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Abstract. The present study aimed to investigate the potential 
role of microRNA‑448 (miR‑448) in isoflurane‑induced 
learning and memory impairment in rats. Sprague‑Dawley 
rats were used for the construction of isoflurane‑treated 
models. The Morris water maze test was used to evaluate 
the effects of isoflurane on rats regarding the following para­
meters: Swimming speed, escape latency and time in original 
quadrant. Influences of isoflurane on neuron apoptosis and 
miR‑448 expression in rat hippocampus tissue were analyzed 
by flow cytometry and reverse transcription‑quantitative poly-
merase chain reaction, respectively. Furthermore, the effects 
of miR‑448 on the expression of cell apoptosis‑associated 
proteins were investigated by flow cytometry. The results 
demonstrated that isoflurane treatment induced higher escape 
latency and lower time spent in original quadrant compared 
with the control rats. In addition, isoflurane treatment induced 
neuron apoptosis and miR‑448 was highly expressed in the 
hippocampal tissue of isoflurane‑treated rats. Furthermore, 
Bcl‑x was significantly downregulated while caspase‑3 expres-
sion was upregulated by an miR‑448 inhibitor. Combined the 
results of the current study indicate that miR‑448 knockdown 
may have pivotal roles in improving isoflurane‑induced 
learning and memory impairment via suppressing neuron 
apoptosis.

Introduction

It has been previously reported that the combination of several 
kinds of anesthesia may damage brain function  (1), and 
accumulating studies have reported impairment in learning 

or memory following anesthesia (2‑4). Studies indicate that 
impairments caused by anesthesia application performed on 
brain neurons were observed in various types of animals, 
including mammals (5,6), and indicated that general anesthesia 
exhibits an age‑dependent effect on the brain (7).

As a common inhaled general anesthetic, isoflurane is 
considered to contribute to long‑term memory deficit  (8). 
For example, isoflurane application induced neuron apop-
tosis in a dose‑dependent manner in 7‑day‑old rats, and the 
co‑application of isoflurane, imidazole valium and nitrous 
oxide further increased apoptosis (9). Stratmann et al (10) 
reported that isoflurane application induced neuron apoptosis 
and cognitive impairment following 8 months of isoflurane 
treatment in rats. Due to the importance of potential anes-
thesia‑induced neuron damage and the complex mechanism 
of action, an increasing number of studies have focused on 
investigating the mechanisms behind these effects (11‑13).

microRNAs (miRNAs) are endogenous non‑coding 
RNAs that are 20‑22 nucleotides in length and function 
in various biological processes at the transcriptional or 
post‑transcriptional level by targeting the 3'‑untranslated 
regions of genes (14). Studies have indicated important roles 
for certain miRNAs in the pathology of anesthesia‑induced 
neuron damage. McAdams et al (15) screened 9 differentially 
expressed miRNAs, including miR‑204‑5p, miR‑455‑3p, 
miR‑448‑5p and miR‑574‑3p, in the hippocampal tissue of 
morphine‑exposed mice. Additionally, Luo et al (16) reported 
that the knockdown of let‑7d acts as a contributor for isoflu-
rane‑induced learning and memory impairment. The roles of 
miR‑448 in cell apoptosis in various diseases have also been 
reported (17,18), however, to the best of our knowledge, this 
has not previously been investigated in isoflurane‑induced 
learning and memory impairment.

In the cur rent study, miR‑448 expression in 
isoflurane‑treated rats was detected and the effects of miR‑448 
expression on learning and memory in the hippocampal tissue 
of isoflurane‑treated rats were investigated by downregulating 
the expression of miR‑448. The present study aimed to investi-
gate the potential mechanism underlying the effect of miR‑448 
on learning and memory impairment in isoflurane‑treated 
rats. The present study may provide a theoretical basis for the 
molecular mechanism of isoflurane in clinical treatment of 
neuron damage.
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Materials and methods

