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Abstract. Idiopathic pulmonary fibrosis (IPF) is the most 
common interstitial pneumonia and the most aggressive inter-
stitial lung disease. Usually, IPF is confirmed by the histopatho-
logical pattern of typical interstitial pneumonia and requires 
an integrated multidisciplinary approach from pulmonologists, 
radiologists and pathologists. However, these diagnoses are 
performed at an advanced stage of IPF. At present, pathway‑based 
detection requires investigation, as it can be performed at an 
early stage of the disease. The aim of the present study was to 
find an effective method of diagnosing IPF at an early stage. 
Microarray data forE‑GEOD‑33566 were downloaded from 
the ArrayExpress database. Human pathways were downloaded 
from Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database. An individual pathway‑based method to 
diagnose IPF at an early stage was introduced. Pathway statistics 
were analyzed with an individualized pathway aberrance score. 
P‑values were obtained with different methods, including the 
Wilcoxon test, linear models for microarray data (Limma) test 
and attract methods, generating three pathway groups. Support 
vector machines (SVM) were used to identify the best group for 
diagnosing IPF at an early stage. There were 106 differential 
pathways in Wilcoxon‑based KEGG Pathway (n>5) group, 
100 in the Limma‑based KEGG Pathway (n>5) group, and seven 
in the attract‑based KEGG Pathway (n>5) group. The pathway 
statistics of these differential pathways in three groups were 
analyzed with linear SVM. The results demonstrated that the 
Wilcoxon‑based KEGG Pathway (n>5) group performed best in 
diagnosing IPF.

Introduction

Idiopathic pulmonary fibrosis (IPF) is the most common of 
the interstitial pneumonias and the most aggressive interstitial 

lung disease (1). The etiology of IPF still remains to be eluci-
dated and thus, a successful treatment remains to be identified. 
The disease is more common in males, particularly those aged 
between 50 and 70 (2), and the incidence of IPF rises mark-
edly with age. The prevalence of IPF ranges between 13 cases 
per 100,000 for women to 20 cases per 100,000 for men and 
the figures are increasing (3). The onset of clinical symptoms 
is insidious, including shortness of breath on exertion and a 
dry cough, and certain patients experience an initial flu‑like 
malaise (1), leading to a late diagnosis if ignored.

Usually IPF is confirmed by the histopathological 
pattern of usual interstitial pneumonia, and requires an 
integrated multidisciplinary approach from pulmonologists, 
radiologists and pathologists. The common measurements 
include high‑resolution computed tomography, surgical lung 
biopsy and radiologic diagnosis. However, these diagnoses are 
performed at a late stage of IPF and are not useful in proposing 
a plan of treatment.

A recent genetic study (4) assessed early‑stage pulmonary 
fibrosis as the majority of these mutations are present at birth, 
predating disease development, and thus can provide insights 
into the early stages. A study of genetic associations (5) holds 
promise in exhibiting the connections between early‑stage and 
advanced disease. Although progress has been made in the field 
of IPF genetics in identifying common variants that are associ-
ated with IPF diagnosis, rare variants remain to be analyzed. 
The use of genetics in early IPF detection remains in its infancy.

It has been demonstrated (6) that numerous critical genes 
and pathways are deregulated during the initiation and progres-
sion of a cancer, certain studies (7,8) have identified differential 
expressed genes in IPF and several studies (7,9) have analyzed 
pathways in IPF, however they were non‑uniform. Identifying 
pathways that are deregulated in patients with cancer may 
be useful in identifying cancer from unknown samples. A 
number of methods have been proposed to identify differential 
pathways, including the attract method (10), personal pathway 
deregulation score (11) and individualized pathway aberrance 
score (12). Personalized identification of differential pathways 
provides pathway interpretation in a single sample with accu-
mulated normal data.

Support vector machines (SVM) are among the most 
powerful classification and prediction methods, first developed 
by Cherkassky (13). They are used in a wide range of scientific 
applications (14), including cancer tissue classification (15), 
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protein domain classification  (16) and splice site predic-
tion (17), due to their great accuracy, their ability to deal with 
high‑dimensional and large datasets, and their flexibility in 
modeling diverse sources of data (18).

From this perspective, a pathway aberrance analysis to iden-
tify and determine the extent of IPF using the peripheral blood 
transcriptome was performed, with the aim of distinguishing 
normal individuals from patients with IPF and, additionally, 
to distinguish the extent of the disease when samples were 
classified by percent predicted diffusion capacity for carbon 
monoxide of the lung, however not forced vital capacity (19). 
Three methods were employed to identify differential path-
ways. To analyze the feasibility of pathway‑based diagnosis in 
IPF, SVM was introduced.

