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Abstract. To the best of our knowledge, the present study is 
the first to demonstrate that treatment of vemurafenib‑resistant 
SKMEL28 (SKMEL28‑R) cells with paclitaxel leads to a shift 
in localization of the E3‑ligase BBAP from the cytoplasm to 
the nucleus, consequently decreasing the metastatic ability of 
this cell line. The present study revealed that the movement 
of BBAP from the cytoplasm to nucleus initiated a change in 
cell morphology. In addition, the translocation of BBAP led to 
a decrease of metastatic characteristics in SKMEL28‑R cells, 
including migration and invasion via downregulation of the 
phosphorylated form of focal adhesion kinase and N‑cadherin, 
as well as an upregulation of p21 and E‑cadherin. The results 
of the present study suggested that BBAP may not only be a 
novel biomarker for melanoma, but also a novel therapeutic 
target for treatment of metastatic melanoma.

Introduction

BBAP is an E3 ubiquitin ligase protein and is a member of the 
Deltex family. The total protein is 740 amino acids in length, 
containing, two potential nuclear localization signals (amino 
acids 20‑26 and 462‑478), a possible nuclear export signal 
(amino acids 325‑334), a classic RING finger domain (amino 
acids 561‑599) and a C‑terminus (amino acids 555‑740), and is 
highly homologous to the conserved C‑termini of other Deltex 
family members. BBAP was originally identified as a binding 
partner of the B‑aggressive lymphoma 1 (BAL1) protein, 
present in diffuse large B‑cell lymphoma (1,2). BBAP has been 
previously revealed as being highly expressed in the thymus 
of mice (3). BBAP expression has also been detected in the 

telencephalic vesicles, hypothalamus, anterior pituitary, olfac-
tory bulb, nasal cavity, mouth cavity, urogenital sinus, midgut 
loops and rectum (3). Histone H4 undergoes monoubiquity-
lation by BBAP and selectively modulates the DNA damage 
response. In addition, the increased expression of BBAP in 
lymphoma is resistant to DNA‑damaging chemotherapeutic 
agents (4). Previous reports have demonstrated the functions of 
BBAP in the development of melanoma and lymphoma (2,5).

Metastasis of a primary tumor to a secondary site is the 
major cause of mortality from solid tumor types (4‑6). The 
progression to metastasis involves a series of discrete steps, 
commonly known as the metastatic cascade. Tumor cells must 
first invade the primary tumor, dissociate from the tumor 
mass and be transported to nearby or distant secondary sites 
in the cascade (4). Invasion is a hallmark for the malignancy 
of cancer cells.

N‑cadherin serves a pivotal role in promoting metastasis 
through differential regulation of extracellular signal‑regulated 
kinases. N‑cadherin‑dependent adhesion impairs the upregu-
lation of the two cyclin‑dependent kinase inhibitors, p21 and 
p27 (7,8). Ectopic expression of N‑cadherin increases tumor 
cell motility, leading to cadherin switching in the regulation of 
cell behavior (9,10). In addition, a direct relationship between 
N‑cadherin and E‑cadherin exists, whereby downregulation 
of E‑cadherin is negatively correlated with upregulation of 
N‑cadherin (11‑14). p21 (WAF1/CIP1) serves an important 
role in controlling cell cycle arrest by regulating the activity 
of cyclins and cyclin‑dependent kinases (15‑18). p21 is able 
to inhibit cell growth through cell cycle arrest of skin cancer 
cells, including melanoma (7,19‑21).

Previous reports have demonstrated that localization 
sites of certain molecules define their roles and regulate the 
development of cancer (22‑24). Our previous study indicated 
that BRAFV600E‑harboring melanoma cell lines were resistant 
to the B‑Raf enzyme inhibitor, vemurafenib, through various 
mechanisms  (25). It has also been revealed that treatment 
of vemurafenib‑resistant SKMEL28 cells (SKMEL28‑R) 
with paclitaxel decreased the metastatic characteristics of 
the cells via downregulation of the epidermal growth factor 
receptor/AKT pathway. Furthermore, a previous study demon-
strated that BBAP may serve an important role in melanoma 
development and progression (5); however, previous studies 
have demonstrated that BBAP predominantly exists in the 
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cytoplasm of the cells (1,2). In the present study, the role of 
BBAP in melanoma in vitro was investigated when it was 
translocated from the cytoplasm to the nucleus of SKMEL28‑R 
cells.

