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Abstract. The chronic occupational exposure to contami-
nants and carcinogens leads to the development of cancer. 
Over the past decades, many carcinogens have been found 
in the occupational environment and their presence is often 
associated with an increased incidence of cancer. According 
to the International Agency for Research on Cancer (IARC), 
the majority of carcinogens are classified as ‘probable’ and 
‘possible’ human carcinogens, while, direct evidence of carci-
nogenicity is provided in epidemiological and experimental 
studies. Additionally, accumulating evidence suggests that 
epigenetic alterations may be early indicators of genotoxic 
and non-genotoxic carcinogen exposure. In the present review, 
the relationship between exposures to benzene, mineral fibers, 
metals and epigenetic alterations are discussed as the most 
important cancer risk factors during work activities.
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1. Introduction

It is known that cancer arises from multiple factors. The 
identification of each factor, as the specific cause of cancer 
development, is the one of the main goals of cancer research. 
Many epidemiological studies have described the association 
between occupational exposures to carcinogens and cancer 
risk (1). Although, the incidence of cancer has decreased in 
the western world, an icreased incidence rate was observed 
among workers exposed to carcinogens (1-3). Since 2007 the 
International Agency for Research on Cancer (IARC) recog-
nized 415 known or supposed cancerogens (2). Occupational 
activities associated to cancer risk may be caused by different 
factors; therefore, it is important to better identify every single 
factor implicated in this machinery to apply preventive guide-
lines and to better understand the pathogenic mechanism of 
cancer development. However, in some cases, there is a signifi-
cant indication of an increased risk of development of various 
types of cancer with specific occupational exposure (4).

Several studies have shown that the risk of developing some 
cancers is associated with exposure to specific factors, such as 
non-ionizing radiation, 1,3-butadiene, benzene, natural fibers, 
air pollution, pesticides and solvents, polyaromatic hydrocar-
bons (PAHs), metal working fluids or mineral oil (5-11).

In addition to genetic alterations, a key role in neoplastic 
transformation is played by epigenetic alterations (12). For 
instance, it was demonstrated that chemically-induced 
carcinogenesis is associated with such epigenetic alterations 
including DNA methylation, changes of histones/chromatin 
structure and miRNA modifications (13-16).

Notably, several studies have shown that established 
occupational risk factors preferably bind to methylated DNA 
regions  (17,18). Accordingly, epigenetic changes may be 
considered as a predictive biomarker of carcinogen exposure 
able to influence the genotoxic potential of the carcinogenetic 
agent (18).

This review summarizes the majority of the studies 
focusing on the relationship among epigenetic alterations, 
occupational risk factors and tumor development (Table Ⅰ). The 
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comprension of this phenomenon will be helpful to prevent 
cancer development among workers.

2. Benzene

Benzene is an aromatic hydrocarbon that is widely used 
in various industrial contexts such as chemical industry, 
refineries, plants producing tires and lubricants. It is also 
used in the production of pharmaceuticals, pesticides, plastics 
and dyes. Occupational exposure to benzene is typically 
cutaneous or by inhalation. The general population may 
also be exposed to benzene because it is in the atmosphere, 
particularly in the areas of high vehicular traffic and in 
proximity to gas stations. Cigarette smokers are also exposed 
to benzene as it is contained in the cigarette. It is well known 

that exposure to benzene increases the risk of developing 
cancer in various human tissues and organs (2). In particular, 
it has been observed that its toxic effects may cause 
hematopoietic disorders such as non-Hodgkin's lymphoma, 
lymphocytic leukemia, acute myeloid leukemia  (19-23). 
Chromosomal alterations have been suggested as the most 
common mechanisms of malignant transformation associated 
to benzene exposure  (24-27). Most recently, epigenetic 
alterations, including DNA methylation, may also play a role 
in tumorigenesis (28,29). For instance, several studies have 
indicated that exposure to benzene induces loss of global 
genomic methylation (28) and global DNA hypomethylation 
in human lymphoblastoid TK6 cells (30). Similar epigenetic 
alterations were found in hematopoietic malignancies, 
particularly in patients with acute myeloid leukemia in which 

Table I. Occupational exposure to carcinogenic agents and epigenetic alterations.

