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Abstract. The present study was designed to develop a novel 
method for identifying significant pathways associated with 
human hypertrophic cardiomyopathy (HCM), based on gene 
co‑expression analysis. The microarray dataset associated 
with HCM (E‑GEOD‑36961) was obtained from the European 
Molecular Biology Laboratory‑European Bioinformatics 
Institute database. Informative pathways were selected based 
on the Reactome pathway database and screening treat-
ments. An empirical Bayes method was utilized to construct 
co‑expression networks for informative pathways, and a 
weight value was assigned to each pathway. Differential path-
ways were extracted based on weight threshold, which was 
calculated using a random model. In order to assess whether 
the co‑expression method was feasible, it was compared with 
traditional pathway enrichment analysis of differentially 
expressed genes, which were identified using the significance 
analysis of microarrays package. A total of 1,074 informative 
pathways were screened out for subsequent investigations 
and their weight values were also obtained. According to the 
threshold of weight value of 0.01057, 447 differential pathways, 
including folding of actin by chaperonin containing T‑complex 
protein 1 (CCT)/T‑complex protein 1 ring complex (TRiC), 
purine ribonucleoside monophosphate biosynthesis and 
ubiquinol biosynthesis, were obtained. Compared with tradi-
tional pathway enrichment analysis, the number of pathways 
obtained from the co‑expression approach was increased. The 
results of the present study demonstrated that this method may 

be useful to predict marker pathways for HCM. The pathways 
of folding of actin by CCT/TRiC and purine ribonucleoside 
monophosphate biosynthesis may provide evidence of the 
underlying molecular mechanisms of HCM, and offer novel 
therapeutic directions for HCM.

Introduction

Hypertrophic cardiomyopathy (HCM) is a complex and 
relatively common genetic heart disease, which is characterized 
by unexplained asymmetric or symmetric cardiac hypertrophy, 
interstitial fibrosis and cardiomyocyte disarray (1). HCM is a 
prevalent disease that affects 0.2% of the global population (2). 
Patients with HCM may suffer from early sudden cardiac death 
which is most common in individuals <35 years of age (3,4). 
Therefore, it is necessary to identify effective therapeutic 
strategies and investigate the etiology of HCM.

The development of large scale microarray analyses has 
led to research at the gene level, which may be a powerful 
and informative means of investigating the mechanism of a 
disease (5). HCM is predominantly induced by mutations in 
genes encoding sarcomere proteins, including myosin heavy 
chain 7, myosin light chain 2 and myosin binding protein C, 
cardiac (6,7). HCM‑associated genes are typically selected by 
analyzing differentially expressed genes (DEGs). However, a 
previous study identified inconsistencies between numerous 
gene signatures across different studies of the same disease (8). 
A potentially more effective method is to use pathway analysis 
in order to evaluate disease‑associated biomarkers.

Pathway analysis has been widely used in previous 
studies (9‑11) and is becoming the primary method of obtaining 
a deep insight into biological processes (12). The identification 
of active pathways that differ between two conditions is of 
increased utility compared with a list of DEGs (10). However, 
existing methods primarily utilize pathway repositories, 
including the Kyoto Encyclopedia of Genes and Genomes (13), 
to evaluate whether a pathway is significant by assigning 
a P‑value to the pathway, an approach which focuses on the 
static regulation between genes (14,15). Analysis of dynamic 
regulation or network rewiring may reveal important infor-
mation which may not be identified in static conditions (16). 
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Interactions between molecules may alter in different tissues 
and these alterations are associated with disease progression. 
Therefore, novel pathway‑based biomarkers may be identified 
by studying dynamic regulation and network rewiring among 
molecules, in contrast with investigations which only examine 
differential expression.

In the present study, a novel method was developed to 
identify pathway‑based biomarkers in HCM, by investigating 
interactions between molecules associated with pathogenesis 
through a co‑expression network strategy. HCM‑associated 
microarray expression data were downloaded from the 
European Molecular Biology Laboratory‑European 
Bioinformatics Institute (EMBL‑EBI) database. The 
co‑expression network was constructed using an empirical 
Bayes (EB) approach following assignment of a weight value 
for each pathway. A random model was constructed to define 
the thresholds to select differential pathways. Pathway enrich-
ment analysis of DEGs, based on the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) test, was 
implemented to verify the feasibility of the novel method.

