
MOLECULAR MEDICINE REPORTS  15:  2873-2880,  2017

Abstract. Anti‑tumor therapies based on anti‑inflammatory 
effects have been considered in cancer treatment. Survival, 
proliferation and, resultantly, invasion and metastasis of tumor 
cells are regulated by local inflammatory mediators. Primary 
inflammatory cytokines, such as tumor necrosis factor (TNF), 
are targets for anticancer therapy. Several anti‑inflammatory 
agents isolated from natural products are becoming important 
chemopreventive and therapeutic agents for cancer. The present 
study aimed to investigate the expression of TNF‑α, nuclear 
factor-κΒ (NF‑κΒ) and p38α mitogen‑activated protein kinase 
(p38α) genes, associated with proliferation and inflammation 
in the Caco‑2 cell line treated with ethanolic and hexanic 
extracts of Calyptranthes grandifolia O.Berg (Myrtaceae). 
Caco‑2 cells were cultured and treated with plant extract 
at different concentrations (25, 50, 100 and 200 µg/ml) and 
stimulated with lipopolysaccharide (LPS). For gene expression, 
analysis was performed by total RNA extraction followed by 
synthesis of complementary DNA and analysis by quantitative 
polymerase chain reaction. The release of TNF‑α cytokine 
was evaluated by ELISA in RAW 264.7 murine macrophages 
activated by LPS. Among the evaluated genes, there was 
a decrease in TNF‑α expression at 100 and 200 µg/ml 
concentrations only with the ethanolic extract (P<0.025). The 
p38α gene exhibited a tendency to increase expression only 
when treated with ethanolic extract and the NF‑κΒ gene did 
not significantly differ compared with the positive control 
when treated with either analyzed extract. The inhibition of 
TNF‑α cytokine in the RAW 264.7 cell line was significant 
(P<0.05) in ethanolic extract at 200 µg/ml compared with the 
positive control (LPS 1 µg/ml). In conclusion, the ethanolic 

extract may exhibit an anti‑inflammatory activity by inhibiting 
TNF‑α. However, further studies are required to confirm its 
potential anti‑inflammatory effects.

Introduction

Inflammation associated with cancer is a promising target for 
the development of anticancer therapies. Cytokines, chemo-
kines and growth factors may have an important function in 
the interaction between tumor cells and infiltrating leukocytes 
from blood vessels. The existence of inflammatory compo-
nents in the microenvironment of neoplastic tissues frequently 
leads to increased angiogenesis, resistance to hormones and 
inhibition of adaptive anti‑tumor immunity. The survival, 
proliferation and subsequent invasion and metastasis of tumor 
cells is regulated by inflammatory mediators present at the 
tumor site (1).

Primary inflammatory cytokines, including interleukin‑1 
(IL‑1) and tumor necrosis factor (TNF), expressed by leuko-
cytes and tumor infiltrating cells, are targets for anticancer 
therapy. Anti‑cytokine strategies against tumors have been 
investigated with TNF inhibitors in certain inflammatory 
diseases (2). Clinical trials with TNF‑α antagonists, alone 
or combined with other therapies, have been performed in 
patients with cancer. In cases of advanced solid cancer, TNF‑α 
antagonists were well tolerated and exhibited biological 
activity and partial response with renal carcinoma or stable 
disease (3,4). Permanent activation of NF‑κΒ contributes 
actively in tumorigenesis by promoting cell cycle progression 
and inhibiting apoptosis. NF‑κΒ is activated through TNF‑α, 
thus inhibition of this factor may support cancer therapies 
that target apoptosis (5,6). Inhibition of NF‑κΒ is associated 
with apoptosis and reduced cell growth, and this inhibition 
may be beneficial in the treatment of cancer (7). The p38α 
mitogen‑activated protein kinase (p38α MAPK) may have 
tumor suppressor activity through regulation of the p53 gene, 
which interferes with cell cycle progression and induces apop-
tosis. However, it also exhibits oncogenic activity associated 
with various processes, including invasion, inflammation and 
angiogenesis, which are essential in tumor development (8).

