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Abstract. O-GlcNAcylation is a dynamic and reversible 
post‑translational modification associated with the regulation 
of multiple cellular functions. The addition and removal of 
O-Linked β‑N‑acetylglucosamine (O‑GlcNAc) on target 
proteins is catalyzed by O‑GlcNAc transferase (OGT) and 
O‑GlcNAcase (OGA), respectively. Accumulating evidence 
suggests that O‑GlcNAcylation is associated with the 
malignancy of several types of human cancer. To investigate 
the effect of O‑GlcNAcylation on ovarian cancer phenotypes, 
global O‑GlcNAc levels were decreased by OGT silencing 
through RNA interference and increased by inhibiting OGA 
activity with Thiamet‑G. Transwell assay results demonstrated 
that OGT silencing inhibited the migration and invasion of 
SKOV3 and 59M ovarian cells in vitro, while Thiamet‑G 
treatment promoted migration and invasion. Furthermore, 
a pull‑down assay and western blot analysis demonstrated 
that Thiamet‑G treatment enhanced RhoA activity and the 
phosphorylation of the Rho‑associated protein kinase (ROCK) 
substrate, myosin light chain (MLC), while OGT silencing 
attenuated RhoA activity and MLC phosphorylation. In 
addition, RhoA silencing via RNA interference and inhibition 
of ROCK activity with Y‑27632 prevented Thiamet‑G‑induced 
increases in cell migration and invasion. These data suggest 
that O‑GlcNAcylation augments the motility of ovarian cancer 
cells via the RhoA/ROCK/MLC signaling pathway. Therefore, 
O‑GlcNAcylation may be a potential target for the diagnosis 
and treatment of ovarian cancer.

Introduction

O-GlcNAcylation is a post-translational modification 
in nuclear and cytoplasmic proteins in which O‑linked 

β‑N‑acetylglucosamine (O‑GlcNAc) monosaccharide is 
linked to a serine orthreonine residue (1). O‑GlcNAc cycling 
is catalyzed by only two enzymes: O‑GlcNAc transferase 
(OGT), which is responsible for the addition of O‑GlcNAc to 
proteins; and O‑GlcNAcase (OGA), which is responsible for 
the removal of O‑GlcNAc from proteins (2). O‑GlcNAcylation 
is emerging as a key regulator of cellular biological processes, 
including transcription, signaling, cell metabolism, morpho-
genesis, motility, cell cycle and development (3-5). Abnormal 
O‑GlcNAcylation levels are associated with a variety of 
human diseases including diabetes, cardiovascular disease 
and neurologic disorders (6,7). An increasing number of 
O‑GlcNAc‑modified proteins have been revealed to be closely 
associated with tumorigenesis and development (8). Multiple 
oncogene and anti‑oncogene products, including p53, c‑Myc, 
c‑Jun, c‑Fos and retinoblastoma protein, have been demon-
strated to be modified by O‑GlcNAc (9-11), suggesting that 
O‑GlcNAcylation may be associated with tumorigenesis and 
development. Aberrant O‑GlcNAcylation has been linked to 
several types of human cancer, including breast (12), lung (13), 
colon (14), pancreatic (15) and prostate (16) cancer. However, 
the effect of O‑GlcNAcylation on ovarian cancer remains 
poorly understood.

Ovarian cancer is the fifth most common cause of 
cancer‑associated mortality in females, and exhibits the 
highest mortality of all gynecological malignancies (17). 
Aggressive ovarian cancer cells are often able to break away 
from the primary tumor to invade and spread to other parts of 
the body, including the lymph nodes, liver and lungs, and the 
lining of the bladder, bowel and abdomen (18,19). This results 
in a poor prognosis and a high mortality rate. The malignancy 
of tumor cells is assessed by measuring the migratory and 
invasive ability of the cells, so investigations of the molecular 
mechanisms underlying these abilities may aid the diagnosis 
and treatment of cancer. In the present study, the effects of 
O‑GlcNAcylation on ovarian cancer cell motility were exam-
ined, including migration and invasion, and the underlying 
molecular mechanism.

