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Abstract. Tubular epithelial‑myofibroblast transdifferentia-
tion (TEMT) is important in the development of chronic renal 
failure. The present study investigated whether hepatocyte 
growth factor (HGF) inhibits TEMT, and whether this func-
tion may be associated with the inhibition of angiotensin II 
(AngII) and the Janus kinase 2/signal transducer and activator 
of transcription 3 (JAK2/STAT3) signaling pathway. Human 
HK‑2 kidney proximal tubular cells were divided into 4 groups 
and treated with AngII (1x10‑6 M), HGF (8x10‑3 M), AngII plus 
HGF or control conditions, followed by an assessment of apop-
tosis induction and the expression levels of α‑smooth muscle 
actin (α‑SMA), which is a marker of TEMT. as well as the 
activation level of JAK2, phosphorylated (p)‑JAK2, STAT3 
and p‑STAT3 signaling pathways. In HK‑2 cells, α‑SMA 
mRNA and protein expression levels increased following 
treatment with AngII, however, decreased expression was 
observed following exposure to HGF. HGF counteracted the 
AngII‑induced increase in the expression of α‑SMA in HK‑2 
cells. Similar expression profiles were observed for the phos-
phorylated forms of JAK2 and STAT3, indicating the possible 
involvement of this signaling pathway. The results demon-
strated that treatment of cells with AngII was associated with 
the induction of apoptosis when compared with the control. By 
contrast, treatment with HGF attenuated AngII‑induced apop-
tosis. The results suggested that HGF may inhibit TEMT by 
inhibiting AngII through the JAK2/STAT3 signaling pathway 
in HK‑2 cells and HGF may prevent apoptosis induced by 

AngII. The present study provides a basis for understanding 
the mechanisms involved in the inhibition of TEMT by HGF, 
which requires further investigation.

Introduction

A number of mechanisms are thought to be involved in the patho-
genesis of chronic renal failure, including excessive deposition 
of extracellular matrix, exposure to increased cytokine levels, 
inhibition of apoptosis and tubular epithelial‑myofibroblast 
transdifferentiation (TEMT) (1,2). The latter process is char-
acterized by the activation of tubular epithelial cells and their 
differentiation into myofibroblasts (3‑5), which is considered 
to be the primary underlying mechanism of renal failure (6). 
α‑smooth muscle actin (α‑SMA) is expressed in smooth 
muscle cells and myofibroblasts (7). Increased expression of 
α‑SMA in renal tubular epithelial cells has been suggested 
to be a potential marker of transdifferentiation into tubular 
epithelial‑myofibroblasts. Hepatocyte growth factor (HGF) 
is a pleiotropic cytokine with multiple biological functions, 
including promoting karyomitosis, accelerating cell locomo-
tion and anti‑apoptotic regulation (8,9). HGF is considered to 
possess renoprotective effects by accelerating the degradation 
of excessive extracellular matrix (10,11), restricting TEMT and 
promoting hyperplasia of tubular epithelial cells (12‑14).

Transforming growth factor‑β1 (TGF‑β1) is an important 
factor involved in TEMT (15). HGF is thought to antagonize the 
effect of TGF‑β1 by inhibiting its expression (16). In addition, 
angiotensin II (AngII) is thought to promote TEMT (17,18). 
Benazepril is an angiotensin converting enzyme inhibitor 
that has been demonstrated to confer substantial benefits in 
patients with advanced renal insufficiency, particularly in 
those with increased urinary protein excretion (19,20). In a 
previous study, combined treatment of HGF and benazepril 
demonstrated highly effective renal protection when compared 
to treatment with either drug alone (16). As the renoprotective 
effects of benazepril are mediated through inhibition of AngII 
expression, the authors of the present study investigated the 
association between HGF and AngII. It was hypothesized that 
TGF‑β1 repression and AngII inhibition may reduce TEMT 
via HGF. As renal protection by benazepril was previously 