Plants are a major source of active substances that are 
used in therapeutic medicine as their metabolites have great 
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structural diversity (9). Anti‑inflammatory compounds 
have been extracted from natural products, including fruits, 
vegetables, spices and traditional medicinal herbs, and these 
compounds have been gaining importance as potential chemo-
preventive or therapeutic agents for cancer (10). In the last 2 
decades, herbal products have been important candidates in 
the discovery of novel drugs for cancer (11). Drugs derived 
from natural products that have antibacterial, anticoagulant, 
antiparasitic, immunosuppressive and anticancer properties 
are able to treat 87% of categorized human diseases (12). There 
were 12 natural products and 32 derivatives of natural prod-
ucts among the 128 anticancer drugs released to the market 
between 1981 and 2010. They were obtained from various 
sources, including plants and microorganisms. Between 1940 
and 2010, 175 small molecules were released for the treatment 
of cancer and of those, 131 molecules were developed from 
natural products (13). The investigation of novel plants with 
anti‑inflammatory, anti‑tumor and anti‑carcinogenic potential 
is important and may enable the development of novel drugs 
for cancer treatment. Several members of Myrtaceae family 
have been previously investigated and various activities were 
observed, including antioxidant (14), anti‑tumor (15-21) and 
anti‑inflammatory activities (22-27). To the best of our knowl-
edge, there are no existing studies investigating the activity of 
Calyptranthes grandifolia. However, important activities have 
been demonstrated in other members of the Calyptranthes 
genus (28-35). Thus, this genus demonstrates potential and 
may be beneficial in the treatment of inflammatory and tumor 
processes. The objective of the present study was to investi-
gate the expression of genes associated with proliferation 
and inflammation in cells of the Caco‑2 cell line treated with 
extracts from Calyptranthes grandifolia O.Berg.

Materials and methods

Plant material. Leaves of Calyptranthes grandifolia O.Berg 
were collected in Lajeado, Rio Grande do Sul, in Southern 
Brazil and identified by Professor Elisete Maria de Freitas. 
From this material ethanol and hexane extracts were isolated 
according to the following methodology.

Hexanic extract preparation. The leaves of the plant were 
dried in an incubator with circulating air at 38˚C for 24 h. 
Subsequently, leaves were reduced to small fragments to 
increase the contact surface with the extraction solution. The 
leaves of Calyptranthes grandifolia O.Berg were packed with 
hexane solvent in an amber bottle at room temperature for 
72 h. Vacuum filtration was performed and the filtrate was 
stored in an amber jar at room temperature until the solvent 
was removed. Maceration of the leaves occurred for 2 weeks 
and the solvent was changed twice. Subsequently, vacuum 
filtration and removal of solvent was performed with the aid of 
a rotary evaporator at 40˚C. Finally, the extract obtained was 
stored in amber bottles and refrigerated at 4±1˚C until experi-
ments were performed.

Ethanolic extract preparation. Plant leaves were dried in an 
oven with circulating air at 38˚C for 24 h. Following this period, 
cold static soaking was performed on fragments of leaves with 
90% ethanol and the material was placed in an amber bottle 

and kept at room temperature for 7 days. Subsequent to the 
extraction period, vacuum filtration and removal of solvent 
was performed with the aid of a rotary evaporator at 40˚C. The 
extract was placed in amber bottles and refrigerated at 4±1˚C 
until experiments were performed.

Dilution of extracts. Solubilization of the extract was 
performed with dimethylsulfoxide (DMSO) so that the final 
concentration was ≤0.5%.

