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Abstract. Preeclampsia (PE) is one of the most common 
types of hypertensive disease and occurs in 3‑4% of preg-
nancies. There are a number of theories on the pathogenesis 
of PE. Abnormal differentiation of the placenta may lead to 
failure of trophoblast migration, shallow placenta implan-
tation and placental ischemia/hypoxia, followed by the 
subsequent occurrence of PE. The Wnt/β‑catenin pathway 
is a canonical Wnt‑signaling pathway that regulates several 
biological processes, including proliferation, migration, inva-
sion and apoptosis. Abnormal activation of the Wnt/β‑catenin 
signaling pathway may serve an important role in the patho-
genesis of various human diseases, particularly in human 
cancer. Recent studies have demonstrated that the dysregula-
tion of the Wnt/β‑catenin signaling pathway may contribute 
to PE. The present review aims to summarize the articles 
on Wnt/β‑catenin signaling pathway in the trophoblast and 
abnormal activation in PE. Wnt/β‑catenin signaling may 
serve a significant role in the pathogenesis of PE and may be 
a prospective therapeutic target for the prevention and treat-
ment of PE.
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1. Introduction

Preeclampsia (PE) is as a major factor in maternal and 
fetal morbidity and mortality. It is one of the most common 
complications during pregnancy, occurring in 3‑4% of 
pregnancies, and up to 10% in developing countries (1). The 
main clinical presentations are proteinuria, hypertension and 
edema. Early research focused on understanding hyperten-
sion and renal dysfunction; however, additional studies on 
the syndrome are lacking. Over the past 20 years, increasing 
evidence has indicated that PE is a multisystemic syndrome 
that is associated with endothelial dysfunction (2), inflamma-
tory activation (3), an imbalance of angiogenic factors and 
metabolic changes (4,5). Studies are currently focusing on the 
process of trophoblast invasion, which is an important feature 
of PE (6).

Wnt signaling is an essential pathway in the regulation of 
cell proliferation, migration and death, and is conserved from 
hydras to humans. Over 30 years ago, Nusse et al (7) identified 
Wnt genes in mice that lead to tumorigenesis. Since then, an 
implicit connection has been made between the physiological 
role of Wnt genes in development and a potential pathophysi-
ological role in carcinogenesis  (8). Numerous studies have 
demonstrated that the Wnt‑signaling pathway may lead to 
a variety of human diseases, ranging from birth defects to 
cancers, and our previous studies have focused on PE (9‑13). 
Results from one of our previous studies confirmed that the 
levels of Wnt2 were decreased in the placenta of patients with 
PE (14). Additional experiments are required to investigate the 
abnormal activation of Wnt/β‑catenin signaling pathway in 
PE.
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The present review summarizes recent reports on the 
pathophysiology of PE, particularly trophoblast invasion, and 
explores the involvement of Wnt/β‑catenin signaling pathway 
in the trophoblast and PE pathophysiology, to further under-
stand the pathogenesis of PE and to discover better treatments.

2. Role of trophoblast in PE

The clinical symptoms of PE quickly subside after childbirth. 

During pregnancy, the placenta acts as an interface between 
the mother and the fetus, suggesting that the placenta has an 
important role in PE (15). One highly recognized hypothesis 
suggests that PE may result from placental dysfunction (16). 
Development of the human placenta can directly affect the 
pregnancy outcomes, failure development in placenta can lead 
pregnant diseases. According to previous clinical, pathological 
and experimental findings, reduced placental perfusion is the 
most significant feature of the placenta in PE (17). Placental 
abnormalities that may be involved in the pathogenic process 
of PE include abnormal implantation and trophoblast invasion 
of spiral arterioles, and improper vascular development in the 
placenta (18,19). A better understanding of abnormal tropho-
blasts and placentas may contribute to the elucidation of PE 
pathogenesis.