Model construction. The procedure was approved by the 
local committee of The First Affiliated Hospital, Wenzhou 
Medical University (Zhejiang 325000, P.R. China) and all 
animals were treated according to the Guide for the Care and 
Use of Laboratory Animals of the Institute for Laboratory 
Animal Research (19). Sprague‑Dawley male rats (n=32; age, 
18 months; weight, 450‑550 g) were obtained from the Institute 
of Experimental Animals of the Medical Scientific Academy 
in Wenzhou Medical University (Wenzhou, China). The rats 
were housed in a standard animal‑grade room with free access 
to standard rodent pellet diet and water. The temperature was 
maintained at 23±2˚C, the relative humidity was 55±10% and 
a 12 h:12 h light:dark cycle. Following 1 week acclimation 
period in the laboratory, rats were randomly assigned to two 
groups; The control group and anesthesia group (n=16 per 
group). The experimental rats were exposed to 2% isoflurane 
(Baxter, Deerfield, IL, USA) for 4 h, whereas rats in the control 
group received air/oxygen at identical flow rates (0.7 l/min) in 
identical chambers. The rats were used for the experiments 
immediately after the anesthesia. Isoflurane concentration 
in the chamber was monitored with a vaporizer. The rectal 
temperature was maintained at 37.0±0.5˚C. All rats were 
visually inspected for respiratory effort and skin color. Pulse 
oximeter oxygen saturation was routinely monitored during 
anesthesia. Mean arterial blood pressure was recorded using 
non‑invasive sphygmomanometers.

Morris water maze test. Cognitive function was analyzed 
between 9 am and 3 pm using the Morris water maze test 
system, as previously described (20). Briefly, the maze (depth, 
80 cm; diameter, 100 cm) was separated into four quadrants 
of equal size on the monitor screen of a computer, and was 
filled to a depth of 30 cm with water. The temperature of 
the water was maintained at 24±0.5˚C. Swimming paths of 
rats were recorded using a video camera and analyzed with 
VideoMot software version 2.4.50923 (TSE Systems GmbH, 
Bad Homburg, Germany) regarding the following parameters: 
Swimming speed, escape latency and time in original quad-
rant. The test was conducted on 4 consecutive days to observe 
escape latency and time spent in the quadrant of rats in the 
Morris water maze. Rats were placed in the maze from four 
random points of the tank and were allowed to search for the 
platform for 2 min. If this was not achieved, the rat was gently 
placed on the platform and left for 20 sec.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA was isolated using TRIzol reagent 
(Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA) as previously described (21), and was treated with RQ1 
RNase‑free DNase I (Promega Corporation, Madison, WI, 
USA). The concentration and purity of the isolated RNA 
were measured with SMA 400 UV‑VIS (Merinton, Shanghai, 
China). Purified RNA (0.5 µg/µl) with nuclease‑free water 
was used for cDNA synthesis with the PrimeScript 1st Strand 
cDNA Synthesis kit (6110A; Biotechnology Co., Ltd., Dalian, 
China) according to the manufacturer's protocol. Target 
gene expression was detected in an Eppendorf Mastercycler 
(Eppendorf, Hamburg, Germany) using the SYBR ExScript 

RT‑PCR kit (DRR053S; Takara Biotechnology Co., Ltd.). PCR 
was run under the following parameters: Initial denaturation 
cycle of 1 min at 95˚C, 35 cycles of denaturation at 94˚C for 
30 sec, annealing at 60˚C for 30 sec, extension at 72˚C for 
2 min and a final extension at 72˚C for 7 min. MiR expression 
was quantified by the comparative 2‑(∆∆Cq) method and normal-
ized to U6 expression (22). The primers for miR‑448 were: 
Forward: 5'‑TTA​TTG​CGA​TGT​GTT​CCT​TAT​G‑3', Reverse 
primer: 5'‑ATG​CAT​GCC​ACG​GGC​ATA​TAC​ACT‑3'; and U6 
were: Forward: 5'‑CTC​GCT​TCG​GCA​GCA​CA‑3' Reverse: 
5'‑AAC​GCT​TCA​CGA​ATT​TGC​GT‑3'. Experiments were 
performed at least three times.