Materials and methods

Data collection and preprocessing. The HCM‑associated 
microarray expression data, under accession number 
E‑GEOD‑36961, were downloaded from the EMBL‑EBI data-
base (http://www.ebi.ac.uk/arrayexpress/). In gene expression 
profile E‑GEOD‑36961, there were 39 healthy subjects and 106 
HCM samples. In order to assess the quality of the data, stan-
dard preprocessing of microarray probe data was performed. 
This preprocessing included the following successive steps: 
Background correction using robust multiarray analysis (17); 
normalization using the quartile function to eliminate the 
influence of nonspecific hybridization  (18); perfect match 
correction using the MAS5.0 algorithm (19); and calculation 
of expression values from probe intensities. The expression 
value for every gene was acquired, including 37,846 genes 
from 145 samples (39 healthy and 106 HCM).

Pathway data. Reactome is a database which includes 
numerous pathways in Homo sapiens and a number of reference 
species, offering an infrastructure for computation across the 
biological reaction network (20). Human biological pathways 
were downloaded from the Reactome pathway database 
(reactome.org). A total of 1,675 pathways were obtained. In 
order to ensure the validity of the pathways, pathways in which 
the gene number was ≤2 were discarded. Finally, a total of 
1,639 pathways were determined as background pathways.

Construction of a co‑expression network using an EB 
approach. Numerous methods have been demonstrated for 
co‑expression analysis to identify co‑expression gene pairs, 
which include EB (21), Arabidopsis Co‑expression Tool (22) 
and WGCNA (23). In the present study, an EB framework 
was implemented, which offered a false discovery rate 
(FDR)‑controlled list of the gene pairs of interest (21).

The mean gene number (N) for the 1,639 background 
pathways was computed based on N=overall gene number 
for background pathways (73,099)/the number of background 
pathways (1,639); therefore, N=44.6. In order to facilitate the 

analysis, the mean gene number was subsequently defined as 
N=44.

The gene number of each pathway was termed A, and the 
number of intersections between each pathway and the gene 
expression profile was termed B. The informative pathways 
used in the present study were screened out according to the 
following conditions: B>5; and the ratio B:A>0.9. Therefore, a 
total of 1,074 informative pathways were selected for further 
investigation.

Subsequently, the EB approach developed by Dawson and 
Kendziorski (24) was used to identify co‑expression gene pairs 
among the genes in each informative pathway and construct a 
co‑expression network. The number of possible gene pairs of 
each informative pathway was termed C [C=A x (A‑1)/2]. In 
the EB method, the identification of co‑expression gene pairs 
was implemented based on the following steps: Three inputs of 
matrix X; the conditions array; and the pattern object required. 
The expression levels in an m x n matrix of X, where m=the 
number of genes under any informative pathway and n=the 
total number of representative pathways, were normalized. 
Subsequently, the members of the conditions array with length 
n took values in 1, 2, ……K, where K indicated the number 
of conditions. Based on matrix X and the conditions array, 
intra‑group correlations for all gene pairs were computed, 
and M matrix of correlations was obtained. The Mclust algo-
rithm (25) was used to initialize the hyper‑parameters via the 
initializeHP function of the EBcoexpress package  (26), to 
discover the component normal mixture model which best fitted 
the correlations of M. The crit.fun function of EBcoexpress 
package (26), was used to define a threshold by controlling the 
posterior probabilities of co‑expression to extract particular 
co‑expression gene pairs. Gene pairs with FDR ≤0.05 were 
chosen to construct the co‑expression network. The number of 
interactions in one pathway co‑expression network was termed 
D, and D/C was recorded as the weight value of the pathway.

Identification of differential pathways. In an attempt to identify 
differential pathways between HCM and normal samples, a 
random model consisting of G genes was constructed. G genes 
were randomly selected from gene expression profiles and the 
weight values for each pathway were calculated using the EB 
approach. This step was repeated 10,000 times and the weight 
values were listed in descending order. The FDR for the 100th 
weight value was set at 0.01 (weight value=0.01057). The 
pathways with a weight value >0.01057 were considered to be 
differential pathways.