Materials and methods

Cell culture. SKMEL‑28 cells were purchased from 
American Type Culture Collection (Manassas, VA, USA). 
An SKMEL28‑R cell line was established, as previously 
described (25). SKMEL28‑R cells were cultured in RPMI‑1640 
medium supplemented with 10% fetal bovine serum (FBS; 
Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
and 1% penicillin/streptomycin (Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) at 37˚C in 5% CO2.

Immunocytochemistry. Immunocytochemistry was performed 
to investigate the protein expression of molecules, according 
to a previous study (25). SKMEL28‑R cells were fixed with 
1% paraformaldehyde and blocked with 5% FBS for 30 min at 
room temperature. The cells were subsequently stained with 
10 µg/ml rabbit anti‑BBAP antibody (cat. no. A300‑833; Bethyl 
Laboratories, Inc., Montegomery, USA; 1:50) conjugated with 
Alexa Fluor® 594 (Thermo Fisher Scientific, Inc.) with ratio 
1/3 of anti‑BBAP antibody/Alexa Fluor® 594 at room tempera-
ture for 3 h in the dark. The nuclei were counterstained with 
DAPI (blue). Images were captured with a x40 objective.

Immunoblotting. Immunoblotting was performed to investigate 
protein, as previously described (25). The cells were washed 
twice with ice‑cold phosphate‑buffered saline and lysed in 
0.3 ml lysis buffer containing HEPES (20 mM, pH 7.4), NaCl 
(150 mM), b‑glycerophosphate (12.5 mM), MgCl2 (1.5 mM), 
EDTA (2 mM), NaF (10 mM), DTT (2 mM), Na3VO4 (1 mM), 
phenylmethylsulfonyl fluoride (1 mM), aprotinin (20 mM) 
and Triton X‑100 (0.5%). Whole cell lysates were resolved by 
SDS‑PAGE and transferred onto Hybond‑P membranes (GE 
Healthcare Life Sciences, Chalfont, UK). The membranes 
were incubated with the following various antibodies: Rabbit 
polyclonal anti‑BBAP (cat. no. A300‑833; Bethyl Laboratories 
Inc., Montegomery, USA), rabbit polyclonal anti‑phosphory-
lated FAK (tyrosine 397; cat. no. 44‑624G; Invitrogen; Thermo 
Fisher Scientific, Inc.), mouse monoclonal anti‑E‑cadherin (cat. 
no. 610181; BD Biosciences, Franklin Lakes, NJ, USA), mouse 
monoclonal anti‑α‑FAK (cat. no. 05‑537; Merck‑Millipore, 
Darmstadt, Germany), mouse monoclonal anti‑N‑cadherin 
(cat. no. 610921; BD Biosciences) and goat polyclonal anti‑p21 
(WAF1/CIP1; cat. no. sc‑397G; Santa Cruz Biotechnology, 
Inc), all used at 1:1,000. Following incubation with primary 
antibody, the membranes were probed with horseradish 
peroxidase‑conjugated antibodies against goat anti‑rabbit 
(cat. no. A16110; Invitrogen; Thermo Fisher Scientific, Inc.), 
goat anti‑mouse IgG (cat. no.  31430; Invitrogen; Thermo 
Fisher Scientific, Inc.), donkey anti‑goat IgG (cat. no. 31402; 
Invitrogen; Thermo Fisher Scientific, Inc.) or goat anti‑mouse 
IgG (cat. no. 12‑349l Merck‑Millipore, Darmstadt, Germany) 
with dilution rates of 1:5,000. The proteins were visualized 
using an Enhanced Chemiluminescence Western Blotting 
system or ECL Advance (GE Healthcare Life Sciences). 
Mouse monoclonal anti‑β‑tubulin antibody (cat. no. T4026; 

Sigma‑Aldrich, St. Louis, MO, USA; 1:2,000) was used as a 
loading control for the immunoblotting.