Ras homolog family member A (RhoA) is a member of 
the Rho GTPase family associated with actin cytoskeleton 
rearrangement, regulation of the cell cycle, gene transcrip-
tion, cell polarity and movement (20). As with other GTPases, 
RhoA functions through the exchange between two states: 
The GTP‑bound active state and the GDP‑bound inactive 
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state (21). RhoA‑mediated signaling pathways, particularly 
the Rho‑associated protein kinase (ROCK)/myosin light 
chain (MLC) pathway, are closely associated with diverse 
biological activities including cytoskeleton reorganiza-
tion, gene expression, muscle contraction, cell growth 
and motility (22-27). High RhoA expression levels and 
activity have been observed in a variety of human types of 
cancer (28-32), suggesting that it may be associated with 
signaling pathways relevant to cancer. In addition, increased 
RhoA and ROCK expression levels are more commonly 
observed in advanced cancer compared with early stage 
cancer (33). Furthermore, it has been reported (34) that 
RhoA silencing significantly suppresses growth, adhesion, 
migration and invasion of ovarian cancer cells. Therefore, 
the present study aimed to examine whether RhoA/ROCK 
signaling is involved in the regulation of O‑GlcNAcylation 
in ovarian cancer cells, and how this affects their capacity to 
migrate and invade tissues.

Materials and methods

Cell cultures. Human ovarian epithelial adenocarcinoma 
SKOV3 cells were purchased from the Cell Bank of the 
Chinese Academy of Sciences (Shanghai, China) and endo-
metrioid‑type ovarian epithelial carcinoma 59M cells were 
purchased from the European Collection of Authenticated 
Cell Cultures; Public Health England (Salisbury, UK). 
SKOV3 cells were cultured in McCoy's 5A medium (Thermo 
Fisher Scientific, Inc., Waltham, MA) and 59M cells in 
Dulbecco's modified Eagle's medium (Gibco; Thermo Fisher 
Scientific, Inc.) supplemented with 10% fetal bovine serum 
(FBS; Lonza Group, Basel, Switzerland), 2 mM L‑glutamine, 
100 µg/ml streptomycin and 100 units/ml penicillin. Cells 
were incubated at 37˚C in a humidified atmosphere containing 
5% CO2.

RNA interference (RNAi). The sequence of the OGT‑targeting 
small interfering RNA (siRNA) used was 5'‑GGA TGC TTA TAT 
CAA TTT AGG‑3'. Negative control siRNA oligonucleotides 
(F: 5'‑CCG GTA CGT GAC ACG TTC GGA GAA TTC TCG AGA 
ATT CTC CGA ACG TGT CAC GTT TTT TG‑3'; R: 5'‑AAT 
TCA AAA AAC GTG ACA CGT TCG GAG AAT TCT CGA GAA 
TTC TCC GAA CGT GTC ACG TA‑3') were purchased from 
Eurogentec (Liège, Belgium). siRNA (1.6 µg) was diluted with 
Opti‑MEM I Reduced Serum Medium (Invitrogen; Thermo 
Fisher Scientific, Inc.) to a final volume of 100 µl. DreamFect 
reagent (8 µl; OZ Biosciences, Marseille, France) was diluted 
with Opti‑MEM I Reduced Serum Medium to a final volume 
of 100 µl. The RNAi solution and transfection reagent were 
then combined and incubated for 20 min at room temperature. 
The 200 µl mixture was then added to 80% confluent cells 
(1.2x106 cells per well) maintained in 6‑well plates, with 1.8 ml 
of culture medium per well. Cells were transfected onceover 
24 h for 4 days. OGT expression and activity were detected at 
96 h by western blot analysis, and transfected cell invasion and 
migratory capacity were evaluated by Transwell assay.