Identification of DEGs. As previously demonstrated, differen-
tial gene expression levels are associated with disease severity. 
In the current study, the identification of DEGs between HCM 
and normal samples was performed using the significance 
analysis of microarrays (SAM) package. The samr function 
of the SAM package was used to extract the genes which 
exhibited statistically significant differential expression. Each 
gene was assigned a score according to the difference in gene 
expression compared with the standard deviation of repeated 
measurements for this gene. Genes with scores above the 
threshold were considered to be potentially significant. The 
percentage of falsely significant genes relative to the signifi-
cant genes was defined as the FDR. In order to increase the 
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stringency for differential gene expression, the delta value was 
determined using the function SAMR.compute.delta.table. 
DEGs in HCM were identified for further analysis with the 
delta threshold value of 7.48.

Pathway analyses for DEGs. In order to further investigate the 
biological functions of DEGs, Reactome pathway enrichment 
analysis was conducted through DAVID (27) by means of the 
Expression Analysis Systematic Explorer (EASE) test (28). 
The EASE score was applied to identify the significant 
categories. In the present study, the pathways with P<0.05 were 
considered to be significant pathways.

Results

Identif ication of dif ferential pathways. Following 
pre‑processing, a total of 37,846 genes were obtained and 
used for subsequent analysis. A total of 1,074 informative 
pathways were identified, based on the Reactome pathway 
database and filtration treatment. For each informative 
pathway, a weight value was calculated based on the EB 
co‑expression network. The distribution of weight values of 
the pathways are presented in Fig. 1; it was observed that the 
majority of informative pathways exhibited weight values 
between 0 and 0.04, particularly between 0 and 0.01. An 

Figure 1. Distribution of weight values of each informative pathway. Figure 2. Heat map between differential pathways and their weight values.

Table I. Top 20 differential pathways identified by the empirical Bayesian analysis.

Row	 Weight values	 Differential pathways

  1	 0.88889	 Folding of actin by CCT/TRiC
  2	 0.75556	 Purine ribonucleoside monophosphate biosynthesis
  3	 0.42857	 Ubiquinol biosynthesis
  4	 0.33333	 Synthesis of 5‑eicosatetraenoic acids
  5	 0.31000	 Cooperation of prefoldin and TRiC/CCT in actin and tubulin folding
  6	 0.30072	 Prefoldin mediated transfer of substrate to CCT/TRiC
  7	 0.28571	 Defective holocarboxylase synthetase causes multiple carboxylase deficiency
  8	 0.28571	 Defects in biotin metabolism
  9	 0.28571	 Mitochondrial fatty acid beta‑oxidation
10	 0.27941	 Branched‑chain amino acid catabolism
11	 0.25974	 Cytosolic tRNA aminoacylation
12	 0.22807	 Citric acid cycle 
13	 0.22222	 Role of Abl in Robo‑Slit signaling
14	 0.20000	 Uptake and function of diphtheria toxin
15	 0.19044	 Nonsense mediated decay independent of the exon junction complex 
16	 0.17778	 Zinc influx into cells by the SLC39 gene family
17	 0.17191	 Eukaryotic translation termination
18	 0.17177	 GTP hydrolysis and joining of the 60S ribosomal subunit
19	 0.17114	 Cap‑dependent translation initiation
20	 0.17114	 Eukaryotic translation initiation

CCT, T‑complex protein; TRiC, T‑complex protein 1 ring complex.
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increased weight value indicates a more significant pathway. 
Therefore, the threshold criteria for differential pathways was 
defined. In the present study, the threshold for weight values 
was calculated to be 0.01057, and 447 differential pathways 
were selected according to the threshold. The heat‑map 
between differential pathways and the corresponding 
weight values is presented in Fig. 2. The top 20 differential 
pathways are presented in Table  I. Among these, the top 
5 differential pathways were: Folding of actin by chaperonin 
containing T‑complex protein 1 (CCT)/T‑complex protein 
1 r ing complex (TRiC) (weight value= 0.88889); 
purine r ibonucleoside monophosphate biosynthesis 
(weight value=0.75556); ubiquinol biosynthesis (weight 
value=0.42857); synthesis of 5‑eicosatetraenoic acids (weight 
value=0.33333); and cooperation of prefoldin and TRiC/CCT 
in actin and tubulin folding (weight value=0.31000). In order 
to further elucidate each pathway, networks were constructed 
using the EB method. As the gene count varied between 
differential pathways, and too few genes are unable to form 
a network, differential pathways with an increased number 
of genes were chosen, including cooperation of prefoldin and 
TRiC/CCT in actin and tubulin folding (gene number=25), 
and nonsense mediated decay (NMD) independent of the exon 
junction complex (EJC) (gene number=88). The co‑expression 
networks of the pathways of cooperation of prefoldin and 
TRiC/CCT in actin and tubulin folding, and NMD independent 
of the EJC, are exhibited in Figs. 3 and 4, respectively. For the 
network of cooperation of prefoldin and TRiC/CCT in actin 
and tubulin folding, there were 17 genes, while there were 
72 genes in the network of NMD independent of the EJC.