A previous study revealed that cytotrophoblastic invasion 
occurs in two stages during pregnancy: Initially after 2 weeks 
of gestation, and then at 12 and 20 weeks gestation  (20). 
During this time, extravillous cytotrophoblast (CTB) cells 
invade the maternal spiral uterine arteries. Trophectodermal 
cells that make up the outer epithelial layer of the blastocyst 
begin to differentiate into various types of trophoblastic cells 
after implantation (21). The primitive syncytium, possibly 
the earliest type of invasive trophoblastic cells are formed 
by cellular fusions and migrates into the maternal endome-
trium; CTBs originating from the trophectodermal layer 
through the primitive syncytium to invade and proliferate 
which can produce primary villi (22). Subsequent formation 
of secondary and tertiary villi takes place throughout preg-
nancy; these villi characteristically invade ectomesenchymal 
cells, forming villous branches and blood vessels. Two 
types of mature villi are formed during the first trimester: 
i) Floating villi, which are the transport units of the human 
placenta and are directly connected to the intervillous space 
where nutrients and oxygen are exchanged with maternal 
blood; and ii) anchoring villi, which can invade the decidua, 
the muscular layer and blood vessels  (23). Interactions 
between these villi ensure proper fetal development and 
growth. Villi that are connected to the basal plate of the 
placenta produce proliferative cell columns, which in turn 
give rise to differentiated extravillous trophoblast (EVT) 
cells (24). During the early stages of pregnancy, successful 
invasion of the endovascular CTB (eCTB) cells and the 
maternal arterioles may prevent the premature onset of blood 
flow into the intervillous space (25). Complications during 
pregnancy may lead to failures in this process, possibly due to 
premature rises in oxygen levels, which may induce oxidative 
stress and cause harm to the placental villi (26). Proliferative 
CTBs differentiate into EVTs and then invade decidual tissue 
and blood vessels which is thought to encompass a series of 
precise biological process.

In addition to endovascular invasion, migrating interstitial 
CTB (iCTB) cells enter the maternal decidua where they are 
likely to interact with different uterine cell types, such as 
uterine natural killer cells, macrophages and decidual stromal 
cells (27,28). These mutual effects have an important role in 
the immunological acceptance of the placental/fetal allograft 
and the depth of trophoblast invasion  (29). For example, 
interactions between paternal human leukocyte antigen C 
and maternal killer‑cell immunoglobulin‑like receptors are 
considered to be important for placentation and reproductive 
success (30). When blood flow is absent, invasion of the tropho-
blast is highly dependent on epidermal growth factor and 
vascular endothelial growth factor (VEGF), which contribute 
to establishing maternal‑placental circulation  (31). Once 
the maternal‑placental circulation has formed, the tropho-
blastic plugs are dissolved and extensive remodeling occurs, 
including the transformation of maternal spiral arteries into 
large diameter vessels that ensure an adapted nutrient supply, 
reduced vessel contractility and constant oxygen delivery to 
the developing fetus at low blood pressure (32). Natural killer 
cells and differentiated EVTs may serve a key role in vascular 
remodeling (33). Maternal endothelial cells are displaced by 
eCTBs, which then remodel the decidua and myometrium on 
the surface of the spiral arteries, whereas iCTBs are involved in 
elastolysis and disruption of the vascular wall, which involves 
a series of trophoblast‑induced events, such as apoptosis of 
the vascular smooth muscle cells  (34). Abnormal vascular 
pressure may cause hypoxia/reoxygenation injury to floating 
villi, leading to the secretion of various inflammatory factors 
and anti‑angiogenic molecules, such as interleukin 6, soluble 
fms‑like tyrosine kinase 1 and syncytiotrophoblast (ST) 
microparticles (33,35). Failures in EVT invasion have been 
noted in a number of pregnancy‑associated diseases, including 
PE (36,37). Increased ST microparticle shedding is hypothe-
sized to be involved in the dysfunction of maternal endothelial 
cells, leading to the systemic inflammatory response that may 
be involved in PE.