Scratch wound healing assay. Cell wound healing was 
performed, as described previously  (25). Six‑well plates 
(BD Biosciences, Franklin Lakes, NJ, USA) were incubated 
overnight in 1 ml RPMI‑1640 medium, containing 40 µg/ml 
collagen. The cells were grown to 100% confluence on the 
collagen‑coated plates in RPMI‑1640 medium supplemented 
with 10% FBS. Scratch wounds were created in confluent 
monolayers using a sterile p200 pipette tip. A total of four 
perpendicular semi‑opaque marks were placed across each 
scratch on the external surface of the well to standardize quan-
titative analysis. Following washing, the suspended cells were 
washed three times, and the wounded monolayers were again 
cultured in RPMI‑1640 medium. Following incubation for 12 
and 24 h, repopulation of the wounded areas was observed 
under phase‑contrast microscopy (Olympus Corporation, 
Tokyo, Japan). Using the NIH ImageJ image‑processing 
program (National Institutes of Health, Bethesda, MD, USA), 
the size of the scratch wound area was determined at each time 
point from the digital images.

Invasion assay. Cell invasion ability was evaluated using an 
invasion assay, according to a previous study (5). A total of 
2x105 cells in either 300 µl normal culture medium (10% FBS) 
or starving culture medium (0.5% FBS) were applied to a 
matrigel‑coated upper chamber (8 µm in pore size). The upper 
chambers were subsequently placed in 24‑well culture plates 
containing 600 µl conditioned medium with 0.5% FBS to 
trigger invasion activity and were incubated for 12 h. Invading 
cells were stained with hematoxylin/eosin and counted under 
a microscope.

Statistical analysis. Statistical analysis in was performed 
according to a previous study (5). Results from three indepen-
dent experiments in each group were statistically analyzed by 
Student's t‑test. The data are presented as the mean ± standard 
deviation. SPSS (version 18.0) software package (SPSS, Inc., 
Chicago, IL, USA) was used for statistical analysis, P<0.05 
was considered to indicate a statistically significant difference.

Results

Translocation of BBAP causes morphological changes of 
SKMEL28‑R cells. SKMEL28‑R cells were treated with 
100 nM paclitaxel. Notably, treatment with paclitaxel resulted 
in presentation of several colonies with abnormal morphology 
consisting of elongated and dendritic shapes, compared with 
the oval shapes of control cell populations (Fig. 1A and B). 
These colonies were isolated and cultured for further experi-
ments. The role of BBAP in melanoma development and 
progression was previously established (5). Therefore, the 
present study examined the expression levels and localizations 
of BBAP in untreated and paclitaxel‑treated SKMEL28‑R 
cells. Of note, although the total expression level of BBAP 
was almost unchanged in paclitaxel‑treated SKMEL‑28R 
cells (Fig. 1C, lane 1) compared with that in the untreated 
SKMEL‑28R (Fig. 1C, lane 2), localization of BBAP was 
shifted from the cytoplasm in untreated cells (Fig. 1B) to the 
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nucleus in paclitaxel‑treated cells (Fig. 1A). This movement 
resulted in the expression level of BBAP changing in the 
cytoplasm and nucleus of treated cells compared with that 
in untreated cells. The immunohistochemistry results using 
anti‑BBAP antibodies demonstrated that the expression of 
BBAP in cytoplasm of untreated cells (Fig. 1B) was increased 
compared with that of the treated cells (Fig. 1A). Conversely, 
the expression of BBAP in the nucleus of untreated cells 
(Fig. 1B) was decreased compared with that of the treated 
cells (Fig. 1B).

Localization of BBAP in the nucleus decreases metastatic 
ability of SKMEL28‑R cells. Scratch would healing and 
invasion assays were performed to investigate the meta-
static and invasive ability of the SKMEL28‑R cell line. 

