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Abstract. The purpose of the present study was to screen the 
prognostic targets for breast cancer based on a co-expression 
modules analysis. The microarray dataset GSE73383 was 
downloaded from the Gene Expression Omnibus (GEO) 
database, including 15 breast cancer samples with good 
prognosis and 9 breast cancer samples with poor prognosis. 
The differentially expressed genes (DEGs) were identi-
fied with the limma package. The Database for Annotation, 
Visualization and Integrated Discovery was used to perform 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis. Furthermore, 
the co-expression analysis of DEGs was conducted with 
weighted correlation analysis. The interaction associations 
were analyzed with the Human Protein Reference Database 
and BioGRID. The protein‑protein interactions (PPI) network 
was constructed and visualized by Cytoscape software. A 
total of 491 DEGs were identified in breast cancer samples 
with poor prognosis compared with those with good prog-
nosis, and they were enriched in 85 GO terms and 4 KEGG 
pathways. 368 DEGs were co-expressed with others, and 
they were clustered into 10 modules. Module 6 was the most 
relevant to the clinical features, and 21 genes and 273 interac-
tion pairs were selected out. Abnormal expression levels of 
required for meiotic nuclear division 5 homolog A (RMND5A) 
and angiopoietin‑like protein 1 (ANGPTL1) were associated 
with a poor prognosis. It was indicated that SWI/SNF related, 
matrix associated, actin dependent regulator of chromatin, 
subfamily D, member 1, SWI/SNF related, matrix associated, 
actin dependent regulator of chromatin, subfamily D, member 
1, dihydropyrimidinase‑like 2, RMND5A and ANGPTL1 were 
potential prognostic markers in breast cancer, and the cell 
cycle may be involved in the regulation of breast cancer.

Introduction

Breast cancer is the uncontrolled growth of breast cells, 
which develops from breast tissue. It is one of the most 
common cancers among the female malignant tumors in 
worldwide, that affects about 12% of global women (1). In 
North America and Western Europe, breast cancer is the most 
common malignancy and the second most common cause 
of cancer-associated death for women (2). It was estimated 
that there were 246,660 new cases and 40,450 mortalities 
from breast cancer in the US in 2016 (3). Morbidity and 
mortality increase year by year, particularly in Southeast 
Asia (4). Patients with breast cancer experience various 
symptoms, including a lump in the breast, fluid coming 
from the nipple, dimpling of the skin and a change in breast 
shape (5). Breast cancer is usually treated with surgery, which 
may be followed by chemotherapy or radiotherapy, and a 
multidisciplinary approach is preferable, such as surgery, 
radiotherapy, chemotherapy and hormone therapy (6). Breast 
cancers that are estrogen receptor positive (ER+) and human 
epidermal growth factor receptor-2 positive (HER2+) can 
be treated with agents that target these receptors (such as 
tamoxifen, toremifene, and fulvestrant for ER+ breast cancers 
and trastuzumab, pertuzumab and lapatinib for HER2+ breast 
cancers) (7). Unfortunately, the prognosis is still unsatisfac-
tory, especially in advanced patients. Prognostic factors of 
breast cancer mainly depend on stage (i.e., tumor size, loca-
tion, and metastasis), grade, recurrence, age and health of 
the patient. The stage of breast cancer has a greater effect 
on the prognosis than the other factors, and it is considered 
the most important component of traditional classification 
methods (8).

Breast cancer is a complex systemic disease with 
multi-genes involved, and a series of abnormal changes of 
genome which participate in the regulation of cell growth, 
differentiation and apoptosis, may affect the prognosis. Some 
prognostic markers have been reported, such as, INPP4b, 
KLF4, NANOG, OXYTAM and EZH2 (9,10). However, the 
ability to predict the metastatic behavior in breast cancer 
is still limited, and the clinical outcome of breast cancer 
remains to be improved. In the present study, breast cancer 
samples with different prognosis were analyzed via micro-
array analysis, in order to find more prognostic markers 
and provide some clues for the metastatic behavior in breast 
cancer.
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Materials and methods

Microarray data. The expression microarray dataset GSE73383 
was downloaded from the Gene Expression Omnibus (www 
.ncbi.nlm.nih.gov/geo) database. In this profile, there was a 
subset of 24 breast cancer samples comprising 15 samples 
that remained free of disease after surgery (good prognosis) 
and 9 samples that developed metastasis (poor prognosis). 
In this study, the 24 samples were used to identify candidate 
biomarkers associated with the prognosis of breast cancer, 
which were detected with the GPL11010 CodeLink Human 
Whole Genome Bioarray platform (Applied Microarrays, Inc., 
Tempe, AZ, USA).

Data pre‑processing and identification of differentially 
expressed genes. The original data were converted into 
recognizable format in R, and the preprocess Core package 
was used for the normalization. Afterwards, the limma (11) 
package of R was used to identify the differentially expressed 
genes (DEGs) in the 9 samples with poor prognosis compared 
with the 15 samples with good prognosis. Furthermore, the 
DEGs were selected out according to the criteria: |log (fold 
change)|>1 and P<0.05.