3. Wnt/β‑catenin signaling pathway

How Wnt works: Components and mechanism. The first Wnt 
gene was isolated in 1982 as a common site of integration 
by the mouse mammary tumor virus and designated Int (38). 
The gene was later identified to be homologous to the 
Drosophila segment‑polarity gene, wingless (39). The Wnt 
gene family encode the Wnt proteins that are able to activate 
intracellular signaling pathway and participate in the devel-
opment of different mechanisms. The Wnt‑signaling pathway 
is an important regulator of cell proliferation, migration and 
death, and is conserved from hydras to humans (40). There 
are three Wnt‑signaling pathways in humans: The canonical 
Wnt/β‑catenin pathway, the non‑canonical Wnt/Ca2+ pathway 
and the non‑canonical planar cell polarity pathway  (41). 
Wnt/β‑catenin is a conserved cell‑signaling system that is 
involved numerous biological processes such as organogen-
esis, axis differentiation in multicellular organisms cancer 
pathogenesis and the epithelial‑mesenchymal transition (42).

Of the three Wnt‑signaling pathways, the canonical 
Wnt/β‑catenin signaling pathway will be the focus of this 
review. To date, 19 mammalian Wnt ligands have been 
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identified that can directly banding bind to eight out of the 
10 frizzled (Fzd) transmembrane G protein‑coupled recep-
tors; binding to the Fzd receptor relays the Wnt‑signal to the 
nucleus where it serves its biological role (43). Currently, the 
most widely studied ligands that can activate the classical 
Wnt‑signaling pathway include Wnt1, Wnt2, Wnt3a and Wnt8. 
Activation of canonical Wnt signaling is highly dependent on 
the interactions between Fzd and endogenous co‑receptors 
such as low‑density lipoprotein related proteins 5 and 6 (44). 

β‑catenin also serves an essential role in the function of the 
Wnt/β‑catenin signaling pathway. The majority of β‑catenin 
proteins and epithelial mucins (E‑cadherin) are located in 
the cell membrane, whereas fewer proteins are located in the 
cytoplasm. When the Wnt ligands are absent (off‑state), there 
are low levels of free β‑catenin in cytoplasm. If not bound 
to E‑cadherin in the cytomembrane, cytoplasmic β‑catenin 
is phosphorylated by a multiprotein destruction complex 
[comprising the scaffold proteins axin and adenomatous polyp-
osis coli (APC), and the kinases that phosphorylate β‑catenin, 
glycogen synthase kinase 3β (GSK3β), casein kinase 1 (CK1) 
and protein phosphatase 2A], which contributes to the degra-
dation of β‑catenin in the cytoplasm through the addition of 
phosphate groups (45,46). Through this mechanism, the level 
of β‑catenin in the cytoplasm remains low, and is inhibited 
from entering the nucleus and thus cannot activate nuclear 
transcription. Extracellular Wnt proteins bind to the Fzd 
receptor, which then recruits cytoplasmic proteins and directly 
binds to Dishevelled (Dvl); Dvl subsequently multimerizes 
and induces the formation of Wnt signalosomes (Fig. 1) (47). 
Dvl then recruits axin, which is the rate‑limiting component of 
Wnt/β‑catenin signaling, and other associated kinases, such as 
GSK3β and CK1, thus destabilizing the β‑catenin destruction 
complex. This process leads to the accumulation of β‑catenin 
in the cytoplasm, which is able to enter the nucleus. In the 
nucleus, β‑catenin interacts with members of the T cell factor/
lymphocyte enhancer binding factor family of transcription 
factors, which can activate the transcription of downstream 
target genes, such as c‑myc, cyclin D1 and matrix metallopro-
teinase 7, as transcriptional activator, resulting in the abnormal 
cellular proliferation and/or apoptosis, along with a series of 
other biological effects (48).

Functions of Wnt/β‑catenin signaling. Wnt/β‑catenin 
signaling has been demonstrated to contribute to the develop-
ment of organ systems, including the respiratory, digestive 
system, skeletal, nervous, cardiovascular, hematopoietic and 
reproductive systems; in particular, Wnt‑signaling is impor-
tant for the development of the cerebral cortex, heart, skin, 
teeth, gut, lungs, eyes and lenses, somites, neural crest, limbs, 
bones, pancreas, liver, kidneys and mammary glands (49‑52). 
Abnormal activation of Wnt/β‑catenin signaling is implicated 
in different types diseases, including obstetrical and gyneco-
logical disease, metabolic diseases and cancers (53‑55).