Paclitaxel‑treated SKMEL28‑R and untreated SKMEL28‑R 
cells were pre‑cultured in starving conditions (0.5% FBS) 
for 8 h prior to use in both assays. The results demonstrated 
that untreated SKMEL28‑R cells had 2.2‑ and 4.1‑fold higher 
metastatic abilities, respectively, in scratch would healing 
(Fig. 2) and invasion (Fig. 3) assays when compared with 
treated SKMEL28‑R cells. This suggested that the metastatic 
ability of SKMEL28‑R cell line may be associated with local-
ization sites of BBAP.

Localization of BBAP in the nucleus downregulates the 
expression levels of N‑cadherin and pFAK, and upregulates 
the expression levels of E‑cadherin and p21 in SKMEL28‑R 
cells. Western blotting was used to examine the expression 
levels of BBAP and other molecules associated with metastatic 

Figure 1. Localization sites and expression levels of BBAP in SKMEL28‑R cells. BBAP localizes to the nucleus of (A) paclitaxel‑treated SKMEL28‑R cells 
and the cytoplasm of (B) untreated SKMEL28‑R cells. (C) The total protein expressions of BBAP in paclitaxel‑treated SKMEL‑28R cells (lane 1) and in 
untreated SKMEL‑28R cells (lane 2) were measured by immunoblotting. Tubulin was used as an internal control.

Figure 2. Effect of localization sites of BBAP on migration in SKMEL28‑R cells. The migratory ability of SKMEL28‑R cells was evaluated using a scratch 
wound healing assay. Wound areas healed by untreated SKMEL28‑R cells and treated SKMEL28‑R cells are presented as (A) images and (B) fold‑change. 
The data are presented as the mean ± standard deviation (*P<0.05 and **P<0.01 compared with the NC group, as determined by Student's t‑test. NC, negative 
control; TR, treatment group.
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ability, including N‑cadherin, E‑cadherin, FAK, phosphory-
lated (p‑)FAK and p21 in untreated and paclitaxel‑treated 
SKMEL28‑R cells (Fig. 4). The results revealed that while 
the expression levels of BBAP were marginally decreased, the 
expression levels of N‑cadherin and p‑FAK in treated cells 
(Fig. 4, lanes 1‑3) were markedly decreased compared with 
those in the untreated cells (Fig. 4, lanes 4‑6). In addition, the 
expression levels of E‑cadherin and p21 were higher in treated 
cells (Fig. 4, lanes 1‑3) compared with those in the untreated 
cells (Fig. 4, lanes 4‑6). These results suggested that BBAP 
localization to the nucleus downregulated the expression of 
several molecules, which, in turn, reduced the metastatic ability 
of the cells.

Discussion

Previous studies identified that the expression of BBAP 
in skin tissue, normal epithelial cells and fibroblasts is 
low (3,26). Our previous study identified that SKMEL‑28 
cells expressed BBAP more highly compared with that of 
other melanoma cell lines (5); therefore the present study 
examined this particular cell line to further investigate the 
role of BBAP, since expression levels may be associated with 
the development of melanoma (5). This is the first study, to 
the best of our knowledge, to indicate that the localization 
site of the BBAP may contribute to its role in regulating the 
metastatic activities of SKMEL28‑R cells. The results of the 
in vitro scratch wound healing and invasion assays demon-
strated that migration and invasion abilities were decreased in 
paclitaxel‑treated SKMEL28‑R cells compared with those of 
untreated SKMEL28‑R cells. The process of metastasis has 
been recorded as follows: Cell invasion of the primary solid 
tumor, dissociation from the tumor mass and transportation 
to nearby or distant secondary sites (4). Various signaling 
molecules have been reported to control the process. In the 
present study, it was revealed that the translocation of BBAP 
from the cytoplasm to the nucleus led to the downregulation 
of N‑cadherin and p‑FAK, which acted as cancer‑promoting 
molecules, and upregulation of E‑cadherin and p21, which 
were reported as cancer‑inhibiting molecules (7‑14).