Cell culture. Caco-2 colorectal adenocarcinoma cell line 
(HTB‑37; American Type Culture Collection, Manassas, 
VA, USA) and RAW 264.7 murine macrophage cell line 
(TIB‑71; American Type Culture Collection) were culti-
vated in microwell plates (1x105 cells/well) in an incubator 
(37˚C, 5% CO2). Subsequently, treatment with plant extract 
was performed at different concentrations (25, 50, 100 and 
200 µg/ml), with incubation in culture medium Dulbecco's 
modified Eagle's medium (DMEM, Sigma‑Aldrich; Merck 
KGaA, Darmstadt, Germany) supplemented with 10% fetal 
bovine serum (FBS, Sigma‑Aldrich; Merck KGaA) for 1 h 
at 37ºC. Subsequently, lipopolysaccharides (LPS; 1 µg/ml) 
were added, and incubation was performed at 37˚C and 5% 
CO2 for 24 h (36). Subsequent to 24 h incubation at different 
concentrations and treatments, extraction of total RNA was 
performed on the Caco-2 cell line and the supernatant of 
RAW 264.7 cells was collected for ELISA assay. In addition 
to treatment with extracts, each culture plate had a positive 
control, in which cells were stimulated with LPS only, and a 
negative control with no stimulation or treatment. A total of 
5 different experiments were performed for gene expression 
analysis.

Cell viability assay by alamar Blue®. Caco‑2 cells were plated 
at density of 1x105 cells/ml in 96‑well plates containing 200 µl 
of DMEM low glucose and 10% FBS, and incubated for 
24 h in an atmosphere of 5% CO2, 90% humidity and 37˚C. 
Subsequently, cells were treated with concentrations of 25, 50, 
100 or 200 µg/ml per well of extract, and incubated for 72 h. 
Following this period, treatment was removed and a solution 
of 10% alamar Blue® dye was added per well. The absorbance 
readings were performed following 6 h incubation at 37˚C, 
at a wavelength of 540 nm (oxidized) and 620 nm (reduced) 
in an ELISA reader. As a negative control, cells were placed 
only in culture medium and DMSO. The percentage of cell 
viability was calculated using the following formula: % alamar 
Blue® reduction = absorbance at 540 nm‑(absorbance at 
630 nm x correction factor) x100. Correction factor was calcu-
lated by staining the culture medium with no cells.

Cell viability assay by Trypan Blue. Cells were removed 
from the plates with the aid of a scraper and transferred to 
15 ml centrifuge tubes (1x105 cells/centrifuge tube; Corning 
Incorporated, Corning, NY, USA), which were centrifuged at 
600 x g for 10 min at room temperature. Following centrifu-
gation, the supernatant was discarded and the pellet was 
resuspended in 1 ml DMEM in a 1:10 dilution with Trypan 
Blue dye, which stains non‑viable cells. Finally, a total count 
of viable cells was performed in a Neubauer chamber for 
subsequent plating of viable Caco‑2 and RAW264.7 cells (37).
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RNA extraction. Total RNA extraction was performed by the 
TRIzol® method (Invitrogen; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's instructions and purification 
was performed by illustra RNAspin Mini kit (GE Healthcare 
Life Sciences, Chalfont, UK). Total RNA was quantified using 
aL-Quant® spectrophotometer (Loccus, São Paulo, Brazil) 
with a 2 µl final product of RNA extraction, and absorbance 
was read at 260 nm.

Complementary DNA (cDNA) synthesis. Synthesis of cDNA 
was performed from 0.5 µg total RNA, using poly‑A tail 
complementary oligonucleotide primers and the Superscript™ 

II Reverse Transcriptase kit according to the manufacturer's 
protocol (Invitrogen; Thermo Fisher Scientific, Inc.). To each 
sample tube, 1 µl of dNTP mix and 1 µl OligodT was added 
prior to incubation for 5 min at 65˚C. Then, 9 µl of a mix 
containing 10X PCR Buffer, 25 mM MgCl2, 0.1 M DTT and 
RNase OUT was added and further incubated for 2 min at 
42˚C. A total of 1 µl of Superscript II RT was added and incu-
bated again at 42˚C for 50 min and 70˚C for 15 min. Finally, 
1 µl of RNase H was added and incubated at 37˚C for 20 min. 
At the end of synthesis, the cDNA was stored at ‑20˚C until 
amplification was performed by quantitative polymerase chain 
reaction (qPCR).