The Wnt/β‑catenin signaling pathway is involved in 
multiple physiological processes, although numerous studies 
have focused on its role in the pathogenesis of various types 
of tumor. Aberrant activation of the Wnt/β‑catenin signaling 
pathway may result in tumor formation, suggesting that 
dysfunctional Wnt/β‑catenin signaling is a significant event 
that can contribute to the development of cancer  (56‑59). 

Abnormal activation of the Wnt/β‑catenin signaling pathway 
has been linked to primary hepatocellular carcinomas, renal 
cancer and colorectal cancer, among others (10‑13).

4. Wnt/β‑catenin signaling pathway in trophoblasts

The rapid generation of several subtypes of trophoblast cells 
is well known to contribute to the development of the placenta 
in mice and humans (60). The maternal uterus is then remod-
eled, including the stromal cell differentiation, angiogenesis 
and immunological alterations. These key processes are initi-
ated during the secretory phase of the menstrual cycle, and 
upon implantation and during the early stages of placental 
development (24). Since Wnt signaling serves a crucial role 
in organ development and tissue homeostasis, it is likely that 
the pathway also has important roles in the development and 
differentiation of trophoblasts (61).

Figure 1. The transmission mechanism of Wnt/β‑catenin signaling pathway. 
(A) In the presence of Wnt, Wnt binding to cell‑membrane receptor frees 
β‑catenin from the complex and prevents its degradation. β‑catenin enter the 
nucleus to activate target genes. (B) In the absence of Wnt or when Wnt is 
prevented by an inhibitor, β‑catenin is phosphorylated by a complex. This 
phosphorylated β‑catenin is rapidly degraded. LRP5/6, low‑density lipopro-
tein receptor‑related protein 5/6; Fzd, frizzled; Dvl, disheveled; P, phosphate 
group; CK1, casein kinase 1; APC, adenomatous polyposis coli; GSK3β, 
GSK3β, glycogen synthase kinase 3β; LEF, lymphocyte enhancer binding 
factor; TCF, T cell factor; VEGF, vascular endothelial growth factor.
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A recent study demonstrated that 14 Wnt ligands and 
eight Fzd receptors are expressed in the human placenta, 
further indicating a function for the Wnt‑signaling pathway 
in placental development  (62). A number of studies have 
identified Wnt ligands and other Wnt‑signaling components 
in the endometrium, suggesting that the Wnt pathway could 
be associated with the diverse biological functions of uterine 
cell types. The expression of Wnt ligand mRNA transcripts 
has been investigated by microarray analyses of global gene 
expressions: High levels of Wnt3 mRNA were detected in the 
endometrium during the menstrual cycle, whereas the mRNA 
levels of Dickkopf 1 (Dkk1) increased in in vitro decidual-
ization of endometrial stromal cells in the mid‑secretory 
phase, suggesting a possible role of the Wnt pathway in the 
differentiation and implantation of the endometrium (63,64). 
Similarly, a previous study using different trophoblast models 
have revealed that the Wnt pathway may be closely associated 
with implantation and the differentiation of trophoblasts (65). 
Treatment of JAr choriocarcinoma cell spheroids with Dkk1 
increased their attachment to Ishikawa endometrial‑like 
adenocarcinoma cells (66). In addition, Wnt4 and Fzd2 expres-
sion was shown to be downregulated in primary decidualized 
endometrial stromal cells, suggesting that trophoblast‑depen-
dent Wnt signaling modulates the decidualization process (67).