Hepatocyte growth factor inhibits tubular 
epithelial‑myofibroblast transdifferentiation by suppression 

of angiotensin II via the JAK2/STAT3 signaling pathway
HONG‑YUE WANG1,  CHEN ZHANG2,  QING‑FEI XIAO1,   

HAI‑CHUAN DOU1,  YAN CHEN1,  CHUN‑MEI GU1  and  MING‑JI CUI1

1Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130031;  

2Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361024, P.R. China

Received November 25, 2015;  Accepted January 1, 2017

DOI: 10.3892/mmr.2017.6301

Correspondence to: Professor Ming‑Ji Cui or Professor Chun‑Mei Gu, 
Department of Nephrology, The First Hospital of Jilin University, 
71 Xinmin Street, Changchun, Jilin 130031, P.R. China
E‑mail: why_changchun@sina.com; mingji0411@163.com
E‑mail: guchunmei@163.com

Key words: hepatocyte growth factor, angiotensin II, tubular 
epithelial‑myofibroblast transdifferentiation, Janus kinase  2/signal 
transducer and activator of transcription 3 signaling



WANG et al:  HGF INHIBITS TUBULAR EPITHELIAL TRANSDIFFERENTIATION VIA ANGII2738

observed to be mediated by repression of AngII expres-
sion (20), the authors investigated whether the reduction of 
TEMT by HGF may be mediated by AngII inhibition.

The Janus kinase 2/signal transducer and activator of 
transcription 3 (JAK2/STAT3) signaling pathway serves an 
important role in the AngII‑induced proliferation of smooth 
muscle cells (7). A previous study demonstrated that AngII 
activated the JAK2/STAT3 signaling pathway and increased 
the expression of TGF‑β1, as well as connective tissue growth 
factors (21). These results indicate that AngII may contribute 
to renal interstitial fibrosis through the JAK2/STAT3 signaling 
pathway. Therefore, the association between HGF, AngII and 
the JAK2/STAT3 signaling pathway was investigated in the 
present study.

In the current study, the effect of HGF in reversing TEMT 
was first investigated. The association between the effects of 
HGF and AngII treatment, together with the potential signaling 
pathways involved, was subsequently examined.

Materials and methods

Materials. Human kidney proximal tubular cells (HK‑2) were 
obtained from The Cell Bank of Type Culture Collection of 
Chinese Academy of Sciences (Shanghai, China). α‑SMA 
(cat. no. BM0002), JAK2 (cat. no. BM1219), phosphorylated 
(p)‑JAK2 (cat. no.  BA3398), STAT3 (cat. no.  BA0621), 
p‑STAT3 (cat. no. BA1709) and β‑actin (cat. no. BA2305) 
primary antibodies were obtained from Wuhan Boster 
Biological Technology, Ltd. (Wuhan, China). HGF and AngII 
were obtained from Santa Cruz Biotechnology, Inc. (Dallas, 
TX, USA).

Cell culture. HK‑2 cells were cultured as described previ-
ously  (22). The cells were maintained in RPMI‑1640 
(Sigma‑Aldrich; Merck Millipore, Darmstadt, Germany), and 
supplemented with 100 IU penicillin, 100 µg/ml streptomycin 
(Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA) and 10% fetal bovine serum (Gibco; Thermo Fisher 
Scientific, Inc.), in a humidified incubator at 37˚C in 5% CO2. 
Cells were divided into 4 groups and treated with AngII 
(1x10‑6 M), HGF (8x10‑3 M), AngII plus HGF or control condi-
tions (RPMI‑1640 with 10% FBS) for 24 h.

Reverse transcription‑polymerase chain reaction (RT‑PCR). 
Total RNA was isolated from cells (1x106) using Trizol reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.) according to the 
manufacturer's instructions. First‑strand cDNA was reverse 
transcribed using PrimeScript™ RT reagent kit (Perfect 
Real Time; Takara Bio, Inc., Otsu, Japan). The protocol for 
conducting RT‑PCR was identical to that described in a 
previous study  (23). PCR products were separated by 1% 
agarose electrophoresis and DNA band intensities were 
quantified using Quantity One software (version no. 4.62; 
Bio‑Rad Laboratories, Inc., Hercules, CA, USA). Target gene 
band densities were normalized to β‑actin. The primers and 
parameters used for PCR are listed in Table I.