Currently, few studies have investigated the role of BBAP 
in the development of leukemia (1,3,4,26‑29). In addition, 
a limited number of publications examine the association 
between BBAP and solid tumor cancer types, including 
melanoma. Bachmann et al (29) demonstrated that BBAP 
regulated IRF‑1 via STAT1 signaling and consequently 
affected metastasis in prostate cancer. The inhibition of 
BBAP resulted in decreased metastasis in prostate cancer 
cells (30). The association and interactions between STAT1 
and FAK and/or N‑cadherin and/or p21 have been previously 
well‑established (30‑36).

Figure 3. Effect of BBAP localization sites on the invasion of SKMEL28‑R cells. The invasive ability of SKMEL28‑R cells was evaluated using an invasion 
assay. The number of invading untreated SKMEL28‑R cells and treated SKMEL28‑R cells are presented as (A) images and (B) the fold‑change. The data are 
presented as the mean ± standard deviation (**P<0.01 compared with the NC group, as determined by Student's t‑test). NC, negative control; TR, treatment group.

Figure 4. Protein expression levels in SKMEL28‑R cells. Protein and 
phosphorylation levels of BBAP, p21, E‑CAD, N‑CAD, p‑FAK and FAK in 
paclitaxel‑treated SKMEL28‑R cells (lanes 1‑3) and untreated SKMEL28‑R 
cells (lanes 4‑6) were measured by immunoblotting. Tubulin was used as an 
internal control. E‑CAD, E‑cadherin; N‑CAD, N‑cadherin; p‑, phosphory-
lated; FAK, focal adhesion kinase.



MOLECULAR MEDICINE REPORTS  15:  317-322,  2017 321

Paclitaxel has been reported as a drug that regulates the 
development of cancer via promotion of the expression of 
p21 (37‑38) and E‑cadherin (39), and inhibition of FAK expres-
sion in certain type of cancer cells (40). However, the molecular 
mechanism of this process remains unclear. The present study 
is the first, to the best of our knowledge, to demonstrate that 
treatment with paclitaxel leads to morphological changes 
of cancer cells via translocation of BBAP and consequent 
upregulation of p21 and E‑cadherin, and downregulation of 
N‑cadherin and p‑FAK. The results suggested that BBAP 
may be a novel molecule that can significantly contribute in 
the paclitaxel‑mediated FAK/STAT1/p21 signaling pathway. In 
another recently published study, retardation of DNA damage 
and enhanced cellular viability was dependent on the localiza-
tion of the BAL1‑BBAP complex (27). This may further support 
the importance of BBAP localization in cancer development.

Previous studies have exhibited that vemurafenib 
had potential to decrease the potential for metastasis 
of BRAFV600E‑carrying melanoma via the inhibition of 
p‑AKT (41,42). As a result, the Food and Drug Administration 
approved vemurafenib for clinical application to treat metastatic 
melanoma (43). Unfortunately, the drug is only effective to 
inhibit melanoma for ~1 year. The resistance of the melanoma to 
vemurafenib is caused by the reactivation of p‑AKT (44). Based 
on the present results, the current study involved production 
of a vemurafenib‑resistant SKMEL‑28 (named SKMEL‑28R) 
cell line for further studies, with the hope that the combina-
tion treatment of vemurafenib and other novel approaches will 
boost the effectiveness on BRAFV600E‑harboring melanomas. 
This preliminary study focuses only on SKMEL‑28R cell line, 
and therefore, one finite conclusion cannot be drawn for other 
cancer cells. Therefore further experiments are necessary to 
examine the localization sites of BBAP and cellular metastasis 
in various melanoma cells that highly express BBAP.

Taken together, the present results suggested that local-
ization of BBAP to the nucleus of the cells may reduce the 
metastatic abilities of cells via the inhibition of N‑cadherin 
and p‑FAK, and activation of E‑cadherin and p21 molecules. 
In conclusion, the analysis of BBAP demonstrated not only 
a role as a potential biomarker, but also a role as a potential 
therapeutic target in melanoma.
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