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Abstract. The aim of the present study was to investigate 
differential modules (DMs) between uveal melanoma (UM) and 
normal conditions by examining differential networks. Based 
on a gene expression profile collected from the ArrayExpress 
database, the inference of DMs involved three steps: The first 
step was construction of a differential co-expression network 
(DCN); second, the module algorithm was adapted to identify 
the DMs presented in DCN; finally, the statistical significance 
of DMs were assessed based on the null score distribution 
of DMs generated using randomized networks. A DCN 
with 309 nodes and 3,729 edges was obtained, and 30 seed 
genes from the DCN were examined. Subsequently, one DM, 
which had 179 nodes and 3,068 edges, was investigated. 
By utilizing randomized networks, the P-value for DM was 
0.034, therefore, the DM was statically significant between 
UM and baseline conditions. In conclusion, the present study 
successfully identified one DM in UM based on DCN and 
module algorithm, and this DM may be beneficial in revealing 
the pathological mechanism of UM and provide insight for 
future investigation of UM.

Introduction

Uveal melanoma (UM) is the most frequent primary malignant 
tumor worldwide, which arises from neural crest-derived mela-
nocytes of the uveal tract, and includes the iris, ciliary body 
and choroid of the eye (1). Options for treating UM consist of 
enucleation (eye removal), various forms of radiation therapy, 
laser hyperthermia and surgical resection (2,3). The 5-year 

local-tumor control rates in the majority of specialized treat-
ment centers are >90%, however, despite successful treatment 
of the primary tumor, metastasis occurs via hematogenous 
spread in up to 50% of patients (4). The most common sites 
of involvement include the liver (93%), lung (24%) and bone 
(16%), with the overwhelming majority presenting initially in 
the liver (5). Due to large tumor size, involvement of the ciliary 
body and increased patient age, metastasis is life-threat-
ening (6). Therefore, revealing the molecular characteristics 
may assist in understanding the pathological mechanism and 
provide potential target markers for the treatment of UM.

Previous studies have reported several molecular markers 
in revealing the pathology of UM (7-9). For example, activating 
mutations in the Gαq stimulatory subunit, guanine nucleotide 
binding protein (G protein), q polypeptide, appear to represent 
an initiating event (10), whereas inactivating mutations in breast 
cancer 1, early onset associated protein-1 show a threshold in 
tumor progression, beyond which lead to metastasis and asso-
ciated mortality (11). However, mutated genes are not involved 
individually and use of a network strategy, which connects 
genes together, is a useful approach to solve the problem to 
a certain extent (12). If the network is too large, it may ignore 
a certain number of significant genes and interactions (13), 
however, evaluating sub-networks or modules of the complex 
network avoids this problem (14). In small modules, the func-
tions of individual genes and gene-gene interactions can be 
detected and examined with more detail and precision (15).

Therefore, the present study aimed to reveal differential 
modules (DMs) in UM by analyzing differential networks. 
To achieve this, a differential co-expression network (DCN) 
for the differentially expressed genes (DEGs) of UM were 
constructed, based on weighted gene co-expression network 
analysis (WGCNA) and one-sided t-tests. A module algorithm 
was then implemented to identify the DMs and the statistical 
significance of the DMs were evaluated. These DMs may be 
beneficial to disease progression and provide insight for future 
investigations of UM.

Materials and methods

Inference of DMs. Using the gene expression profile, the 
inference of DMs involved three steps: The first step involved 
construction of the DCN. Two genes were connected in a DCN 

Revealing differential modules in uveal melanoma 
by analyzing differential networks

LI HAN1*,  CUI CHEN1*,  CHANG-HUI LIU2,  MIN ZHANG3  and  LING LIANG2

1Department of Ophthalmology, Yidu Central Hospital of Weifang, Qingzhou,  
Shandong 262500; 2Department of Ophthalmology, Dezhou People's Hospital, Dezhou, Shandong 253000; 

3Department of Ophthalmology, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250001, P.R. China

Received January 7, 2016;  Accepted December 28, 2016

DOI: 10.3892/mmr.2017.6232

Correspondence to: Dr Min Zhang, Department of Ophthalmology, 
Jinan Maternity and Child Care Hospital, 2 Jianguoxiaojingsan 
Road, Shizhong, Jinan, Shandong 250001, P.R. China
E-mail: minzhang2016@sina.com

*Contributed equally

Key words: uveal melanoma, differential module, differential 
co-expression network, seed genes



HAN et al:  DIFFERENTIAL MODULES IN UVEAL MELANOMA2262

if they exhibited correlated expression profiles across condi-
tions, and their expression levels were significantly different 
between the UM and baseline conditions (normal control). 
Subsequently, the module algorithm was adapted to identify 
DMs present in multiple DCNs. Finally, the statistical signifi-
cance of DMs was assessed based on the null score distribution 
of DMs, generated using randomized networks.