Wnt signaling serves an essential role in the development 
of early trophoblasts. Treatment of embryonic stem cells 
with Wnt3a induced the formation of trophectodermal stem 
cells that have the ability to differentiate into spongiotropho-
blasts (68‑70). Several studies have also demonstrated the role 
of Wnt signaling in the development of extraembryonic tissues; 
in particular, the vascularization of the placenta  (71,72). 
Krivega et al (73) detected Wnt3 ligands and β‑catenin in 
human blastocysts, and demonstrated that they could promote 
progenitor trophoblast development during embryogenesis. 
Wnt signaling has been indicated to function during tropho-
blast differentiation. For example, Meinhardt  et  al  (74) 
suggested that the Wnt‑signaling pathway may play a role in 
EVT differentiation by downregulating of TCF4. A role for 
Wnt signaling during invasion was demonstrated in vivo as 
well as in vitro, depending on the level of nuclear β‑catenin 
expression by explanting cultures the chorionic villous (75). 
Furthermore, stimulation with Wnt ligand was revealed to 
increase the invasion of primary CTBs (24). However, the 
ability of cells to migrate and invade decreased in the different 
trophoblast models treated with recombinant Dkk1, suggesting 
that the canonical Wnt proteins that are expressed in EVTs 
exert autocrine effects (76). Wnt‑Fzd5 signaling may lead to 
the upregulation of VEGF expression in the chorion and the 
subsequent vascularization of primary villi, suggesting that 
Fzd5 is involved in human trophoblast differentiation (77).

Wnt signaling also contributes to trophoblast invasion. 
One study demonstrated high levels of β‑catenin‑positive 
EVT nuclei in the placenta of complete hydatidiform moles 
(CHMs), compared to normal cells, indicating that dysregu-
lated Wnt signaling could contribute to abnormal trophoblast 
development (78). As Dkk1 inhibits canonical Wnt signaling, 
the pathway may decrease the invasion of trophoblast cells. 
Ectoplacental cones co‑cultured with decidual cells were 
demonstrated to promoted trophoblast invasion when treated 
with recombinant Dkk1, whereas treatment with Dkk1 

antibodies and antisense oligonucleotides reduced invasive-
ness (79). β‑catenin activation is a strong promoter of HTR8/
SVneo cell (normal trophoblast cell line) invasion, leading 
to the outgrowth and migration in villous explants (80). The 
levels of Wnt1, Wnt7A, Wnt10A and Wnt10B expression 
were revealed to be higher in first trimester trophoblasts 
compared with term trophoblasts, whereas Wnt1 and Wnt2B 
were more strongly expressed in EVTs, suggesting that Wnt 
may regulate trophoblast invasiveness (62). Hyperactivation 
of Wnt/β‑catenin signaling may lead to trophoblast disorders 
such as choriocarcinoma, whereas the downregulation of 
Wnt/β‑catenin signaling may lead to PE.

Recent epigenetic studies have demonstrated a general level 
of activation of Wnt signaling in isolated trophoblasts (81,82). 
As important components of the Wnt signaling pathway, APC 
and secreted Fzd‑related protein 2 (sFRP2) were revealed to be 
hypermethylated in trophoblasts compared with the placental 
fibroblasts or leukocytes  (83). This finding suggested that 
activation of the Wnt‑signaling pathway in trophoblasts may 
contribute to placentation. Effectors other than Wnt ligands 
are likely to serve a role in the stabilization of β‑catenin, as 
well as the proliferation and invasion of trophoblasts. A study 
demonstrated that Dkk1 is able to induce apoptosis and inhibit 
proliferation in JEG3 and BeWo trophoblast cell lines (84). 
The expression levels of Dkk1 and sFRP4 were demonstrated 
to be higher in PE compared with normal placental tissues, 
whereas the levels of Wnt2 and β‑catenin expression were 
decreased (14,16), indicating that the Wnt‑signaling pathway 
may serve a role in the development of placental tissues.

5. Wnt/β‑catenin signaling pathway in the process of PE

PE is a major cause of maternal and perinatal morbidity and 
mortality in developing countries (14). To reduce the danger 
of this disease, the most important task is to determine the 
pathogenesis of PE, of which there are various theories. 
Although the precise underlying molecular mechanisms for PE 
remain unknown, endothelial cell dysfunction, maternal‑fetal 
immune balance disorders, inflammation and abnormal 
recasting of blood vessels are considered to contribute to 
PE (85‑87). Numerous placenta‑induced factors appear in PE, 
such as shallow placenta implantation, an imbalance between 
trophoblast proliferation and apoptosis (88,89). An improved 
understanding of the nature of the placenta can help us to 
identify which factor lead to the PE (90). It is speculated that 
humans have the tendency to develop PE for a number of 
reasons, but the following factors are essential for PE develop-
ment: Trophoblast differentiation disorder, hypoxia‑ischemia 
of the placenta and the extent of trophoblast‑induced uterine 
artery transformation.