Cell culture and cell transfection. Hippocampal cultures were 
prepared as described previously (23). Briefly, the tissue was 
dissected and digested in 2 ml of 2 mg/ml papain for 30 min at 
37˚C and was subsequently inactivated with 10% fetal bovine 
serum (FBS; Gibco; Thermo Fisher Scientific, Inc.). The tissue 
was triturated by a pipette and was passed through a cell strainer 
to remove undissociated tissue. Cells were subsequently 
centrifuged at 400 x g for 5 min at 4˚C. The supernatant was 
discarded and the cell pellet was resuspended in Dulbecco's 
modified Eagle's medium (DMEM; Sigma‑Aldrich; Merck 
KGaA, Darmstadt, Germany) containing 1X antibiotics 
(penicillin‑streptomycin) and 5% FBS. Cells were plated on 
poly‑L‑lysine (Invitrogen; Thermo Fisher Scientific, Inc.) 
coated plates or coverslips at a density of 1x105 cells/ml. The 
medium was replaced by Neurobasal medium (Invitrogen; 
Thermo Fisher Scientific, Inc.) with 2% B27 (Sigma‑Aldrich; 
Merck KGaA) after plating overnight at 37˚C in a 5% CO2 
incubator. For cell transfection, miR‑448 inhibitor (150 nM; 
Sangon Biotech Co., Ltd., Shanghai, China) was transfected into 
hippocampal cells for 24 h at 37˚C with Lipofectamine 2000 
(Invitrogen; Thermo Fisher Scientific, Inc.) according to the 
manufacturer's protocol. To produce stable miR‑448‑depleted 
transfectants, miR‑448 inhibitor sequences were amplified 
from miRZip‑448 construct (System Biosciences, Palo Alto, 
CA, USA) and subcloned into pSilencer4.1 polyclone sites with 
HindIII and BamHI sites. The miR‑448 inhibitor sequence was 
5'‑AUG​GGA​CAU​CCU​ACA​UAU​GCA​A‑3' and the scramble 
RNA sequence was 5'‑CUA​AGU​CUU​GGU​AGU​CAC​GUU​
C‑3'. Cells transfected with the scramble RNA (150 nM) or 
without any transfection were considered as the control.

Western blotting. After 4 h of treatment with mock or isoflu-
rane, the rats were sacrificed and total protein was extracted 
from the tissue using 1X RIPA buffer (89900; Piece; Thermo 
Fisher Scientific, Inc.). Cells were lysed with radioim-
munoprecipitation assay buffer (Sangon Biotech Co., Ltd., 
Shanghai, China) containing phenylmethanesulfonyl fluoride 
(Sigma‑Aldrich; Merck KGaA) and the lysates were centri-
fuged at 6,400 x g for 10 min at 4˚C. The supernatants were 
collected and the protein concentration was determined using a 
Pierce™ BCA Protein Assay kit (23227; Pierce; Thermo Fisher 
Scientific, Inc.). The proteins (20 µg per lane) were separated 
by 10% SDS‑PAGE followed by transfer onto a polyvinyli-
dene fluoride (PVDF) membrane (24). The membranes were 
blocked in 1% TBS‑Tween‑20 (TBST) containing 5% non‑fat 
milk for 1 h at room temperature and then incubated with rabbit 
anti‑rat antibodies against microtubule‑associated protein tau 
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(Tau; 44‑734G), amyloid‑β precursor protein (APP; PA1‑072), 
Bcl‑x (PA5‑21676), and caspase‑3 (PA5‑16335) at a 1:100 
dilution (all from Invitrogen; Thermo Fisher Scientific, Inc.) 
overnight at 4˚C. Subsequently, the membranes were incubated 
with a horseradish peroxidase‑conjugated goat anti‑rabbit 
secondary antibody (PA1‑27236; 1:1,000; Invitrogen; Thermo 
Fisher Scientific, Inc.) for 1 h at room temperature. Finally, 
the PVDF membranes were washed 3 times with 1X TBST 

buffer for 10 min each. The signals were detected after the 
membranes were incubated with a chromogenic substrate 
using the enhanced chemiluminescence western blotting 
substrate (Pierce; Thermo Fisher Scientific, Inc.) according 
to the manufacturer's protocol. GAPDH (MA5‑15738‑BTIN; 
1:1,000; Invitrogen; Thermo Fisher Scientific, Inc.) served as 
the internal control. The intensity of protein bands was quan-
tified by densitometry using ImageJ software version 1.46 
(National Institutes of Health, Bethesda, MD, USA).

Cell apoptosis assay. After 36 h of transfection, cells were 
incubated with the replacement of fresh cell culture medium 
containing serum‑free medium. The cell apoptosis was analyzed 
by using the Annexin V‑FITC Fluorescence Microscopy kit kit 
(550911; BD Biosciences, San Jose, CA, USA). Total cells were 
harvested, fixed with 3.7% formaldehyde for 15 min at room 
temperature, permeabilized with 0.1% Triton X‑100 for 5 min 
at 37˚C, and washed three times with PBS buffer, cells were 
then resuspended in the 1XBinding Buffer. Subsequently, 5 µl 
Annexin V‑fluorescein isothiocyanate and 5 µl propidium iodide 
were mixed with the cells. Following culture at room tempera-
ture for 10 min, mixtures were analyzed using a FACScan flow 
cytometer (BD Biosciences). Annexin V‑positive and propidium 
iodide‑negative cells were considered to be apoptotic cells.