Gene expression profile. A gene expression profile (accession 
no. E-GEOD-44295) for the UM samples and normal controls 
was obtained from the online public ArrayExpress database 
(http://www.ebi.ac.uk/arrayexpress/). The E-GEOD-44295 
profile comprised 66 samples, of which 63 were UM samples 
and three were normal samples, and these were presented on 
an A-MEXP-1172-Illumina HumanRef-8 v3.0 Expression 
BeadChip platform (Illumina, Inc., San Diego, CA, USA). By 
converting the data of the microarray profile at the probe‑level 
into gene symbols, a total of 18,631 genes were obtained for 
further examination.

Construction of the DCN. Prior to constructing the DCN for 
UM, a binary co-expression network was built, and a weight 
was assigned to each edge based on differential gene expres-
sion between UM and baseline condition.

Binary co‑expression network. To construct the binary 
co-expression network, DEGs between the UM and baseline 
conditions were identified according to the Significance 
Analysis of Microarrays (SAM) (16). SAM assigns a score to 
each gene on the basis of alterations in gene expression rela-
tive to the standard deviation of repeated measurements. The 
relative difference d(i) and expected relative difference dE(i) 
in gene expression were defined. For the majority of genes, 
d(i)≅dE(i), however, certain genes were represented by points 
displaced from the d(i)=dE(i) line by a distance above the 
threshold (Δ). As Δ decreased, the number of genes consid-
ered significant by SAM increased. In the present study, genes 
which met the criterion of Δ=3.701 were selected as DEGs.

The binary co-expression network for the DEGs of UM 
was constructed using WGCNA, which describes the correla-
tion structure between gene expression profiles, image data, 
genetic marker data, proteomics data and other high-dimen-
sional data (17). The first step was to define a gene co‑expression 
similarity (Sij) for each pair of genes (i and j). The second step 
involved transforming the similarity matrix into an adjacency 
matrix with the assistance of an adjacency function. The adja-
cency was defined by increasing the Sij to a soft threshold 
power β≥1. This allowed the adjacency to take on values in 
succession between 0 and 1 to preserve the continuous nature 
of the co-expression information. The continuous measure to 
assess the strength of a gene connection was calculated as 

 
 
and the interaction between two genes was proportional 

to their Sij in the following formula: log (aij)=βxlog(Sij).

DCN construction. In order to remove indirect correlations 
resulting from a third gene in the binary co-expression 
network, first order partial Pearson's correlation coefficient 
was used (18) and only edges with correlations above the 
pre-defined threshold (δ=0.4) were selected for the DCN. 
Subsequently, weights were assigned to edges in the binary 

co-expression network based on the P-value of differential 
gene expression between the UM and baseline conditions, 
which was calculated using a one-sided t-test (19). The weight 
(Wi,j) of an edge (i,j) in the differential network was defined 
as follows:

Where pi and pj represent P-values for genes i and j, respec-
tively. V is the node set of the co-expression network, and 
cor(i,j) is the absolute value of Pearson's correlation between 
genes i and j based on their expression profiles.

Identification of DMs. A module algorithm was used to 
identify the DMs present in the DCN (20), which comprised 
three steps: Seed prioritization, module identification by seed 
expansion and refinement of candidate modules.

Seed prioritization. For each network Gk=(V, Ek) (k=1) with an 
adjacency matrix Ak=(aijk)nxn, a function, g(i), was proposed to 
assess the importance of vertex i in the corresponding network. 
Gk represented a network, V and Ek stood for the variables in 
the network. V→R represented a function that builds a rela-
tionship between V and R.

and

In which Nk (i) represents the set of neighbors of i in Gk;  
represents the degree of the normalized weighted adjacency 
matrix; D denotes a diagonal matrix with element .  

 is the information propagation on network via the edges of 
networks, which indicates that the importance of a node 
depends on the number of neighbors, strength of connection 
and importance of neighbors. For each gene, the g(i)=z-score 
was obtained, and the genes were ranked g=(g(1), g(2), …, g(M) ) 
based on their z-score, with the top 10% of genes selected as 
the seed genes.