Western blot analysis. Cells (1x106) were lysed in a sodium 
dodecyl sulfate (SDS) sample buffer containing 2% SDS, 
10 mmol/l Tris‑HCl (pH 6.8) and 10% (v/v) glycerol. The 

lysates were centrifuged at 12,000 x g for 15 min at 4˚C, 
and the supernatant was stored at ‑70˚C. Protein concentra-
tion was determined using a bicinchoninic acid assay kit 
(Bio‑Rad Laboratories, Inc.). Total protein (50 µg) was loaded 
in each lane, before it was separated in a 10% SDS‑PAGE 
gel and transferred to a nitrocellulose membrane. Following 
blocking in 4% non‑fat dry milk in TBS, the membranes were 
incubated with primary antibodies (α‑SMA, JAK2, p‑JAK2, 
STAT3 or p‑STAT3) at a 1:1,000 dilution in TBS overnight 
at 4˚C. Following washing with TBS‑0.5% Tween‑20, the 
membranes were incubated for 1 h at 37˚C with a horseradish 
peroxidase‑conjugated anti‑mouse IgG secondary antibody 
(cat. no.  7076; Cell Signaling Technology, Inc., Danvers, 
MA, USA) at 1:2,000 dilution, and immunoreactive proteins 
were detected using SuperSignal chemiluminescence reagent 
(Pierce; Thermo Fisher Scientific, Inc.). The blots were stripped 
and reprobed with β‑actin antibody (dilution, 1:5,000). The 
immunoblots were analyzed by densitometry, and protein 
band densities were quantified using Quantity One software 
(version no. 4.62; Bio‑Rad Laboratories, Inc.).

Acridine orange/ethidium bromide staining. HK‑2 cells (5x104) 
were cultured in 24‑well plates and divided into 4 groups that 
were treated with AngII (1x10‑6 M), HGF (8x10‑3 M), AngII 
plus HGF or control conditions. Following incubation for 
24 h at 37˚C in 5% CO2, 5 µl (10 µg/ml) acridine orange and 
5 µl (10 µg/ml) ethidium bromide were applied to each well, 
before the cells were incubated for 5 min at room temperature. 
The stained cells were analyzed using a fluorescence micro-
scope (Olympus Corporation, Tokyo, Japan). The experiments 
were repeated three times.

Analysis of apoptosis by Annexin  V staining. In order to 
determine the level of apoptosis in HK‑2 cells in each treat-
ment group, Annexin V staining was performed using the 
Annexin V‑FITC Apoptosis Detection kit (cat. no. ab14085; 
Abcam, Cambridge, UK) according to the manufacturer's 
instructions. Briefly, HK‑2 cells (5x105) were stained with 
Annexin V‑fluorescein isothiocyanate (FITC) and propidium 
iodide (PI), and incubated in the dark at room temperature for 
30 min following exposure to AngII, HGF, or AngII plus HGF 
for 24 h. Cells (1x105) were subsequently analyzed using a flow 
cytometer (Beckman Coulter, Inc., Brea, CA, USA) following 
the addition of binding buffer and the results were analyzed 
with Navios tetra software (version no. 1.1; Beckman Coulter, 
Inc.). Annexin V+/PI‑ cells were defined as cells in early apop-
tosis and Annexin V+/PI+ cells were defined as cells in late 
apoptosis or necrosis.

Statistical analysis. Data are expressed as mean ± standard 
error. One‑way analysis of variance followed by the Tukey test 
for multiple comparisons was conducted to assess the differ-
ences among multiple groups. SPSS 17.0 (SPSS, Inc., Chicago, 
IL, USA) was used for data analysis. P<0.05 was considered to 
indicate a statistically significant difference.