qPCR. Gene expression analysis was performed by qPCR. 
The results were normalized to β‑actin (38,39) and the effi-
ciency of reactions was evaluated using the standard curve 
of each gene analyzed. The qPCR results were expressed as 
the relative quantification of amplified cDNA with respect to 
the normalizer gene (40). Primers used for amplification of 
specific cDNA fragments were selected from the published 
sequence of each gene using online tool Primer3 v.0.4.0 (41). 
All primers were synthesized by Invitrogen (Thermo Fisher 
Scientific, Inc.; Table I). DNA amplification and relative quan-
tification was performed using a StepOnePlus™ Real‑Time 
PCR system (Applied Biosystems; Thermo Fisher Scientific, 
Inc.) and the Platinum® SYBR® Green qPCR SuperMix‑UDG 
kit (Invitrogen; Thermo Fisher Scientific, Inc.) in a total 
volume of 25 ml [12.5 µl SuperMix, 0.5 µl (50 µmol/l) Rox 
reference dye, 0.3 µl of each primer (10 µmol/l forward 
and 10 µmol/l reverse), 9.4 µl H2O and 2.0 µl 1:20 diluted 
template cDNA] according to the manufacturer's (SYBR® 
Green kit) instructions. Amplification and reading of 
samples was performed in duplicate with the following 
protocol for all genes: Initial incubation for 3 min at 94˚C; 
followed by 45 cycles of 30 sec denaturation at 94˚C; 30 sec 
annealing at 55˚C and 30 sec extension at 60˚C. To confirm  
specificity of the reaction, a dissociation curve was performed 
for each primer pair with melting temperature analysis of 
each gene.

TNF‑α cytokine release in RAW 264.7 cells by ELISA assay. 
Following 24 h incubation of RAW 264.7 cells with LPS 
stimulation, 0.4 ml supernatant was collected and stored at 
‑80˚C and used for quantification of the release of TNF‑α 
pro‑inflammatory cytokine using the Mouse TNF alpha ELISA 
Ready‑SET‑Go® ELISA kit (cat. no. 88‑7324‑86; e‑Bioscience, 
Inc., San Diego, CA, USA) according to the manufacturer's 
instructions.

Statistical analysis. Data were tabulated and analyzed with 
descriptive statistics using SPSS software (version 20.0; IBM 
SPSS, Armonk, NY, USA) and GraphPad Prism (version 5.0; 
GraphPad Software, Inc., La Jolla, CA, USA). Comparison 
between the controls was performed using an unpaired 
Student's t‑test and the effects of extracts were analyzed by 
one‑way analysis of variance followed by the Tukey test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Cell viability by alamar Blue®. It was observed that the etha-
nolic and hexane extracts of Calyptranthes grandifolia O.Berg 
did not affect the cell proliferation when compared with the 
negative control. The negative control exhibited a viability 
of 62.6% (± 4.367), and for ethanolic and hexane extracts at 
tested concentrations, the percentages of viability were similar 
to the control (Fig. 1).

Gene expression analysis. For the analysis of the genes of 
interest, the positive control consisted of Caco‑2 cells that were 
stimulated only by LPS with no extract treatment, and the nega-
tive control consisted only of cells in culture. The comparison 
between negative and positive controls was performed in order 
to verify whether there was a difference in gene expression 
when stimulated by LPS. Increased expression of TNF‑α was 
observed following treatment with LPS compared with the 
negative control, however, this was not significantly different. 
In addition, the expression of NF‑κB and p38α were similar 
in negative and positive control groups; expression was 
not altered by LPS treatment. Thus, the expression of these 
genes was stable in the negative and positive control groups 
(Fig. 2). When evaluating the effect of the ethanolic extract 
of Calyptranthes grandifolia on gene expression, a decrease 

Table I. Oligonucleotide primers for quantitative polymerase 
chain reaction.