Module identification by seed expansion. Module identifica-
tion was accomplished with the assistance of seed genes. With 
each seed, the module identification step iteratively included 
genes whose addition led to the maximum decrease in the 
graph entropy-based objective function until there is no further 
decrease in the objective function. Regarding each seed gene 
(v) as a module C=(v), for each vertex u in its neighborhood in 
all networks,  was determined, in which 
Ni(ν) was the neighbor set in Gi as the candidate for C. The 
new module,  and the entropy decrease between C and 
C' was defined as follows:

The graph entropy for C across all networks and normalized 
for the size of C was:

Where  represents the sum of all vertices in C 
and network k. Ci (1≤i≤τ) was a candidate DM. H(C') was 
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calculated in a similar manner. ΔH(C', C)>0 indicated that the 
addition of vertex u improved the connectivity of the former 
module C. The vertex u, whose addition maximized ΔH, was 
added to C. The expansion step terminated when no additional 
vertex could further reduce the entropy of the evolving 
module.

Refinement of candidate modules. During the refinement step, 
candidate DMs with sizes >5 genes were removed. To merge 
overlapping candidate DMs into DMs, the Jaccard index (21) 
was used, which is the ratio of intersection over union for two 
sets. A Jaccard index of 0.5 was used in the present study.

Evaluation of the statistical significance of DMs. The statis-
tical significance of DMs was computed based on the null score 
distribution of DMs generated using randomized networks. 
Each randomized network was composed of edges captured 
from interactions in the binary co-expression network, and the 
number of edges in the randomized network was the same as 
that in the DCN. Each network was completely randomized 
100 times by degree‑preserved edge shuffling. To construct 
the null distribution for DM scores, module identification 
was performed on the randomized networks. Based on the 
null distribution, the empirical P‑value of a DM was defined 
as the probability of the module having the observed score or 
less by chance. P-values were corrected for multiple testing 
utilizing the method of Benjamini-Hochberg (22), and DMs 
with P<0.05 were considered significant.

Results

Construction of DCN. By accessing SAM, 443 DEGs were 
obtained between UM and baseline conditions with the 
threshold of Δ=3.701. Subsequently, on the basis of the DEGs, a 
binary co-expression network comprising 97,903 interactions 
was constructed through WGCNA. To remove indirect corre-
lation and improve the network confidence, interactions that 
met the δ≥0.4 criteria were selected to form the DCN (Fig. 1). 
There were a total of 309 nodes and 3,729 interactions. In 
addition, a weight value was assigned to each interaction or 
edge, based on a one-sided t-test. As a consequence, for genes i 
and j, and their edges e(i,j), a three-dimensional matrix for the 
weight of the edges, e(i,j), Wi,j, in the network, Gk, were deter-
mined. Therefore, the DCN was termed a three-dimensional 
network, which may be more feasible and stable, compared 
with the binary network, and the subsequent analyses were 
dependent on it.

Identification of DMs. For the purpose of extracting DMs 
from the DCN, the present study used a module algorithm, 
which comprised seed prioritization, module identification 
by seed expansion and refinement of candidate modules. A 
total of 30 seed genes were detected from the DCN, as shown 
in Fig. 1, and the z-scores for these are listed in Table I. The 
top five seed genes with the highest z-scores were KIAA1913 
(z-score=5,030.874), RAE1 (z-score=4,654.952), EDIL3 
(z-score=4,288.795), FBN2 (z-score=4,280.710) and KCNE1L 
(z-score=3,907.409). With the 30 seed genes as a starting 
point, modules were identification was performed based 
on the entropy decrease ΔH(C, C') between C and C', and 

candidate modules were obtained. Following elimination of 
candidate modules with sizes <5, the modules between which 
the Jaccard index was ≥0.5 were merged, and one DM was 
identified for UM. In this DM, there were 179 nodes and 
3,068 edges (Fig. 2A). To further validate the connectivity 
of two genes in DM, the present study focused on the weight 
distributions of edges (Fig. 2B). The majority of edges were 
distributed in the section of 0.9-1, which suggested that the 
genes were closely correlated to each other and that the DM 
possessed good topological properties, meaning that the 
constructed DM correlated to UM closely.