Results

HGF decreases α‑SMA expression. To investigate the role 
of HGF and AngII in TEMT, the expression of α‑SMA in 
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HK‑2 cells was examined at the RNA and protein levels. 
HGF significantly decreased the expression of α‑SMA at 
the mRNA level when compared with the controls (P<0.05; 
Fig.  1). By contrast, AngII increased α‑SMA expression 
when compared to control conditions (P<0.05; Fig.  1). 
In addition, HGF significantly attenuated AngII‑induced 
expression of α‑SMA mRNA (P<0.01 vs. AngII‑only 
treated cells; Fig. 1). A similar α‑SMA expression profile 
was observed at the protein level. Exposure to HGF signifi-
cantly decreased α‑SMA protein expression when compared 
with the controls (P<0.05; Fig. 2). However, AngII treat-
ment significantly increased α‑SMA expression relative to 
that of control cells (P<0.01; Fig. 2). In addition, exposure 

to HGF significantly attenuated AngII‑induced increase 
α‑SMA expression (P<0.01 vs. AngII‑only treated cells; 
Fig. 2). As α‑SMA expression is considered to provide a 
measure of TEMT, it is possible that AngII may promote 
the transdifferentiation process, whilst HGF may have the 
opposite effect. It is therefore possible that HGF may regulate 
TEMT by inhibiting AngII.

Regulation of JAK2 and p‑JAK2 proteins. To investigate 
the association between HGF, AngII and the JAK2/STAT3 
signaling pathway, the protein expression levels of JAK2 and 
STAT3, as well as the phosphorylated forms of these proteins, 
were examined. p‑JAK2 protein expression was significantly 

Table I. Primer sequences and thermal cycling conditions.

			   Annealing	 Number
Gene	 Primer	 Sequence (5'‑3')	 temperature (˚C)	 of cycles	 Product (bp)

α‑SMA	 Sense	 ACTGGGACGACTAGGAAAAA	 58	 28	 240
	 Antisense	 CATCTCCAGAGTCCAGCACA
β‑actin	 Sense	 ATCATGTTTGAGACCTTCAACA	 58	 28	 552
	 Antisense	 CATGGTGGTGCCGCCAGACAG

α‑SMA, α‑smooth muscle actin.

Figure 1. Regulation of α‑SMA at the mRNA level. (A) α‑SMA expression in HK‑2 cells following exposure to AngII (1x10‑6 M), HGF (8x10‑3 M), AngII plus 
HGF or control conditions, as determined by reverse transcription‑quantitative polymerase chain reaction analysis. (B) Quantification of α‑SMA mRNA levels 
relative to β‑actin mRNA expression in all treatment groups by densitometry analysis. *P<0.05 vs. control; ##P<0.01 vs. AngII‑only treated group. α‑SMA, 
α‑smooth muscle actin; AngII, angiotensin II; HGF, hepatocyte growth factor.

Figure 2. Regulation of α‑SMA at the protein level. (A) Representative western blot image of α‑SMA protein expression levels in HK‑2 cells following exposure 
to AngII, HGF, AngII plus HGF or control conditions. (B) Quantification of α‑SMA protein expression relative to β‑actin by densitometry analysis. *P<0.05 and 
**P<0.01 vs. control; ##P<0.01 vs. AngII‑only treated group. α‑SMA, α‑smooth muscle actin; AngII, angiotensin II; HGF, hepatocyte growth factor.
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decreased in the HGF treatment group when compared with 
the control group (P<0.05), whereas p‑JAK2 protein expres-
sion was significantly increased in the AngII treatment group 
when compared with the controls (P<0.01; Fig. 3). p‑JAK2 
protein expression was significantly decreased in the AngII 
plus HGF treatment group when compared to the AngII‑only 
treatment group (P<0.01; Fig. 3). These effects were compa-
rable to those observed with α‑SMA expression. However, a 
similar trend was not observed for JAK2 protein expression. 
JAK2 protein expression was higher in the HGF and control 
groups compared with the AngII and AngII plus HGF groups 
(Fig. 3).