Trophoblasts are a highly specialized cell type. They grow 
faster than normal cells and they have the ability to migrate and 
invade maternal myometrium, which is similar to the process 
in which tumor cells invade the surrounding tissue. However, 
trophoblast migration is tightly controlled by the body, both 
temporally and spatially, which is an essential difference 
compared with tumor cell migration. There are two types 
of trophoblastic cells: CTBs and STs. With further advances, 
lymphocyte proliferation could be inhibited by artificially gener-
ated CTB membrane fragments, and leading to T lymphocyte 
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apoptosis, which may damage the formation of endothelial cell 
monolayers and then contribute the pathogenesis of PE (91). It is 
increasingly accepted that CTBs contribute to PE.

In a normal pregnancy, during the process of the placental 
formation, the Sertoli cell matrix of spiral arteries is trans-
formed into large‑capacity, low‑resistance blood vessels during 
a normal pregnancy (25). This ensures the nutrition of the fetus 
and the demand for oxygen are adequately met. Abnormal 
Sertoli cell differentiation can interfere with their function, 
damage trophoblast migration ability, cause disorder to the 
invasion of the myometrium, cause shallow placenta implanta-
tion, lead to placental ischemia‑hypoxia and induce PE.

To date, the factors governing blastocyst activation 
remain poorly understood; however, recent studies have 
shown that multiple signaling pathways are involved in 
regulating the differentiation, apoptosis and invasion of 
trophoblasts (24,92,93). Advances in our understanding of 
normal nourishing cells revealed some unique biological 
characteristics that are more similar to malignant tumors. 
Activation of the Wnt/β‑catenin signaling pathway promotes 
tumor cell apoptosis (53). It has been hypothesized that the 
Wnt/β‑catenin signaling pathway may also affect blastocysts 
and may be the main cause for shallow trophoblast invasion 
and disruption to the remodeling of the spiral artery, which is 
one of the most essential and crucial pathological changes that 
occurs during PE and is followed by a series of complications.

Wnt‑signaling components were revealed to be involved 
in the pathogenesis of various diseases, including gestational 
diseases. β‑catenin‑positive EVT nuclei were detected at higher 
levels in the placenta of a CHM compared with normal tissues, 
indicating that improper Wnt signaling could lead to abnormal 
invasion and differentiation in CHM. APC and sFRP2 genes 
were revealed to be hypermethylated in choriocarcinoma 
cells, suggesting that the inactivation of Wnt signaling may 
serve a major role in the pathogenesis of trophoblastic cancer 
cells (82).

The expression levels of Dkk1 and sFRP4 were increased 
in placental tissues from patients with PE, whereas the levels 
of Wnt2 and β‑catenin expression were reduced  (14,16). 
Results from our previous study revealed a stronger expression 
of E‑cadherin in the cytomembrane of villous ST and EVT 
in PE tissue, compared with normal tissue (94). These results 
provide direct evidence that the Wnt‑signaling pathway is 
closely associated with PE.

6. Conclusion

Canonical Wnt/β‑catenin signaling is an essential pathway that 
promotes implantation, blastocyst activation and implantation. 
It serves crucial roles in the differentiation, differentiation and 
invasion of trophoblasts. Abnormal Wnt/β‑catenin signaling 
was observed in numerous diseases including PE, which is one 
of the major causes of the perinatal morbidity and mortality. A 
better understanding of PE pathogenesis is essential and may 
reduce the mortality of the fetus and the mother. In this review, 
recent studies that have investigated the pathophysiology of PE 
were examined; in particular, those concerning the possible 
role of Wnt/β‑catenin signaling pathway were reviewed in 
detail. A number of studies suggest that the Wnt/β‑catenin 
signaling pathway may have an essential role in the trophoblast 

and the development of PE. However, direct evidence of a 
role for Wnt/β‑catenin signaling pathway in the development 
of PE is lacking. Future studies will help verify whether 
Wnt/β‑catenin signaling within trophoblasts participates in 
the development of PE.
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