Materials and methods

Dataset
Gene expression data. Microarray data of E‑GEOD‑33566 (19), 
together with the annotation files, were downloaded from the 
ArrayExpress database (https://www.ebi.ac.uk/arrayexpress). 
The data included 93 patients with IPF and 30 healthy controls. 
Blood was collected in PAXgene RNA tubes. The platform in 
this study was A‑AGIL‑28‑Agilent Whole Human Genome 
Microarray 4x44K 014850 G4112F (85 columnsx532 rows) 
and the platform was designated. The Peripheral Blood 
Transcriptome Predicts the Presence and Extent of Disease in 
Idiopathic Pulmonary Fibrosis, by which the gene expression 
files were generated. According to the gene ID and symbol in 
the annotation file of the platform, the gene ID in the micro-
array was changed to its designation.

Pathway data and preprocessing. All the pathways of 
Homo sapiens were derived from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) Pathway Database (http://www.
kegg.jp) (20). In total, 300 pathways, including 6,919 genes, 
were obtained. To simplify pathway data, pathways containing 
<5  genes were excluded. Eventually, 284  pathways were 
obtained for further analysis. Genes common to pathways and 
samples were used in subsequent analysis.

Pathway analysis. The aim of the present study was to analyze 
the altered pathways in an individual with a disease. The 
process of this analysis is presented as Fig. 1.

Gene level statistics. Gene data in the normal group were 
normalized using quantile normalization in the preprocess-
Core package (21), which generated the mean and standard 
deviation of gene expression levels. Following the amalgama-
tion of genes in tumor samples with all the normal samples, 
quantile normalization using mean and standard deviation of 
the gene expression levels was performed, generating gene 
level statistics. The formula was:

Where Zi symbolized the standardized expression value 
of the i‑th gene, and n represented the number of genes 
belonging to the pathway. The results obtained were gene 
level statistics.

Pathway level statistics. The statistics for each pathway were 
calculated by averaging the gene level statistics of all genes 
belonging to the pathway, thus:

Where n represented the number of genes in the pathway 
and Zi symbolized the standardized expression value of i‑th 
gene in the pathway.

Differential pathway screening. A significance test was 
performed to assess differential pathways associated with IPF. 
To identify the best test protocol to assess differential path-
ways, three pathway groups were constructed for comparison.

Wilcoxon‑based KEGG Pathway (n>5) group: The pathway 
statistics, obtained from the pathways of disease group and 
normal group, were tested by Wilcoxon (22) with the function:

Where n is the number of samples.
The significance of the level was corrected by false 

discovery rate (FDR) (23).
Subsequently, each pathway was allotted a P‑value. Those 

pathways with P<0.01 were considered differential pathways. 
In total, 106 differential pathways were obtained.

Limma‑based KEGG Pathway (n>5) group: The pathway 
statistics were performed with Limmae Bayes (24) and top 
Table functions, generating P‑values. In total, 100 differential 
pathways were screened out with P<0.01.

Attract‑based KEGG Pathway (n>5) group: Genes in 
differential pathways of the Wilcoxon‑based KEGG pathway 
group were subsequently analyzed using the attract method.

Figure 1. A schematic diagram of the method of individualized pathway 
analysis.
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The F‑statistics for gene I was calculated by:

Where MSSi denotes the mean treatment sum of squares:

And RSSi denotes the residual sum of squares:

For pathway P consisting of gp genes, the T‑statistic takes 
the following form:

Where G denotes the total number of genes in a pathway 
and SP

2 and SG
2 were defined as sample aberrances.

Following the performance of the t‑test and adjusted with 
the FDR of Benjamini‑Hochberg (25), the pathway statistical 
value was transformed into P‑values. In total, seven pathways 
with P<0.05 were identified.

SVM analysis. An SVM method was applied to test the analysis 
results of the three pathway groups and 5‑fold cross validation 
was selected to analyze the SVM model. The pathways statistics 
of the normal and disease group were amalgamated and divided 
into two sets, the training and the test set, with a ratio of 6:4. These 
data were treated with linear SVM, employing the formula:

Subsequent to classification, the parameters of the area 
under the receiver operator characteristic (ROC) curve (AUC), 
accuracy, the Matthews coefficient correlation classification 
measure (MCC), the degree of true negative identification 
specificity (specificity) and the degree of true positive identifi-
cation sensitivity (sensitivity) were ascertained.

Results

Differential pathways. The original KEGG pathway data-
base contains 300 pathways and 6,919 genes. Pathways with 
<5 genes were deleted, generating a KEGG Pathway (n>5) 
group containing 284 pathways and 4,303 genes. In comparing 
the healthy (n=30) and diseased (n=93) lung samples, differen-
tial pathways were identified using three methods.