Regulation of STAT3 and p‑STAT3 protein expression. HGF 
treatment significantly decreased p‑STAT3 protein expression 
levels when compared with controls (P<0.05; Fig. 4). However, 
AngII treatment increased p‑STAT3 expression when 
compared with controls (P<0.01; Fig. 4). In addition, expres-
sion of p‑STAT3 protein following exposure to AngII and HGF 
was significantly decreased when compared to AngII‑only 
treated cells (P<0.01; Fig. 4). This was similar to the trend in 
expression of α‑SMA mRNA and protein among treatment 
groups. However, a similar trend to p‑STAT3 was not observed 
for STAT3 protein expression. STAT3 protein expression was 
higher in the HGF and control groups compared with the AngII 
and AngII plus HGF groups. These results suggest that HGF 
may inhibit TEMT through the inhibition of AngII, and this 

effect may be mediated by inhibition of the p‑JAK2/p‑STAT3 
signaling pathway.

Acridine orange/ethidium bromide staining. Following 
exposure to AngII, HGF or AngII plus HGF, HK‑2 cells 
were stained with acridine orange and ethidium bromide 
to determine the level of apoptosis in HK‑2 cells exposed 
to different treatments. The results demonstrated that treat-
ment of cells with AngII was associated with induction of 
apoptosis when compared with controls (Fig. 5). By contrast, 
treatment with HGF attenuated AngII‑induced apoptosis 
(Fig. 5).

Annexin V analysis. The results of the Annexin V‑FITC/PI 
double‑fluorescence staining assay revealed that AngII treat-
ment significantly induced apoptosis in HK‑2 cells when 
compared with controls (P<0.01; Fig. 6). This was demon-
strated by an increase in the percentage of Annexin V+/PI‑ and 
Annexin V+/PI+ subpopulations. In addition, the percentage 
of apoptotic cells significantly decreased following exposure 
to AngII plus HGF (P<0.01 vs. the AngII‑only treated group; 
Fig. 6). The present study demonstrated that 15.2% of cells 
underwent apoptosis (Annexin V+/PI‑) following treatment 
with AngII plus HGF (Fig. 6). By contrast, 28.4% of cells 
underwent apoptosis following treatment with AngII alone 
(Fig.  6). This indicated that HGF may prevent apoptosis 
induced by AngII.

Figure 3. JAK2 and p‑JAK2 protein expression levels. (A) A representative western blot image of JAK2 and p‑JAK2 protein expression following exposure of 
HK‑2 cells to AngII, HGF, AngII plus HGF or control conditions for 24 h. (B) Quantification of JAK2 and p‑JAK2 protein expression levels relative to β‑actin. 
*P<0.05 and **P<0.01 vs. control; ##P<0.01 vs. AngII‑only treated group. JAK2, Janus kinase 2; p‑JAK2, phosphorylated‑JAK2; AngII, angiotensin II; HGF, 
hepatocyte growth factor.

Figure 4. STAT3 and p‑STAT3 protein expression. (A) A representative western blot image of STAT3 and p‑STAT3 protein expression in HK‑2 cells following 
exposure to AngII, HGF, AngII plus HGF or control conditions for 24 h. (B) Quantification of STAT3 and p‑STAT3 protein expression levels relative to β‑actin. 
*P<0.05 and **P<0.01 vs. control; ##P<0.01 vs. AngII‑only treated group. STAT3, signal transducer and activator of transcription 3; p‑STAT3, phosphory-
lated‑STAT3; AngII, angiotensin II; HGF, hepatocyte growth factor. 
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Discussion

It has been previously demonstrated that HGF represses renal 
interstitial fibrosis (24‑27). In addition, previous studies have 
revealed that HGF exhibits renoprotective effects in a number 
of animal models, such as acute renal failure and diabetic 
nephropathy models (28‑30). Induction of TGF‑β1 is one of 
the key mechanisms responsible for increased fibrosis (31). 
Previous studies have indicated that HGF may induce unfa-
vorable conditions for TEMT (10). Furthermore, increased 
expression of α‑SMA in the kidney has been reported to be a 
marker of TEMT pathology (4).