  Fragment
Gene Sequence (5'‑3') size (bp)

NF‑κΒ  209
  Sense ACACCGTGTAAACCAAAGCC
  Antisense CAGCCAGTGTTGTGATTGCT
p38α  243
  Sense CAGTGGGATGCATAATGGCC
  Antisense GCATCTTCTCCAGCAAGTCG
TNF‑α  120
  Sense CCCTGGTATGAGCCCATCTATC
  Antisense AAAGTAGACCTGCCCAGACTCG
β‑actin  140
  Sense CTGGAACGGTGAAGGTGACA
  Antisense AAGGGACTTCCTGTAACAATGCA

NF‑κB, nuclear factor κB; p38α, p38α mitogen-activated protein 
kinase; TNF‑α, tumor necrosis factor-α.
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in TNF‑α expression was observed, which was significant 
at concentrations of 100 and 200 µg/ml, compared with the 
positive control (P<0.025; Fig. 3A). Regarding NF‑κΒ gene 
expression, expression was similar for all treatments and there 
were no significant changes (Fig. 3B). The expression of p38α 
increased with increasing concentrations of ethanolic extract, 
however, these increases were not significant (Fig. 3C). The 
expression of TNF‑α, NF‑κΒ and p38α with hexane extract 
treatment exhibited no significant variation compared with the 
positive control (Fig. 3D‑F).

TNF‑α cytokine release in RAW 264.7 cells by ELISA. 
In order to demonstrate the decrease in TNF‑α in gene 
expression, an ELISA colorimetric assay was performed 
to evaluate the level of cytokine release. A macrophage 
lineage was used, characterized by the release of inflam-
matory cytokines. The inhibition of TNF‑α was significant 
(P<0.05) with the ethanolic extract at a concentration of 
200 µg/ml (464.0±36.7 pg/ml) compared with the positive 
control (1143.0±118.0 pg/ml; Fig. 4) and also when compared 
with a concentration of 25 µg/ml (1272±293 pg/ml). 
Concentrations of 25 µg/ml (1272±293 pg/ml), 50 µg/ml 
(1179±261 pg/ml) and 100 µg/ml (1185±312 pg/ml) exhibited 
no significant difference compared with the positive control 
(Fig. 4). The negative control (53.6±36.8 pg/ml) exhibited a 
significant difference in TNF‑α cytokine release compared 
with the positive control (P<0.0001; Fig. 4) and compared 
with concentrations of 25, 50 and 100 µg/ml (P<0.001; Fig. 4). 
There were no significant differences when treated with 
hexanic extract (data not shown).

Discussion

Stimulation by LPS increased TNF‑α gene expression in the 
positive control (stimulated with LPS) compared with the nega-
tive control (no stimulation with LPS). The expression of p38α 
and NF‑κΒ did not change in the positive control compared 
with the negative control. Herath et al (42) demonstrated that 
different serotypes of LPS produce different responses upon cell 
stimulation. For example, in human gingival fibroblasts there 
was no activation of the NF‑κΒ pathway by LPS 1435/1449. 
However, LPS1690 significantly activated the pathway. Other 
pro‑inflammatory genes also exhibit modified activation by 
different LPS serotypes.

When evaluating the effect of Calyptranthes grandifolia 
O.Berg extract treatment, on TNF‑α gene expression, the 
present study observed reduced expression compared with 
the positive control at certain concentrations in both extracts. 
However, only the ethanolic extract at concentrations of 
100 and 200 µg/ml significantly reduced TNF‑α expres-
sion compared with the positive control. To the best of our 
knowledge, there are no previous studies that have evalu-
ated the effect of this plant on TNF‑α expression, however, 
Ferreira et al (43) evaluated the anti‑inflammatory activity 
of Campomanesia adamantium extracts (also a member of 
the Myrtaceae family) and the production of nitric oxide 
(NO), TNF‑α and IL‑10 in J774.A1 macrophages stimulated 
with LPS/interferon‑γ. Paw edema in mice was inhibited 
by oral administration of the extracts, it inhibited NO and 
TNF‑α production, and increased IL-10 production. Thus, 
the anti‑inflammatory activity of the extract may be associ-
ated with the inhibition of pro‑inflammatory cytokines and 
increased IL-10. Li et al (44) evaluated the activity of flavo-
noids in RAW 264.7 cells and demonstrated the inhibition of 
NO, TNF‑α, IL‑6 and IL‑Ip, indicating an important role for 
flavanoids in anti‑inflammatory activity (44).