The sequence of the RhoA‑targeting siRNA was 5'‑AAG 
CAG ATG AGA ATG ACG TCG GTG‑3', and negative control 
siRNA (5'‑ACG TGA CAC GTT CGG AGA ATT‑3') was 
purchased from Invitrogen (Thermo Fisher Scientific, Inc.). 

siRNAs were transfected into SKOV3 and 59M cells by 
electroporation with the Amaxa Nucleofector (Lonza Group) 
according to the manufacturer's protocols, then lysed 24 h later 
and analyzed by reverse transcription‑quantitative polymerase 
chain reaction (RT‑qPCR) and western blot analysis to measure 
RhoA mRNA and protein expression levels, respectively.

RT‑qPCR. Total RNA in cells was extracted using a total 
RNA isolation kit (A&A Biotechnology, Gdynia, Poland). 
cDNA was obtained by reverse transcription of 1 µg of total 
RNA in a 20 µl reaction using a RevertAid™ First Strand 
cDNA Synthesis kit (Fermentas; Thermo Fisher Scientific, 
Inc.) and was amplified using a TaqMan® Gene Expression 
Assay (Applied Biosystems; Thermo Fisher Scientific, Inc.), 
using primers specific for the target proteins. The sequences 
of the primers were as follows: 5'‑CGG GAG CTA GCC AAG 
ATG AAG‑3' (F) and 5'‑GCT TGC AGA GCA GCT CTC GTA‑3' 
(R) for RhoA. 5'‑GGC CGT GAA GTC GTC AGA AC‑3' (F) 
and 5'‑GCC ACG ATG CCC AGG AA‑3' (R) for glyceralde-
hyde 3‑phosphate dehydrogenase (GAPDH). The two genes 
were amplified by a first step of 120 sec at 95˚C, followed 
by 45 cycles of 30 sec at 95˚C, 30 sec at 60˚C, and 30 sec 
at 72˚C. mRNA expression of RhoA was calculated using the 
formula 2-ΔΔCq (35) and was normalized to GAPDH expression 
levels. mRNA expression levels in cells transfected with RhoA 
siRNA are presented relative to mRNA expression levels in 
cells with negative control siRNA.

Migration and invasion assays. Cell migration was evaluated 
by Transwell assay using Transwell chambers (BD Biosciences, 
Franklin Lakes, NJ, USA) (36). A total of 600 µl cell culture 
medium, with or without 5 µM Thiamet‑G (an OGN inhibitor) 
or 50 µM Y‑27632 (a ROCK inhibitor) was added in the lower 
chamber. Culture medium (100 µl) containing 1x105 SKOV3 
or 59M cells and 1% FBS, was plated into the upper chamber, 
with or without Thiamet‑G or Y‑27632. The cells on the under-
surface of the upper chamber were stained with crystal violet 
20 h later and were observed using a light microscope. A total 
of six fields at x100 magnification were selected at random 
to measure the average cell coverage using ImageJ software 
version 1.45s (National Institutes of Health, Bethesda, MD, 
USA). Invasion assays were performed using the same protocol 
as the migration assay, but the upper face of the polycarbonate 
membrane in the upper chamber was covered with 1 mg/ml 
Matrigel (BD Biosciences) and the invasive cells were detected 
following 24 h incubation.

