCGTGCGGGGGGCGTTTA 
	 GTGTTTTTGAATTTGGCG‑3'	‑ 156 to ‑107

Bold and underlined font indicates the CpG sites.
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the methylation level of CpG1 (β‑standardized=‑0.252, 
OR=0.777, adjusted P=3.77E‑04, Table III) was higher in the 
incident cases compared with in the prevalent cases in the 
regression model of the two cases. This result suggests that 
antihypertensive therapy may lower the methylation level 
of CpG1. No significant associations were detected in the 
remaining CpG sites.

Discussion

The present study observed opposite results in the association 
of CpG1 and CpG2 methylation with EH. CpG2 methylation 
was significantly lower in incident cases and prevalent cases 

compared with in the controls. In addition, CpG2 methylation 
was observed to be inversely correlated with blood pressure 
in controls and incident cases. Notably, CpG2 methylation 
was not significantly different between the incident cases and 
the prevalent cases, thus suggesting that the antihypertensive 
therapy of EH did not affect CpG2 methylation levels.

Previous studies have revealed the correlation between 
DNA methylation and blood pressure  (27‑29). The present 
study hypothesized that CpG1 hypermethylation and CpG2 
hypomethylation may increase blood pressure by upregulating 
the protein expression of SCNN1B, thus amplifying the func-
tion and activity of the ENaC and leading to increased sodium 
reabsorption and water retention. However, to what extent this 

Figure 2. Comparison of DNA methylation between men and women.

Table II. Comparison of characteristics among the three groups (n=282).

		  Incident	 Prevalent
	 Non‑EH	 cases	 cases
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristic	 (Mean ± SD)	 (Mean ± SD)	 (Mean ± SD)	 F/χ2	 P

Age (years)	 58.36±7.53	 56.31±7.73	 58.37±7.95	 2.217	 0.111
Gender (M/F)	 29/65	 34/60	 33/61	 0.537	 0.642
Smoking (Y/N)	 17/77	 21/73	 20/74	 0.586	 0.714
Drinking (Y/N)	 7/87	 21/73	 20/74	 0.007	 0.011
BMI (kg/m2)	 22.752±3.721	 24.331±2.543	 24.962±3.021	 12.478	 6.45x10‑6

TC (mmol/l)	 5.231±1.002	 5.381±1.043	 5.491±1.032	 1.456	 0.235
TG (mmol/l)	 1.521±0.892	 1.893±1.071	 1.591±0.702	 4.631	 0.011
Glu (mmol/l)	 5.301±0.642	 5.371±0.591	 5.562±0.760	 3.982	 0.020
ALT (IU/l)	 24.490±40.231	 24.862±16.781	 25.181±25.261	 0.013	 0.987
CpG1 (%)	 16.211±4.082	 17.371±4.090	 16.072±2.628	 3.555	 0.030
CpG2 (%)	 10.021±2.778	 9.123±2.252	 9.121±1.652	 4.952	 0.008
CpG3 (%)	 6.391±1.904	 6.550±2.040	 6.361±1.490	 0.298	 0.743
CpG4 (%)	 8.841±2.192	 9.140±2.671	 9.430±3.281	 1.065	 0.346
CpG5 (%)	 11.104±4.250	 10.961±2.870	 11.060±4.041	 0.035	 0.966
CpG6 (%)	 6.061±2.493	 6.402±1.601	 6.432±1.464	 1.068	 0.345

Values in bold represent significant differences. EH, essential hypertension; SD, standard deviation; M, male; F, female; Y, yes; N, no; BMI, 
body mass index; TC, total cholesterol; TG, triglyceride; Glu, glucose; ALT, alanine aminotransferase.
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Figure 3. Correlation between age and CpG1 methylation. Correlation coefficients and P‑values are all adjusted by gender, body mass index, total cholesterol, 
triglycerides, glucose, alanine aminotransferase, and smoking and drinking habits.

Table III. Variables in the logistic regression model.