Figure 1. Morris water maze test for isoflurane‑treated and control rats. Before rats were exposed to isoflurane, no significant difference was observed for the 
Morris water maze test parameters regarding the swimming speed, escape latency and time in original quadrant. (A) No significant difference was observed 
for the swimming speed for rats treated with or without isoflurane. (B) Escape latency for isoflurane‑treated rats was significantly increased compared with 
the control rats. (C) Time spent in original quadrant for the isoflurane‑treated rats was significantly reduced compared with the control rats. *P<0.05 vs. control 
after treatment.

Figure 2. Detection of the expression of cell apoptosis‑associated proteins in 
the hippocampus tissue. (A) Tau expression was upregulated by isoflurane 
treatment compared with controls. (B) APP expression was upregulated by 
isoflurane treatment compared with the control. *P<0.05 vs. control. Tau, 
microtubule‑associated protein tau; APP, amyloid‑β precursor protein.

Figure 3. Expression of miR‑448 in the isoflurane‑treated hippocampus 
tissue. Compared with the control, the relative miR‑448 expression was 
significantly increased by isoflurane treatment. *P<0.05 vs. control. miR, 
microRNA.

Figure 4. Effect of miR‑448 expression on neuron apoptosis. No significant 
difference was observed for the apoptosis of neurons between the control and 
the scramble RNA‑transfected cells. Untransfected cells were considered as 
the control. Compared with the control or scrambled group, neuron apoptosis 
was significantly suppressed by the miR‑448 inhibitor after 72 h of transfec-
tion. *P<0.05 and **P<0.01 vs. control or scrambled group. miR, microRNA.
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Statistical analysis. All experiments were performed indepen-
dently three times. Data are presented as the mean ± standard 
deviation. Data were calculated using GraphPad Prism version 
5.0 (GraphPad Software, Inc., La Jolla, CA, USA). Significant 
differences among groups were analyzed using one‑way analysis 
of variance followed by Tukey‑Kramer's Post‑hoc test. P<0.05 
was considered to indicate a statistically significant difference.

Results

Morris water maze test. Morris water maze test was 
conducted to assess the indexes for rats regarding the swim-
ming speed, escape latency and time in original quadrant 
pre‑ and post‑anesthesia (Fig. 1). The results demonstrated 
that no significant difference was observed for swimming 
speed between the control and anesthetic rats either prior 
or subsequent to anesthesia (Fig. 1A). However, the escape 
latency was significantly increased by isoflurane treatment 
(P<0.05; Fig. 1B), whereas the time in original quadrant was 
significantly reduced in the isoflurane group compared with 
the control (P<0.05; Fig. 1C), indicating that the isoflurane 
treatment may impair learning and memory in rats.

Expression of apoptotic proteins in isoflurane‑treated 
neurons. The dementia‑associated neuron apoptotic proteins 
in the tissues, including Tau and APP, were measured to deter-
mine the effects of isoflurane on neuron apoptosis. The results 
demonstrated that Tau and APP expression were significantly 
upregulated by the isoflurane treatment (Fig. 2), indicating 
that isoflurane treatment may be associated with neuron cell 
apoptosis.

Expression of miR‑448 in isoflurane‑treated hippocampus 
tissues. Following isoflurane treatment, the rat hippocampus 
was isolated for the detection of miR‑448 expression. The 
results demonstrated that the relative miR‑448 expression 
level was significantly increased in the isoflurane‑treated 

hippocampus compared with control rats (Fig.  3), which 
indicates that miR‑448 expression may be associated with 
impaired learning and memory caused by isoflurane treatment 
in rats.

miR‑448 induced hippocampus neuron apoptosis. The 
influence of miR‑448 on neuron apoptosis was detected in 
the hippocampus of rats (Fig. 4). The percentage of apoptotic 
neurons was significantly decreased by miR‑448 inhibitor 
transfection compared with controls (P<0.05).