Western blot analysis. Cells were lysed for 15 min at ice bath 
using a lysis buffer (1% Triton X‑100, 20 mM Tris pH 7.5, 
1 mM MgCl2, 150 mM NaCl, 1 mM Na3VO4, 50 mM NaF, 
1.5 mM EDTA, 10% glycerol, 20 mM β‑glycerophosphate, 
10 µg/ml aprotonin, 1 µM pepstatin A) containing 5 µM 
PUGNAc (an OGA inhibitor; Toronto Research Chemicals, 
Inc., North York, Canada). Protein samples (50 µg) were sepa-
rated by 10% SDS‑PAGE and transferred to polyvinylidene 
fluoride membranes (Merck KGaA, Darmstadt, Germany). The 
membrane was blocked with 5% non‑fat dried milk in TBST 
for 1 h at room temperature and incubated overnight at 4˚C with 
primary antibodies. Antibodies specific to O‑GlcNAcylation 
(RL2; 1:1,000; Affinity BioReagents, Golden, CO, USA) and 
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OGT (F‑12; 1:500; Santa Cruz Biotechnology, Inc., Dallas, 
TX, USA) were used. RhoA (67B9; 1:1,000), MLC (3672; 
1:1,000) and phosphorylated (p‑)MLC (3671; 1:1,000) anti-
bodies were obtained from Cell Signaling Technology, Inc. 
(Danvers, MA, USA). GAPDH antibody (sc‑25778; 1:2,000) 
and horseradish peroxidase‑linked goat anti‑mouse (sc‑2005; 
1:2,000) and goat anti‑rabbit (sc‑2004; 1:2,000) IgG secondary 
antibodies were purchased from Santa Cruz Biotechnology, 
Inc. Development was carried out using an enhanced chemilu-
minescence western blotting detection reagent (GE Healthcare 
Life Sciences, Chalfont, UK).

RhoA activity detection. RhoA activity was analyzed using 
Rhotekin Rho binding domain (Upstate Biotechnology; 
Thermo Fisher Scientific, Inc.) bound to glutathione agarose 
beads to pulldown the active GTP‑bound RhoA form 

from ovarian cell lysates in lysis buffer (20 mM HEPES, 
pH 7.5, 0.5% NP‑40, 100 mM NaCl, 0.2% deoxycholic 
acid, 10% glycerol, and 10 mM MgCl2) supplemented with 
protease and phosphatase inhibitors (37). GTP‑bound RhoA 
and total RhoA were evaluated by western blot analysis as 
above, using RhoA antibody (67B9; 1:1,000; Cell Signaling 
Technology, Inc.).

MLC phosphorylation detection. Cells were starved in 
serum‑free medium for 24 h, then incubated at 37˚C for 60 min 
with or without Thiamet‑G at 5 µM concentration. The cells 
were subsequently lysed for 15 min at 4˚Cin cell lysis buffer 
[100 mM NaCl, 1 mM Na3VO4, 40 mM Na4P2O7, 20 mM 
NaF, 30 mM HEPES/NaOH (pH 7.4), 1% Triton X‑100, 1 mM 
EGTA, 1 mM PMSF, 10 µg/ml pepstatin, 10 µg/ml leupeptin 
and 10 µg/ml aprotinin], and cell lysates were centrifuged for 

Figure 1. O‑GlcNAcylation in ovarian cancer cells is upregulated in response to ThiaG treatment and downregulated in response to OGT silencing. Protein 
expression levels were measured by western blotting in SKOV3 (A) and 59M (B) cells. GAPDH was used as an internal reference. ThiaG, Thiamet‑G; OGT, 
O‑GlcNAc transferase; Ctrl, control; siOGT, O‑GlcNAc transferase small interfering RNA; O‑GlcNAc, O‑linked β‑N‑acetylglucosamine; GADPH, glyceral-
dehyde 3‑phosphate dehydrogenase.

Figure 2. O‑GlcNAcylation regulates (A) migration and (B) invasion in SKOV3 and 59M ovarian cancer cells in in vitro Transwell assays. OGT was silenced 
with siOGT, and upregulated with ThiaG treatment. **P<0.01 vs. ctrl. O‑GlcNAc, O‑Linked β‑N‑acetylglucosamine; OGT, O‑GlcNActransferase; siOGT, 
O-linked β‑N‑acetylglucosamine transferase small interfering RNA; Ctrl, control; ThiaG, Thiamet‑G.
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10 min at 4˚C. The cell extracts were then used for western blot 
analysis using MLC and p‑MLC antibodies, as above.