Carcinogenic
agent	 Uses and source	 Cancer type	 Epigenetic alterations	 Author/(refs)

Benzene	 Chemical industry, refineries,	 NHL, AML	 Chromosomal alteration,	 Kalousová et al (24),
	 gas stations, pharmaceuticals, 		  DNA hypomethylation	 Subrahmanyam et al (25),
	 pesticides, plastic and dyes		  and hypermethylation,	 Zhang et al (26),
	 and cigarette		  histones modifications,	 Costa et al (27),
			   aberrant miRNA	 Bollati et al (28),
			   expression	 Fenga et al (29),
				    Tabish et al (30),
				    Yu et al (34),
				    Bai et al (35),
				    Bai et al (36)
Asbestos	 Acoustical thermal	 Mesothelioma	 Promoter methylation,	 Tsou et al (44),
(fibrous	 insulation, railway		  miRNAs	 Jones and Baylin (45),
silicate	 construction and		  downregulation	 Christensen et al (18),
particles)	 building construction			   Saito et al (46),
				    Lodygin et al (47),
				    Busacca et al (48),
				    Pass et al (49),
				    Kubo et al (50),
				    Christensen et al (51),
Chromium	 Steel and end alloy	 Lung cancer	 DNA hypomethylation	 Takahashi et al (59),
	 production, chrome			   Sun et al (60)
	 planting, dyes and
	 pigments manufacture
Nickel	 Nickel planting and	 Lung cancer,	 DNA hypomethylation	 Karaczyn et al (66),
	 battery production	 nasopharyngeal	 and hypermethylation,	 Golebiowski and Kasprzak (67),
		  carcinoma	 Histone acetylation	 Kowara et al (68),
				    Govindarajan et al (69),
				    Broday et al (70),
				    Chen et al (71)
Arsenic	 Pesticides	 Cancer of skin,	 DNA hypomethylation	 Baylin and Herman (76),
		  liver, urinary tract,	 and hypermethylation	 Zhao et al (77),
		  lung, colon and		  Chanda et al (78),
		  hematopoietic		  Cui et al (79)
		  disorders
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other genetic alterations may occur  (31,32). On the other 
hand, further studies indicate that benzene induces DNA 
hypermethylation of the tumor suppressor genes p15 and p16 
in benzene poisoning workers (33).

Yu et al observed H4, H3, H3K4 histones modifications 
in the promoter region of the topoisomerase Ⅱα (Topo Ⅱα) in 
subjects exposed to benzene (34). Therefore, the involvement 
of Topo Ⅱα in benzene-induced hematotoxicity demonstrates 
the relationship between histone modifications and benzene 
exposure. Finally, association between benzene and aber-
rant miRNA expression was also reported in studies of 
benzene-exposed workers, indicating their association with 
benzene-induced hemotoxicity and leukemogenesis (35,36).

3. Natural fibers

Various scientific evidence has clearly demonstrated the 
link between the occurrence of lung cancers and malignant 
mesothelioma (MM) during occupational and environmental 
exposure to asbestos  (37,38). However, information on 
molecular alterations in MM, in patients exposed to mineral 
fibers, are not yet fully known or much less compared to other 
malignancies. Although the use of asbestos has been banned 
in major world nations for >20 years, the overall incidence 
of MM is estimated to occur in the year 2020, with a peak 
of incidence for this disease in the areas of occupational or 
environmental exposure to asbestos (39,40).

Improved understanding of molecular genetic conse-
quences of asbestos exposure may improve cancer prevention 
strategies of exposed people. To date, it is known that the 
asbestos fibers, are affected by macrophages, generate geno-
toxic reactive oxygen species that in turn are able to induce 
DNA damage leading to genetic alterations in MM (41-43). 
Furthermore, exposure to carcinogene fibers may cause epigen-
etic changes that reduce the activity of tumor suppressor genes 
in MM (19,44,45). Accordingly, it was observed the activation 
of several proto-oncogenes associated with the downregula-
tion of miRNA-127 and miRNA-34a (46,47). Indeed, several 
studies have indicated that aberrant expression of miRNAs 
play a role in MM development (48-50).

Moreover, other studies have shown that epigenetic 
changes significantly are associated with exposure to asbestos 
and significantly predict clinical outcome, discriminating the 
malignant phenotype from normal pleura (51).

4. Heavy metals

The carcinogenic potential of some metals is well known since 
the beginning of the 19th century. The economy expansion in 
the major industrialized countries has been accompanied by 
a parallel increase in consumption of metals which are now 
recognized as human carcinogens. Indeed, toxic metals such 
as chromium, nickel and arsenic are used extensively in the 
steel industry, the wood pressure-treated, to form alloys, for 
the production of coins and batteries, as catalysts for the 
production of carbon nanoparticles. Therefore, in highly indus-
trialized countries the use of these metals results in increasing 
incidence of human cancers (2). Epigenetic mechanisms have 
been described in the pathogenesis of most common heavy 
metal-associated cancer types (52,53).