Figure 2. Effect of LPS on gene expression compared with the negative 
control. Results were analyzed by an unpaired Student's t test and are 
presented as the mean ± standard error of the mean (n=5). P‑values for 
TNF‑α, NF‑κB and p38α are P=0.337, P=0.97 and P=0.937, respectively. 
LPS, lipopolysaccharide; TNF‑α, tumor necrosis factor-α; NF‑κB, nuclear 
factor-κB; p38α, p38α mitogen‑activated protein kinase; C‑, negative control; 
C+, positive control.

Figure 1. Percentage cell viability by alamar Blue® method. Results were 
analyzed by one‑way analysis of variance followed by Tukey test (P=0.775; n=3). 
C‑, negative control; EE, ethanolic extract; HX, hexanic extract.
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The present study observed no changes in NF‑κΒ expres-
sion between the different extracts and concentrations tested. 
The activation of NF‑κΒ in Caco‑2 cells may be associated 
with the state of cell differentiation. NF‑κΒ signaling path-
ways or IκΒ kinase do not exist in isolation, therefore, various 

mechanisms integrate their activity with other signaling 
pathways (45). NF‑κΒ is a protein that modulates the apoptotic 
response as it is a transcription factor that protects against and 
contributes to apoptosis (46). The nuclear factor is a central 
regulator of immune responses and has an important role in the 
expression of cytokine genes, including IL‑2, IL‑6, C‑C motif 
chemokine 2 and CD40 ligand. Furthermore, it is also involved 
in the expression of genes associated with cell survival and 
proliferation, including cyclin D1, cyclin D2, c‑Myc, c‑Myb, 
cyclooxygenase‑2, Bcl‑2 and Bcl‑xl (47,48). Thus, NF‑κΒ is 
considered as a tumor promoter and is frequently identified as 
constitutively active in tumors (49-52). NF‑κΒ may not have 
been activated due to the high expression of TNF‑α, and thus 
by anti‑inflammatory signals.

The present study observed no significant differences in 
p38α gene expression between the various treatments and 
concentrations. However, its expression did increase with 
increasing concentrations of ethanolic extract, with the highest 
expression at a concentration of 200 µg/ml. The activation of 
p38 isoforms is specifically controlled by different regulators 
and they are co‑activated by several combinations (53,54). The 

Figure 3. Representative plots of the effect of various concentrations of ethanolic and hexane extracts on the gene expression of TNF‑α, NF‑κB and p38α 
compared with the positive control. Effect of ethanolic extract on the gene expression of (A) TNF‑α, (B) NF‑κB and (C) p38α. Effect of hexanic extract on the 
gene expression of (D) TNF‑α, (E) NF‑κB and (F) p38α. Data are presented as the mean + standard error of the mean, n=5. *P<0.025 vs. C+. TNF‑α, tumor 
necrosis factor-α; NF‑κB, nuclear factor-κB; p38α, p38α mitogen‑activated protein kinase; C+, positive control.