Statistical analysis. All experiments were repeated at least 
three times. SPSS software version 13.0 (SPSS, Inc., Chicago, 
IL, USA) was used for analysis, and data were expressed as the 
mean ± standard error of the mean. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Differential regulation of O‑GlcNAcylation in ovarian cancer 
cells. Two human ovarian cancer cell lines, SKOV3 and 59M, 
were used to determine the involvement of O‑GlcNAcylation 
in ovarian cancer. To alter the O‑GlcNAcylation level, cells 
were transfected with OGT‑targeting siRNA or treated with 
the OGA inhibitor Thiamet‑G (5 µM) for 24 h. Western blot 
analysis revealed that OGT silencing decreased the level of 
global O‑GlcNAc in SKOV3 (Fig. 1A) and 59M cells (Fig. 1B) 
compared with cells transfected with control siRNA. OGT 
protein expression levels were also visibly reduced in SKOV3 
(Fig. 1A) and 59M cells (Fig. 1B) transfected with OGT 
siRNA compared with cells transfected with control siRNA. 
Thiamet‑G treatment visibly increased global O‑GlcNAc 
levels in SKOV3 (Fig. 1A) and 59M cells (Fig. 1B) compared 
with untreated control cells, indicating that it effectively 
inhibited OGA activity.

O‑GlcNAcylation affects ovarian cancer cell migration and 
invasion. The effect of O‑GlcNAcylation on ovarian cancer 
malignancy was investigated via in vitro analysis of cell 

Figure 3. O‑GlcNAcylation affects RhoA activity and MLC phosphorylation 
in SKOV3 and 59M human ovarian cancer cells. (A) RhoA activity was evalu-
ated by pull‑down assay and western blotting. (B) MLC phosphorylation levels 
were assessed by western blotting. Transfection with siOGT and treatment 
with ThiaG were used to downregulate and upregulate O‑GlcNAcylation, 
respectively. O‑GlcNAc, O‑linked β‑N‑acetylglucosamine; RhoA, Ras 
homolog family member A; ThiaG, Thiamet‑G; siOGT, O‑Linked 
β‑N‑acetylglucosamine transferase small interfering RNA; Ctrl, control; 
MLC, myosin light chain; p‑, phosphorylated.

Figure 4. siRhoA attenuates O‑GlcNAcylation‑induced cell migration and 
invasion in SKOV3 and 59M human ovarian cancer cells. The effect of 
siRhoA transfection on RhoA (A) mRNA and (B) protein expression levels, 
assessed by reverse transcription‑quantitative polymerase chain reaction 
and western blotting, respectively. (C) Migration and (D) invasion in RhoA 
silenced and non‑silenced cells following ThiaG treatment, assessed by 
Transwell assay. **P<0.01, with comparisons indicated by lines. O‑GlcNAc, 
O-linked β‑N‑acetylglucosamine; siRhoA, Ras homolog family member A 
small interfering RNA; RhoA, Ras homolog family member A; Ctrl, control; 
GADPH, glyceraldehyde 3‑phosphate dehydrogenase; ThiaG, Thiamet‑G; 
N.S., not significant.
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migration and invasion using a Transwell assay. Transfection 
with OGT siRNA significantly decreased migration (SKOV3 
cells, P=0.007; 59M cells, P=0.009; Fig. 2A) and invasion 
(SKOV3 cells, P=0.006; 59M cells, P=0.008; Fig. 2B) in 
OGT siRNA transfected cells compared with control siRNA 
transfected cells. However, Thiamet‑G treatment significantly 
increased migration (SKOV3 cells, P=0.007; 59M cells, 
P=0.009; Fig. 2A) and invasion (SKOV3 cells, P=0.007; 
59M cells, P=0.006; Fig. 2B) in treated cells compared with 
untreated controls. This indicates that a positive correlation 
exists between the intracellular global O‑GlcNAcylation level 
and the motility of ovarian cancer cells.