Chromium. Occupational exposure to chromium is primarily 
via inhalation; in fact, the relationship between chromium 
and risk of lung, nasal, and especially respiratory cancer is 
well-known (54,55). Strong mutagenic ability of chromium, 
due to its ability to enter the cells through the sulfate chan-
nels and to form stable chromium-DNA adducts, is also 
well‑known  (56,57). Epidemiological studies have shown 
that cancer may occur after chromium exposure even at 
lower limits than those permitted, according to the current 
regulation (58).

Epigenetic mechanisms, such as hypermethylation of 
MLH1, have been suggested as potential mechanisms of 
malignant transformation during chromium exposure (59). 
Accordingly, the inactivation of MLH1 causes loss of func-
tional mismatch repair  (MMR) in chromate-exposed lung 
cancer (59).

In this regard, it was suggested that the increased dimeth-
ylation of histone H3 lysine 9 at the MLH1 promoter causes 
the downregulation of tumor suppressor genes, including 
MLH1 (60).

Nickel. Nickel and nickel compounds have been classified as 
human carcinogens accrding to IARC (2012) (61). The main 
route of human exposure to nickel is inhalation and its toxic 
effects on the respiratory system are well-known  (61,62). 
Exposure to various nickel compounds is associated with 
increased risks of lung cancer and nasal cancer (63) although 
for these cancer types the most common risk factor is tobacco 
smoking (64).

Several studies have demonstrated that the basis of nickel 
toxicity and carcinogenicity is in its ability to enter and accu-
mulate into the cells  (65). These events involve epigenetic 
changes such as DNA methylation as well as the activation or 
suppression of a number of transcription factors and histone 
acetylation (66,67). In particular, in vivo and in vitro studies 
have shown that exposure to nickel may cause hypermethyl-
ation of the tumor suppressor gene p16 and its silencing (68,69). 
The suppressive effects of nickel on histone H4 acetylation 
in both yeast and mammalian cells have also been demon-
strated (70). Furthermore, previous studies have shown the 
loss of acetylation of H2A, H2B, H3 and H4 and the increase 
of H3K9 dimethylation in human lung cells exposed to soluble 
nickel (67,71).

Arsenic. Occupational arsenic exposure occurs mainly 
in the workplace through inhalation. Pesticides may 
contain arsenic and their effects in chronic disorders have 
been recently summarized  (72). Effects associated with 
arsenic exposure include cardiovascular and peripheral 
vascular disease, hematologic disorders and multiple 
cancers (cancers of the skin, lung, liver, urinary bladder, 
kidney and colon) (72,73).

The oncogenic ability of arsenic is well-known for almost 
30 years (74,75). Over the last ten years, various scientific 
evidence has shown that epigenetic changes are important 
in arsenic carcinogenesis. Exposure to arsenic can induce 
DNA methylation changes such as hypomethylation and 
hypermethylation. These changes are typically observed in 
cancer. In vitro human kidney cells treated with arsenic were 
found both hypo- and hypermethylated (76). Similar data were 
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observed in TRL-1215 rat liver epithelial cell line (77). Finally, 
other studies described a significant DNA hypermethylation 
of the promoter region of several genes including p53, p16, 
RASSF1A (78,79).

5. Conclusions

A growing body of evidence exists on occupational risk 
factors and cancer development. Previous studies on the 
association between cancer and environmental risk factors 
are here summarized and discussed. A better understanding 
of the molecular mechanisms of cancer growth in this context 
allow us to identify novel procedures to reduce the risk factors 
during work activity.

Several cancer research studies focused on cancer risk 
assessment, cancer epidemiology and mutational changes 
induced by carcinogens. Over the past decade, research 
interest has also been focused on epigenetic alterations for 
their specificity and inheritance from generation to generation. 
Accordingly, such alterations can be considered an appropriate 
biomarker of carcinogen exposure.

Based on the above, epigenetic changes, here emphasized, 
seem to be the most common mechanisms of carcinogenesis. 
In fact, the number of studies devoted to understanding the 
epigenetic alterations caused by exposure to chemical carcino-
gens is rapidly increasing.

Consequently, the role of this epigenetic alteration in 
carcinogenesis, involving DNA hypomethylation or hyper-
methylation, histones/chromatin structure alterations, different 
expression of microRNA and genetic changes, are detailed. 
However, other mechanisms, including the involvement of 
the tumor microenvironment, may be involved in malignant 
transformation after exposure to carcinogens, such as the 
asbestos-like fibers (80). This is the case of mesothelioma in 
which an early marker of malignant transformation has been 
recently identified (81,82).

Although, great effort has been dedicated on the knowl-
edge of epigenetic mechanisms in carcinogenesis, further 
studies are always encouraged especially in the context of 
occupational medicine.
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