AngII is an important component of the renin‑angiotensin 
system, and has been reported to serve an important role in a 
number of renal diseases (20). AngII‑induced renal injury is 
mediated by its systemic effect on blood pressure regulation, 

and/or by its regulatory effect on TGF‑β1 (32,33). HGF and 
AngII have opposing effects, and in vascular smooth muscle 
cells it has been demonstrated that AngII may repress the 
production of HGF in a dose‑dependent manner (34). Lotensin 
is an angiotensin converting enzyme inhibitor, that inhibits 
AngII production. Previous studies have demonstrated the 
renoprotective effect of Lotensin  (19,20). It is commonly 
used in clinical practice to decrease urinary protein excre-
tion and to stabilize renal function during the early stages of 
chronic renal failure. In the present study, AngII increased 
α‑SMA expression at the mRNA and protein level in HK‑2 
cells, whereas HGF suppressed the AngII‑induced expres-
sion of α‑SMA. These results indicated that, although AngII 
promotes TEMT, HGF may function to alleviate this process. 
Acridine orange/ethidium bromide staining was performed to 
determine functional activity. The results demonstrated that 

Figure 5. Analysis of apoptosis in HK‑2 cells following treatment with AngII and/or HGF. HK‑2 cells were exposed to AngII, HGF, AngII plus HGF or control 
conditions for 24 h, and the level of apoptosis induction was assessed by acridine orange and ethidium bromide staining. Apoptotic cells are indicated by the 
red stain. AngII, angiotensin II; HGF, hepatocyte growth factor. (Scale bar, 200 µm).

Figure 6. Induction and reduction of apoptosis in HK‑2 cells by AngII and HGF, respectively. (A) HK‑2 cells were exposed to AngII, HGF, AngII plus HGF or 
control conditions for 24 h, and the level of apoptosis induction was assessed by Annexin V‑FITC/PI staining. Apoptotic cells are indicated by the percentage 
of Annexin V+/PI‑ cells. (B) The percentage of apoptotic HK‑2 cells among treatment groups. **P<0.01 and ##P<0.01 as indicated. AngII, angiotensin II; HGF, 
hepatocyte growth factor; FITC, fluorescein isothiocyanate; PI, propidium iodide.
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AngII induced apoptosis in HK‑2 cells, whereas the addition 
of HGF was able to attenuate this effect.

The JAK2/STAT3 signaling pathway participates in 
the propagation of cell division, apoptosis and the regula-
tion of immune cells, and serves an important function in 
diabetic kidney disease (35,36). The JAK2/STAT3 signaling 
pathway is activated during smooth muscle cell proliferation 
induced by AngII. It has been suggested that the coupling of 
AngII with the angiotensin type 1 receptor on the surface of 
mesangial cells may lead to JAK2 phosphorylation, thereby 
binding the downstream factor, STAT3. Dimerization of 
STAT3 and transfer into the cell nucleus may lead to altered 
gene expression (37,38). It was also demonstrated that AngII 
may increase the expression of TGF‑β1 and connective tissue 
growth factor by the JAK2/STAT3 signaling pathway (21). 
As a result of this research, the authors of the present study 
investigated whether AngII may be involved in the process 
of renal fibrosis by activating the JAK2/STAT3 signaling 
pathway (21). The results of the present study revealed that 
HGF may reduce TEMT by inhibiting AngII via by the 
p‑JAK2/p‑STAT3 signaling pathway. However, further inves-
tigation involving loss‑ and gain‑of‑function experiments, 
using small interfering‑RNAs and/or expression vectors, are 
required to test this hypothesis.
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