O‑GlcNAcylation affects the RhoA/ROCK/MLC signal 
pathway. It has previously been reported (22-27) that Rho 
GTPases are associated with cell motility, with RhoA stimu-
lating ROCK and MLC to regulate these cellular events. To 
determine how O‑GlcNAcylation modulates ovarian cancer 
cell motility, RhoA activity was detected by pull‑down assay. 
The results revealed that Thiamet‑G treatment‑induced 
O‑GlcNAcylation upregulation visibly enhanced RhoA 
activity at 3 and 6 h in SKOV3 and 59M cells compared with 
untreated control cells (Fig. 3A), while downregulation of 
O‑GlcNAcylation induced by OGT silencing visibly reduced 
RhoA activity in SKOV3 and 59M cells compared with control 
cells (Fig. 3A). MLC phosphorylation is stimulated by RhoA 
through ROCK activation (25), so MLC phosphorylation 
was analyzed by western blotting. The results indicated that 
O‑GlcNAcylation upregulation increased MLC phosphory-
lation in SKOV3 and 59M cells compared with untreated 
controls (Fig. 3B), and O‑GlcNAcylation downregulation 
attenuated this phosphorylation in SKOV3 and 59M cells 
compared with control cells (Fig. 3B). This suggests that the 
RhoA/ROCK/MLC signal pathway may be closely associ-
ated with O‑GlcNAcylation and the regulation of motility in 
ovarian cancer cells.

RhoA silencing reverses O‑GlcNAcylation‑induced cell 
motility. To determine whether O‑GlcNAcylation affected 
ovarian cancer cell motility by targeting RhoA/ROCK 
signaling, RhoA was knocked down by RNAi and interfer-
ence efficiency was assessed using RT‑qPCR and western 
blot analysis to measure mRNA and protein expression levels, 

respectively. RhoA mRNA and protein expression levels 
were effectively decreased in SKOV3 cells transfected with 
RhoA siRNA compared with control cells (Fig. 4A and B, 
respectively). RhoA silenced and non‑silenced cells were 
subsequently treated with or without Thiamet‑G, and cell 
migration and invasion were evaluated by Transwell assay. 
Thiamet‑G treatment resulted in a significant increase in 
migration and invasion compared with control cells in SKOV3 
(P=0.005 and P=0.006, respectively; Fig. 4C and D, respec-
tively) and 59M cells (P=0.009 and P=0.005, respectively; 
Fig. 4C and D, respectively). RhoA silencing significantly 
attenuated cell migration and invasion in SKOV3 (P=0.004 
and P=0.006, respectively; Fig. 4C and D, respectively) and 
59M cells (P=0.007 and P=0.004, respectively; Fig. 4C and D, 
respectively) compared with control cells. No significant differ-
ence was observed in migration or invasion between RhoA 
silenced cells and RhoA silenced cells treated with Thiamet‑G 
(Fig. 4C and D, respectively). These findings suggest that 
RhoA is involved in the regulation of O‑GlcNAcylation in 
ovarian cancer cell motility.

Y‑27632 inhibited O‑GlcNAcylation‑induced cell migration and 
invasion. Y‑27632 is able to effectively inhibit ROCK activity (38) 
and is often used in the investigation of the ROCK signal path-
ways (39). Therefore, Thiamet‑G treated and untreated SKOV3 
and 59M cells were treated with or without 50 µM Y‑27632, and 
cell motility was analyzed. Thiamet‑G treatment resulted in a 
significant increase in migration and invasion compared with 
control cells in SKOV3 (P=0.005 and P=0.008, respectively; 
Fig. 5) and 59M cells (P=0.007 and P=0.003, respectively; 
Fig. 5). Y‑27632 treatment significantly inhibited cell migration 
and invasion in SKOV3 (P=0.006 and P=0.004, respectively; 
Fig. 5) and 59M cells (P=0.007 and P=0.003, respectively; 
Fig. 5) compared with control cells. No significant difference 
was observed in invasion or migration between Y‑27632 treated 
and Thiamiet‑G+Y‑27632 treated cells (Fig. 5). These results 
suggest that O‑GlcNAcylation regulates ovarian cancer cell 
motility through the RhoA/ROCK signal pathway.