In the Wilcoxon‑based KEGG Pathway (n>5) group, 
106 differential pathways were identified, the largest number 
of the three groups. By ranking pathways with P‑values, five 
pathways with the least P‑values and gene number are presented 
in Table I. The P‑value can be regarded as an indicator of the 
extent of the disease. The first differential pathway with the 
least P‑value was ‘Amoebiasis’, indicating that it was among 

the pathways most susceptible to disease. It is caused by an 
extracellular protozoan parasite that invades the intestinal 
epithelium and belongs to infectious diseases. The pathway of 
‘bladder cancer’ demonstrates that the disease causes urinary 
system lesion. The other three pathways are involved in basic 
metabolism in the body.

The Limma‑based KEGG Pathway (n>5) group contained 
100 differential pathways, six fewer than the Wilcoxon‑based 
KEGG Pathway (n>5) group. The top five ranked pathways 
with the least P‑values and gene number are presented in 

Table I. The top five ranked differential pathways with the least 
P‑values in the Wilcoxon‑based KEGG pathway group (n>5).

Differential pathway	 P‑value	 Geneno.

Amoebiasis	 0.000151	 60
Bladder cancer	 0.000186	 29
Type II diabetes mellitus	 0.000236	 30
Primary immunodeficiency	 0.000386	 31
Histidine metabolism	 0.000386	   9

KEGG, Kyoto Encyclopedia of Genes and Genomes; Geneno., the 
number of genes in the pathway.

Table II. The top five ranked differential pathways with 
P‑values in the Limma‑based KEGG Pathway group (n>5).

Differential pathway	 P‑value	 Genesno.

Amoebiasis	 0.0000684	 60
Bladder cancer	 0.0000684	   9
Type II diabetes mellitus	 0.00022	 31
Primary immunodeficiency	 0.000405	 30
Histidine metabolism	 0.000405	 38

Limma, linear models for microarray data; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; Genesno., the number of genes 
in the pathway.

Table III. All the differential pathways with P‑values in the 
attract‑based KEGG Pathway group (n>5).

Differential pathways	 P‑value	 Geneno.

Ribosome	 0.000072	 128
Legionellosis	 0.000072	   48
Pyrimidine metabolism	 0.001157	   79
Renin‑angiotensin system	 0.001157	     7
B cell receptor signaling	 0.002139	   70
Oxidative phosphorylation	 0.006775	 115
Osteoclast differentiation	 0.006775	 109

KEGG, Kyoto Encyclopedia of Genes and Genomes; Geneno., the 
number of genes in the pathway.
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Table  II. Notably, four pathways were the same as in the 
Wilcoxon‑based KEGG Pathway (n>5) group. The exception 
is ‘Notch signaling pathway’, an intercellular signaling mecha-
nism essential for correct embryonic development.

The attract‑based KEGG Pathway (n>5) group contained 
seven differential pathways, and was the smallest group. 
These differential pathways were the same as seven of the 
differential pathways in Wilcoxon‑based KEGG Pathway 
(n>5) group, but none of them were in the top five pathways 
of the latter group in P‑values. The pathways with P‑values 
and gene number are presented in Table III. The seven path-
ways represented the core pathways that reflected the disease 
and may aid analysis of the disease. The first ranked pathway 
was ‘Ribosome’, which is responsible for genetic informa-
tion processing and translation. The ‘Legionellosis’ pathway 
is associated with a potentially fatal infectious disease. 
‘Pyrimidine metabolism’ is responsible for nucleotide 
metabolism. The ‘Renin‑angiotensin system’ pathway is a 
peptidergic system with endocrine characteristics concerned 
with the regulation of blood pressure and hydroelectrolytic 
balance. The ‘B cell receptor signaling’ pathway is involved 
in the immune system. The ‘Oxidative phosphorylation’ 
pathway is part of energy metabolism.

SVM analysis. To obtain the best performing pathway 
group, linear SVM analysis was adopted. In each differential 
pathway group, pathways in the normal and disease groups 
were divided into two sets, the training and the test set, with 
a ratio of 6:4. Several parameters were analyzed to compare 
the four pathway groups, including AUC, accuracy, specificity, 
sensitivity, MCC, true negative, false positive, true positive and 
false negative. The test set of the differential pathway groups 
with parameters is presented in Table IV.

According to the SVM results, the Wilcoxon‑based KEGG 
Pathway (n>5) group performed the best, with all the param-
eters better than the other two groups.

Discussion

A method to diagnose IPF at an early stage is required. Since 
the field of IPF genetics has made significant progress in iden-
tifying common variants that are confidently associated with 
IPF diagnosis, a gene‑based pathway aberrance analysis may 
aid the detection of IPF at an early stage.