Pathway analyses for DEGs using traditional DAVID 
software. Based on the delta cut‑off value of 7.48, a total of 
344 DEGs were identified. Pathway analyses indicated that there 
were only 2 significant pathways based with P<0.05, including 
signaling in immune system and hemostasis (data not shown).

Comparison of EB and DAVID. In order to assess whether 
the pathway co‑expression network method was feasible, 
the method developed in the present study was compared 

with traditional DAVID software. It was observed that the 
differential pathway of hemostasis was the common pathway 
obtained from the co‑expression network approach and the 
DAVID method. However, the pathway quantity obtained from 
co‑expression network approach was increased compared with 
the DAVID method; A total of 447 differential pathways were 
selected using co‑expression network method, while only 
2 significant pathways were identified using the traditional 
DAVID). Therefore, the present study demonstrated that the 
co‑expression network method exhibited increased efficiency 
compared with DAVID (data not shown).

Discussion

In the present study, a novel method of identifying pathway‑based 
biomarkers in HCM was developed, by investigating dynamic 
interactions between molecules associated with pathogenesis 
through a co‑expression network strategy. The results of the 
present study identified 447 differential pathways between HCM 
and normal samples, including folding of actin by CCT/TRiC, 
purine ribonucleoside monophosphate biosynthesis, and coope
ration of prefoldin and TRiC/CCT in actin and tubulin folding.

Actin, as a ubiquitous protein, serves functions in numerous 
cellular processes, including the maintenance of cell motility, 
cell shape, mitosis and intracellular transport processes (29,30). 
Notably, the conserved nature of the amino acid sequence of 
actin indicates that mutated residues may affect basic functions, 
including actomyosin interactions and actin‑actin interactions 
involved in polymerization  (31). In previous studies, seven 
recognized actin mutations have been demonstrated to be 
associated with HCM (30,32). Alterations may be induced by 
environmental factors, including diet, exercise, or by the cellular 
protein folding machinery. Previous studies have suggested that 
chaperone complexes (TRiC and CCT) may assist the folding of 
actin (33,34). Vang et al (35) demonstrated that protein‑folding 
pathways serve a role in disease progression for actin muta-
tions associated with HCM. Consistent with previous studies, 
the differentially expressed pathway of folding of actin by 
CCT/TRiC was identified in the present study. Therefore, it 
may be inferred that the disturbance of actin folding may be 

Figure 4. Co‑expression network for genes in the differential pathway 
nonsense mediated decay independent of the exon junction complex. Nodes, 
genes; edges, interactions.

Figure 3. Co‑expression network for genes in the differential pathway 
cooperation of prefoldin and T‑complex protein 1 ring complex/T‑complex 
protein 1 in actin and tubulin folding. Nodes, genes; edges, interactions.
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the molecular basis for the subsequent initiation of the hyper-
trophic pathway, resulting in the occurrence of HCM.

An additional altered pathway, purine ribonucleoside mono-
phosphate biosynthesis, was screened out in the present study. 
As demonstrated in a recent study, energy flow is generated 
from ribose in purine ribonucleoside monophosphates (36). 
The inability to maintain normal ATP utilization may be the 
primary abnormality in HCM (37,38). Therefore, the differential 
pathway of purine ribonucleoside monophosphate biosynthesis 
may be important in the progression of HCM, which may 
involve a response to the disruption of energy homeostasis.

In conclusion, based on a co‑expression network, 
differential pathways, including folding of actin by CCT/TRiC 
and purine ribonucleoside monophosphate biosynthesis, were 
successfully identified and these pathways may be involved 
in the pathogenic process of HCM. The results of the present 
study may be applied clinically for the diagnosis, prognostic 
management and treatment of patients with HCM.
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