Effects of miR‑448 expression on the expression of cell 
apoptosis‑associated proteins. The expression of cell 
apoptosis‑associated proteins was measured to investigate 
the potential mechanism for miR‑448 in neuron apoptosis 
(Fig. 5). When miR‑448 expression was suppressed in the 
neurons, the relative protein expression of Bcl‑x was signifi-
cantly increased, while caspase‑3 was significantly decreased 
(P<0.05), compared with the untransfected cells.

Discussion

Interest in the effect of general anesthetic on long‑term 
memory is on the increase. The effect of anesthesia, including 
isoflurane, on learning and memory has been previously 
reported (25‑27), however, a full understanding of the under-
lying mechanism remains to be elucidated. Additionally, 
previous studies have demonstrated that neuron apoptosis 
may be one of most important mechanisms involved in 
anesthesia‑induced brain damage (28,29), however, the mech-
anism remains to be established. The present study analyzed 
the expression of miR‑448 in the hippocampal tissue of 
isoflurane‑treated rats and investigated the effect of miR‑448 
expression on learning and memory impairment using the 
knockdown method. Consistent with previous reports (30,31), 
isoflurane treatment induced learning and memory damage, 
which was indicated by increased escape latency and reduced 

Figure 5. Effects of miR‑448 on the expression of cell apoptosis‑associated proteins. (A) Bcl‑x expression was significantly increased by the knockdown 
of miR‑448. (B) Caspase‑3 protein was significantly decreased by the miR‑448 inhibitor. Untransfected cells were considered as control group. *P<0.05 
vs. control or scrambled group. miR, microRNA.
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time spent in original quadrant during the Morris water maze 
test (Fig. 1).

Subsequently, the present study detected the expres-
sion of cell apoptosis markers, including Tau and APP, in 
isoflurane‑treated rats and the results demonstrated that Tau 
and APP levels were highly expressed in the isoflurane‑treated 
rats (Fig. 2). Tau protein is a microtubule‑associated protein that 
is expressed abundantly in neuronal axons (32), whereas APP 
protein functions as a cell surface receptor and performs physi-
ological functions on the surface of neurons relevant to neurite 
growth, neuronal adhesion and axonogenesis (33). Li et al (34) 
demonstrated that Tau protein level was significantly increased 
by isoflurane treatment in cognitive dysfunction in transgenic 
APP695 mice. Similar results for APP were observed in trans-
genic mice in a study conducted by Zhang et al (35). Based 
on the results of the current study, it was hypothesized that 
isoflurane treatment impaired learning and memory in rats.

Meanwhile, the present study analyzed the expression of 
miR‑448 in the hippocampal tissue of isoflurane‑treated rats 
and the results demonstrated that miR‑448 was upregulated 
following isoflurane treatment in rats (Fig. 3). Pivotal roles for 
miRNAs have been identified in various diseases, including 
cancer and cardiovascular diseases, via involvement in biolog-
ical processes such as cell apoptosis (36,37). Additionally, the 
results of the current study demonstrated that neuron apoptosis 
was significantly suppressed by miR‑448 inhibitor applica-
tion (Fig. 4), indicating that miR‑448 may have certain roles 
in isoflurane‑induced learning and memory damage via cell 
apoptosis. Consequently, the present study further measured 
the expression of cell apoptosis‑associated proteins in vitro. It 
is suggested that Bcl‑x is a bcl‑2 family member that is involved 
in the regulation of apoptosis (38), while caspase‑3 is an apop-
totic executor in various diseases (39). The association between 
miR‑448 and caspase‑3 in neuron apoptosis caused by isoflu-
rane remains to be fully elucidated. However, Noh et al (40) 
demonstrated that caspase‑3 was highly expressed following 
miR‑448 overexpression in mice with Alzheimer's disease. 
In the present study, caspase‑3 protein was downregulated 
while Bcl‑x was upregulated by the miR‑448 inhibitor in 
isoflurane‑treated neurons (Fig. 5), indicating that miR‑448 
downregulation may block neuron apoptosis via reducing 
caspase‑3 and increasing Bcl‑x expression.

In conclusion, the results presented in the present study 
indicate that miR‑448 downregulation may contribute to 
improving the learning and memory impairment induced 
by isoflurane application by suppressing neuron apoptosis. 
The current study may provide a theoretical basis for the 
investigation of the mechanism underlying the effect of isoflu-
rane on memory. Further experimental studies are required to 
investigate the underlying mechanism in depth and to explore 
the effects of isoflurane treatment on learning and memory.
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