Statistical significance of the DM. To evaluate the statistical 
significance of DM, the present study constructed a randomized 
network of the 3,729 edges captured from 97,903 interactions 
of the binary co-expression network at random to identify 
modules. This type of randomized network was constructed 
100 times, and a total of 4,298 modules were obtained. The 
empirical P‑value of DM was defined as the probability of the 
module having the observed score or a lower score by chance, 
and this was adjusted using the Benjamini-Hochberg test. The 
P-value for DM was determined as 0.034, which indicated that 

Table I. Seed genes in the differential co-expression network.

No. Gene z-score

  1 KIAA1913 5,030.874
  2 RAE1 4,654.952
  3 EDIL3 4,288.795
  4 FBN2 4,280.710
  5 KCNE1L 3,907.409
  6 C11orf70 3,893.342
  7 FN5 3,854.172
  8 BMP7 3,812.697
  9 NRAS 3,797.038
10 RIT1 3,783.095
11 CHAC2 3,776.808
12 TARS 3,764.072
13 C12orf24 3,753.696
14 CKAP4 3,730.135
16 PGAM1 3,716.575
17 GMNN 3,689.177
18 CCDC5 3,688.885
19 C2orf25 3,677.012
20 FBXO11 3,619.800
21 CD24 3,548.007
22 C6orf166 3,542.197
23 FRAS1 3,534.241
24 PLCH1 3,523.897
25 CCNB1 3,517.887
26 ATP1A2 3,502.642
27 PHF5A 3,479.246
28 FGF2 3,468.892
29 C18orf10 3,451.743
30 STRBP 3,435.203



HAN et al:  DIFFERENTIAL MODULES IN UVEAL MELANOMA2264

Figure 1. DCN for uveal melanoma. Nodes represent genes and edges represent the interactions between two genes. The orange nodes indicate seed genes 
present in the DCN. DCN, differential co-expression network.
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this DM was a statically significant DM across the UM condi-
tion and baseline condition.

Discussion

A network-based approach is capable of extracting informative 
and significant genes dependent on biomolecular networks, 
including protein-protein interaction networks, co-expression 
networks and gene regulatory networks, compared with 
individual genes (23,24). In addition, it offers a quantifiable 
description of the molecular networks, which characterize 
the complex interactions and intricate associations governing 
cellular functions among tissues and disease-associated genes, 
to explain the molecular processes during the development and 
progression of disease (25). Traditionally, if one interaction 
between a gene pair shows high correlation in one condition, 
the interaction is selected as an edge in the network (26). By 
contrast, if one gene in the interaction is differently expressed 
but the other one is not, it may not be considered a significant 
interaction in the entire dataset. These challenges are over-
come to a certain extent by constructing a DCN.

Therefore, in the present study, a DCN for UM was 
constructed based on DEGs using WGCNA, which comprised 

309 nodes and 3,729 edges. Based on a one-sided t-test, a total 
of 30 seed genes were examined from the DCN. Subsequently, 
the identification of DMs was performed on the DCN and 
its seed genes according to the module algorithm. Following 
evaluation using randomized networks and adjusting the 
P-value of DM using the Benjamini-Hochberg test, one DM 
was obtained with P=0.034 across the UM and baseline 
conditions, and was considered a statistically significant DM 
between the UM and baseline conditions. The significant DM 
possessed 179 nodes and 3,068 edges. In addition, the majority 
of edges were distributed in section 0.9-1, which suggested that 
the genes were closely correlated with each other and the DM 
possessed good topological properties.

From a systems biology point of view, diseases are caused 
by perturbations to the gene network (27). These perturbations 
are dynamic as disease progresses. The identification of small 
modules may provide assistance in investigating the dynamic 
perturbations with more detail and precision. Therefore, the 
key focus of the present study was to investigate DMs between 
UM and normal conditions utilizing differential networks. A 
key innovation of the method used in the present study is the 
ability to identify unique and shared modules from multiple 
differential gene networks, each of which represents a different 

Figure 2. DMs between uveal melanoma and baseline conditions. (A) DM network; (B) weight distribution for the interactions. Nodes represent genes and 
edges represent the interactions between two genes. DM, differential module.
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perturbed condition (28). In addition, sets of genes, which 
are differentially expressed under the UM state, but do not 
exhibit correlated expression patterns are not identified as a 
module (29). Therefore, the DM offers more detailed evidence 
of the pathological mechanism underlying the progression of 
UM.

In conclusion, the present study successfully identified a 
DM in UM, based on the DCN and module algorithm. This 
DM may be useful in revealing the pathological mechanism of 
UM and provide insight for future investigations of UM.
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