Figure 4. Evaluation of the inhibition of TNF‑α cytokine release following 
treatment with ethanolic extract in RAW264.7 cells stimulated with lipopoly-
saccharides. Data are presented as the mean ± standard error of the mean with 
3 replicates. *P<0.05 and #P<0.01 vs. C+. TNF‑α, tumor necrosis factor-α; C+, 
positive control; C‑, negative control; EE, ethanolic extract.
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p38α MAPK activates other kinases and therefore regulates 
diverse cellular responses. Thus, p38 signaling may be associ-
ated with inflammation, the cell cycle, cell death, development, 
differentiation, senescence and tumorigenesis (55). The 
anti-tumor effect of various chemotherapeutic drugs is based 
on apoptosis through p38α activation. However, it is important 
to note that this kinase is associated with various responses, 
and may also be involved in resistance to chemotherapy in 
certain types of tumors (56). Campbell et al (57) demonstrated 
that a modification of p38α MAPK inhibited TNF‑α produc-
tion in macrophages induced by LPS, post‑transcriptionally. 
Furthermore, p38 negatively regulated the expression of 
NF‑κΒ, which allows transcriptional control of TNF‑α as 
the nuclear factor is required for its expression (57). Despite 
the pro-apoptotic role of p38α, p38α MAPK has also been 
previously associated with an anti‑apoptotic activity (58-61). 
Comes et al (62) demonstrated that p38α induced the 
survival of colorectal cancer cells by inhibiting autophagy. 
Another mechanism involved in p38α-induced survival is 
the activation of the activating transcription factor 6α-Ras 
homolog enriched in brain‑mechanistic target of rapamycin 
(ATF6α‑Rheb‑mTOR) pathway, which promoted the survival 
of dormant tumor cells in vivo (63). Although the present 
study observed no significant differences in the mRNA levels 
of p38α and NF‑κΒ, further studies are required with larger 
sample sizes, as well as studies that investigate the expression 
at the protein level, to verify the presence and activation of 
these proteins. The increase in mRNA levels is not directly 
proportional to the amount of protein translated, due to tran-
scriptional and post‑translational modifications.

The extracts included in the present study did not affect 
the cell viability when compared with the negative control. 
According to the US National Cancer Institute, an extract may 
be considered active or cytotoxic when it presents cytotoxicity 
with IC50 values <30 µg/ml (half maximal inhibitory concen-
tration) (64). In this aspect, cytotoxic extracts maybe potential 
candidates for anti‑carcinogenic studies (65). However, it 
is important to note that these statements should be tested 
in other cell lines in order to observe potential selective  
cytotoxicity.

The antioxidant activity was also determined in ethanolic 
and hexane extracts of Calyptranthes grandifolia by the 
research group (data not shown). This activity was evalu-
ated by antioxidant activity testing, by capturing the free 
radical 2,2‑diphenyl‑1‑picryl‑hidrazila (66). The results 
demonstrated that the hexane extract exhibited no antioxi-
dant activity, however, the ethanolic extract exhibited a dose 
dependent antioxidant activity. The observed antioxidant 
activity may be associated with a potential anti‑inflamma-
tory activity of the extract, based on the results observed for 
gene expression and TNF‑α cytokine release. The ethanolic 
extract had significant antioxidant activity compared with 
hexane, which corresponds with the decrease of TNF‑α gene 
expression.

Based on the significant reduction of TNF‑α when 
Caco‑2 cells were treated with the ethanolic extract of 
Calyptranthes grandifolia O.Berg, the significant inhibition 
of TNF‑α cytokine release in RAW 264.7 murine macro-
phages, antioxidant activity of the extract and the lack of 
effects on cell viability, it is indicated that this extract may 

have anti‑inflammatory potential. However, further studies 
are required to elucidate the signaling pathway that may 
be activated. Given the variation between experiments and 
potential post‑transcriptional regulation, the analysis of other 
genes is required in order to assess the potential pathways 
implicated. Furthermore, it is important to analyze protein 
expression in order to confirm that the expressed genes in 
Caco-2 cells are translated and determine the respective 
levels of translation.

In conclusion, Calyptranthes grandifolia ethanolic 
extract at concentrations of 100 and 200 µg/ml significantly 
reduced TNF‑α gene expression in the Caco‑2 cell line. 
There were no significant differences in p38α and NF‑κΒ 
gene expression. Cells treated with hexane extract exhib-
ited no significant variations in the expression of the genes 
investigated at any of the concentrations. Ethanolic extract at 
200 µg/ml significantly inhibited TNF‑α pro‑inflammatory 
cytokine release. The extracts were not considered to be 
cytotoxic and are not candidates for anti‑carcinogenic studies 
in this lineage. However, other studies using different cell 
lines maybe performed to identify selective cytotoxicity. The 
results of the present study indicate that ethanolic extract has 
an anti‑inflammatory potential by decreasing expression of 
TNF‑α. Thus, it is important to investigate its genotoxicity 
and to conduct in vivo analysis to confirm its anti‑inflamma-
tory potential.
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