In the present study, three pathway groups were constructed; 
a Wilcoxon‑based KEGG Pathway (n>5) group, a Limma‑based 
KEGG Pathway (n>5) group and an attract‑based KEGG 
Pathway (n>5) group. Different groups were obtained due to 
the different test methods deployed in pathway statistics and 
the quantity of differential pathways in the three groups also 
differed; the Wilcoxon‑based KEGG Pathway (n>5) group 
possessed the greatest number of pathways, the Limma‑based 
KEGG Pathway (n>5) group possessed fewer pathways 
and the attract‑based KEGG Pathway (n>5) group the least 
number of pathways. The attract‑based KEGG Pathway (n>5) 
group contained only seven differential pathways, far fewer 
than the other two groups. Differential pathways reflected the 
core metabolisms that were most influenced by the disease, 
however the large number of differential pathways identified 
suggested further evaluation and study is required in order to 
fully elucidate the mechanism.

The SVM method (26), which has been demonstrated to 
possess a high identification rate in numerous datasets, was intro-
duced to perform the comparison. According to the SVM results, 
the Wilcoxon‑based KEGG Pathway (n>5) group performed the 
best, with all parameters better than the other two groups.

To identify which group performed best in diagnosing IPF 
with differential pathways, a classifier SVM was introduced. 
The results demonstrated that the Wilcoxon‑based KEGG 
Pathway (n>5) group performed the best, with the parameters of 
AUC, accuracy, MCC, specificity and sensitivity. It is therefore 
suggested that this pathway group reflected the occurrence of 
IPF more exactly. The top five pathways that were most prone 

Table IV. Comparison of the test sets of the three differential pathway groups classified by the method ofsupport vector machines.

	 Limma‑based	 Wilcoxon‑based	 Attract‑based
Parameter	 KEGG pathway	 KEGG pathway	 KEGG pathway

Negative samples	 14	 14	 14
Positive samples	 36	 36	 36
TN	 7	 8	 0
FP	 7	 6	 14
TP	 31	 33	 36
FN	 5	 3	 0
AUC	 0.68	 0.74	 0.50
Accuracy	 76.00	 82.00	 72.00
MCC	 0.38	 0.53	 0.00
Specificity	 0.50	 0.57	 0.00
Sensitivity	 0.86	 0.92	 1.00

Limma, linear models for microarray data; KEGG, Kyoto Encyclopedia of Genes and Genomes; TN, true negative; FP, false positive; TP, 
true positive; FN, false negative; AUC, the area under the ROC curve; ROC, receiver operator characteristic; MCC, the Matthews coefficient 
correlation classification measure.
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to alter in IPF were ‘Amoebiasis’, ‘Bladder cancer’, ‘Type II 
diabetes mellitus’, ‘Primary immunodeficiency’ and ‘Histidine 
metabolism’.

The ‘Amoebiasis’pathway is involved in a type of infec-
tious disease. The pathogenesis of amoebiasis begins with 
parasite attachment and disruption of the intestinal mucus 
layer, followed by apoptosis of host epithelial cells. The para-
site can cause extra intestinal infection, including amoebic 
liver abscesses, by evading the immune response (27). That 
the ‘Amoebiasis’ pathway was inhibited in IPF was identified 
by Nance et al (28). In the present study, the ‘Amoebiasis’ 
pathway in the disease group was demonstrated to be signifi-
cantly different from the normal group, which was consistent 
with the result of Nance et al (28).

The ‘Bladder cancer’ pathway is responsible for bladder 
cancer. This pathway was significantly altered in IPF, which 
may be the result of the deregulation of a regulator, caveolin‑1, 
since caveolin‑1deregulation has been associated with several 
human diseases (29‑32). It has been demonstrated that cave-
olin‑1 mRNA expression is low in IPF (33), however is high in 
bladder cancer (32).

The ‘Type II diabetes mellitus’ pathway was identified 
altered in IPF. Among various lifestyle‑associated diseases, 
diabetes mellitus is a frequent complication in patients with 
IPF and may increase the risk of IPF (34).

‘Primary immunodeficienies’ are a heterogeneous group 
of disorders, which affect cellular and humoral immunity 
or non‑specific host defense mechanisms mediated by 
complement proteins and cells (35). It has been previously 
demonstrated (36) that in a severe combined immunodefi-
ciency bleomyc in mouse model of fibrosis, human fibrocytes 
are also trafficked to the lung, the primary area of injury.

In summary, differential pathways can be used in diagnosis 
of IPF at an early stage, and the best method analyzed by SVM 
is by making use of the significant differential pathways iden-
tified in the Wilcoxon‑based KEGG Pathway (n>5) group.
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