Discussion

Ovarian cancer exhibits the highest mortality of all gyne-
cological malignancies due to a high rate of metastasis (17). 

Figure 5. O‑GlcNAcylation‑induced cell migration and invasion, measured by Transwell assays, is inhibited by Y‑27632 treatment in SKOV3 and 59M human 
ovarian cancer cells. **P<0.01, with comparisons indicated by lines. O‑GlcNAc, O‑linked β‑N‑acetylglucosamine; Ctrl, control, ThiaG, Thiamet‑G; N.S., not 
significant.
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Metastasis is the final step in the progression of numerous 
solid tumors, and previous studies (40-42) have demonstrated 
that ovarian cancer cells often spread to distant sites including 
the lung, spleen, liver and bone aspirates, leading to increased 
complications and higher mortality rates. Therefore, the 
investigation of mechanisms associated with ovarian cancer 
is necessary to improve the diagnosis and treatment of ovarian 
cancer.

A growing body of evidence (12-16) has demonstrated 
that O‑GlcNAcylation is a critical regulator of several 
human tumors and is associated with anchorage independent 
growth, proliferation, adhesion, migration and invasion 
in cancer cells, which are closely associated with tumor 
cell malignancy (3-5,8). Cellular migration and invasion 
particularly represent the metastatic ability of tumor cells. 
In the present study, O‑GlcNAcylation upregulation was 
demonstrated to promote migration and invasion of ovarian 
cancer cells, whereas O‑GlcNAcylation downregulation 
inhibited migration and invasion. This finding is supported 
by previous studies (12,13) regarding the involvement of 
O‑GlcNAcylation in breast, lung and colon cancer progres-
sion.

High RhoA mRNA and protein expression levels have 
been reported in several human types of cancer, including 
bladder (28), gastric (29), breast (30), testicular (31) and 
ovarian (32) cancer. RhoA expression is also significantly 
increased in prostate cancer cells compared with normal 
prostate cells, contributing to aberrant cell growth, and 
knockdown of RhoA decreases prostate cancer cell viability 
and motility (43). ROCK affects the growth, formation, 
migration, invasion and metastasis of tumor cells by 
modulating cell stress‑fiber and intercellular connection 
formation (28,44-51) and RhoA‑mediated signaling path-
ways, particularly the RhoA/ROCK/MLC pathway, are 
involved in regulating cell motility (23,24,28). In order 
to explore the underlying molecule mechanisms behind 
O‑GlcNAcylation modulation of motility in ovarian cancer 
cells, the present study investigated the RhoA/ROCK/MLC 
signal pathway. The data demonstrated that O‑GlcNAcylation 
activated the RhoA/ROCK/MLC pathway by stimulating 
the formation of activated GTP‑bound RhoA and MLC 
phosphorylation. Deficiencies in this pathway, mediated by 
either RhoA silencing or the inhibition of ROCK by Y‑27632, 
blocked O‑GlcNAcylation and induced increased migration 
and invasion. These results suggest that O‑GlcNAcylation 
modulates motility in ovarian cancer cells by stimulating 
RhoA/ROCK/MLC signaling. However, RhoA activity is 
regulated by a variety of proteins. p27 regulates the activa-
tion of the RhoA/ROCK/MLC signaling pathway by binding 
with RhoA, which affects biological functions of the cell (52). 
p27‑Rho is able to activate RhoA and induce invadopodia, 
thus regulating tumor cell invasion (53). RhoA/ROCK/MLC 
signaling is also activated by guanine‑nucleotide exchange 
factor‑H1 to regulate cell contractility (54). However, whether 
altered RhoA activity is the result of direct modification or 
an indirect effect of O‑GlcNAc remains to be elucidated, 
with more study required.

In conclusion, O‑GlcNAcylation enhanced RhoA / 
ROCK/MLC signaling, which promoted the migration and 
invasion of ovarian cancer cells. This finding suggests valuable 

novel targets to control metastasis, and lays a theoretical foun-
dation for the diagnosis and treatment of ovarian cancer.
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