Variable	 βa	 ORa	 Pa	 βb	 ORb	 Pb	 βc	 ORc	 Pc

Gender	 0.146	 1.157	 0.732	 0.242	 1.274	 0.559	 0.414	 1.513	 0.340
Age	‑ 0.066	 0.936	 0.019	 0.062	 1.064	 0.014	‑ 0.044	 0.957	 0.136
BMI	 0.136	 1.146	 0.028	 0.062	 1.064	 0.321	 0.246	 1.279	 2.89x10‑4

TC	 0.248	 1.281	 0.191	 0.114	 1.121	 0.508	 0.131	 1.140	 0.539
TG	 0.500	 1.649	 0.012	‑ 0.558	 0.573	 0.008	 0.029	 1.030	 0.905
Glu	 0.338	 1.403	 0.275	 0.479	 1.615	 0.103	 1.320	 3.743	 0.001
ALT	‑ 0.004	 0.996	 0.554	 0.002	 1.002	 0.845	 0.004	 1.004	 0.442
CpG1	 0.170	 1.185	 0.015	‑ 0.252	 0.777	 3.77x10‑4	 0.005	 1.005	 0.934
CpG2	‑ 0.410	 0.663	 0.001	 0.183	 1.201	 0.176	‑ 0.530	 0.589	 1.66x10‑4

CpG3	 0.084	 1.088	 0.523	‑ 0.095	 0.909	 0.527	 0.052	 1.054	 0.738
CpG4	 0.075	 1.078	 0.526	 0.137	 1.147	 0.191	 0.397	 1.487	 0.080
CpG5	‑ 0.054	 0.948	 0.473	‑ 0.073	 0.930	 0.349	‑ 0.207	 0.813	 0.057
CpG6	 0.186	 1.204	 0.145	‑ 0.004	 0.996	 0.981	 0.346	 1.413	 0.078
Smoking	‑ 0.350	 0.704	 0.505	 0.317	 1.372	 0.547	‑ 0.306	 0.737	 0.595
Drinking	 1.345	 3.838	 0.034	‑ 0.064	 0.938	 0.897	 1.291	 3.638	 0.048
Constant	‑ 4.423	 0.012	 0.067	‑ 5.152	 0.006	 0.032	‑ 11.002	 0.001	 5.84x10‑5

aRepresents the logistic regression analysis of control and incident case groups; bRepresents the logistic regression analysis of incident case 
and prevalent case groups; cRepresents the logistic regression analysis of control and prevalent case groups. Values in bold represent significant 
differences. OR, odds ratio; BMI, body mass index; TC, total cholesterol; TG, triglyceride; Glu, glucose; ALT, alanine aminotransferase.
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change will alter ENaC expression, and to what extent this 
change will affect sodium reabsorption requires follow‑up 
research. In our subsequent studies, we aim to focus on func-
tional research regarding the effects of DNA methylation on 
ENaC expression.

Drug t reatment may af fect  DNA methylat ion 
levels (23,24,26). Several CpG sites have been reported to 
be differentially methylated between patients with Behçet's 
disease (BD) prior to and following treatment (23), providing 
strong evidence that DNA methylation was modified by 
BD treatment. Furthermore, bisphosphonate treatment in 
68 patients with hypocalcaemia altered the DNA methyla-
tion levels of excision repair cross‑complementation group 8, 
prolyl 3‑hydroxylase 2 and syndecan 2 genes, thus affecting 
the cumulative bisphosphonate exposure levels  (24). 
Glucocorticoid treatment has also been reported to induce 
acute and long‑term effects on DNA methylation states in 
the fetus and offspring (26). Similarly, the present study indi-
cated that CpG1 methylation, rather than CpG2 methylation, 
was likely to be altered by antihypertensive drug treatment. 
These results may provide novel information regarding 
pharmaco‑epigenomic research of EH.

Alterations in DNA methylation patterns are a hallmark 
of aging (22). Previous studies have demonstrated that DNA 
methylation levels are altered alongside aging in several tissue 
types in mice and humans (30‑34). Aging is also known to be 
a risk factor in the progression of hypertension (35,36). The 
results of the present study revealed that a positive correla-
tion existed between aging and SCNN1B CpG methylation 
levels. Furthermore, gender differences in DNA methylation 
levels are frequently reported (37‑44). In the present study, 
DNA methylation levels of CpG1 and CpG2 in SCNN1B were 
higher in women compared with in men. Epigenetic changes 
associated with aging, and gender differences in DNA 
methylation, may provide clues to elucidate the mechanisms 
underlying hypertension.

In conclusion, the present study was the first, to the 
best of our knowledge, to demonstrate a drug‑, age‑, and 
gender‑dependent association between SCNN1B promoter 
methylation and EH.
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