Functional and pathway enrichment analysis. The Database 
for Annotation, Visualization and Integrated Discovery (david 
.ncifcrf.gov) (12) is a widely-used web-based tool for func-
tional and pathway enrichment analysis. Here, it was used to 
perform Gene Ontology (GO; www.geneontology.org) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG; www 
.genome.jp/kegg) pathway enrichment analysis of DEGs. GO 
terms and KEGG pathways were selected out with a P-value 
<0.05.

Module analysis.  Weighted cor relat ion ana lysis 
(WGCNA) version 1.13 (www.genet ics.ucla.edu / 
labs/horvath/CoexpressionNetwork/Rpackages/WGCNA), an 
R software package, is a comprehensive collection of R func-
tions for performing various aspects of weighted correlation 
network analysis (13). In the present study, the co-expression 
analysis of DEGs was conducted with WGCNA. Afterwards, 
the co-expression modules were obtained, and the relationships 
between every module and clinical features were calculated.

Construction of the protein‑protein interactions network. 
The Human Protein Reference Database (HPRD) is an object 
database that integrates a wealth of information relevant to 
the function of human proteins in health and disease (14). 
The Biological General Repository for Interaction Datasets 
(BioGRID) is a curated biological database of protein-protein 
interactions, genetic interactions, chemical interactions and 
post‑translational modifications (15). The module which had 
the closest correction with the prognosis was analyzed with 
HPRD version 9 (www.hprd.org) and BioGRID version 2.0 
(thebiogrid.org) software. In addition, genes in the above 
module and their associated interaction pairs were selected 
out. In addition, the protein-protein interactions (PPI) 
network was constructed and visualized by Cytoscape 
version 3.0.1 (16) software. Nodes were screened out in the 
PPI network with degree ≥ 1, and ‘degree’ represented the 

connections with other nodes. In addition, the associations 
between certain nodes and the prognosis of breast cancer were 
analyzed using the online tool kmplot, version 1.2.0 (edu.kde.
org/kmplot), which is a mathematical function plotter for the 
KDE‑Desktop, and can be used to plot different functions 
simultaneously and combine their function terms to build new 
functions.

Results

DEGs. A total of 491 DEGs (316 up- and 175 downregulated) 
were identified in breast cancer samples with poor prognosis 
compared with those with good prognosis. The top 30 most 
significant DEGs are presented in Table I.

GO terms and KEGG pathways. The above DEGs were 
enriched in 85 GO terms and 4 KEGG pathways. The 
top 15 GO terms were presented in Table II, including cell 
cycle phase, chromosome segregation and nuclear divi-
sion. Furthermore, the 4 KEGG pathways were cell cycle, 
neuroactive ligand-receptor interaction, oocyte meiosis and 
progesterone-mediated oocyte maturation.

Modules. A total of 368 DEGs were co-expressed with 
others and they were clustered into 10 modules (recorded 
as Module 1-10). The cluster graph of samples and genes 
are presented in Fig. 1. From the sample cluster graph, 
GSM1892326 was identified as an outlier; thus, it was excluded 
in the further module analysis. The associations between 
every module and clinical features (Her 2, Ki67, metastasis 
and prognosis) are presented in Fig. 2. Module 6 was the most 
relevant to the clinical features (Fig. 2). There were 26 DEGs 
(23 over-expressed and 3 low-expressed) in Module 6, and the 
associations between their expression and the prognosis of 
breast cancer are presented in Fig. 3 (‘Pgood’ represents good 
prognosis and ‘Ppoor’ represents poor prognosis).

PPI network. Module 6 was analyzed with HPRD and 
BioGRID, and 21 genes and 273 interaction pairs were selected 
out. Afterwards, the PPI network was established based on the 
above interactions, including 266 nodes, and is presented in 
Fig. 4. The top 20 nodes are presented in Table III. One of the 
over-expressed gene in Module 6, required for meiotic nuclear 
division 5 homolog A (RMND5A), and the low-expressed gene 
angiopoietin‑like protein 1 (ANGPTL1) were screened out, and 
the association between them and prognosis were analyzed 
with the online tool of kmplot. Survival curves are presented 
in Fig. 5. It revealed that abnormal expression levels (low- and 
over-expression) of RMND5A and ANGPTL1 were associated 
with a poor prognosis.

Discussion

DEGs were identified in breast cancer samples with poor 
prognosis compared with those with good prognosis, 
and they were mainly enriched certain cell cycle- and 
mitosis-associated biological processes. At present, research 
has indicated that the cell cycle is closely associated with 
the outcome of breast cancer. Certain cell cycle markers (for 
example cyclin B1) are differentially expressed in benign and 
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malignant papillary breast lesions (17). Over-expression of 
a novel cell cycle regulator ecdysoneless predicted a poorer 
survival in Her2/neu over-expressing breast cancer patients. 
Oxygenase domain-containing protein 1 is required for breast 
cancer cell proliferation and is involved in poor prognosis 
of breast cancer (18). Therefore, it is important to intervene 
the progression, prognosis and drug efficacy in breast cancer 
by regulating or modulating some cell cycle phases or cyclin 
proteins. The transcription factor deleted in esophageal cancer 
could regulate breast cancer cell proliferation by stabilizing 

cyclin E protein and delaying the progression of cell cycle S 
phase (19). Phosphatase and tensin homolog (PTEN) was a 
well‑known tumor suppressor gene and is frequently mutated 
or lost in breast cancer. Insufficiency of PTEN could modulate 
ER+ breast cancer cell cycle progression and increase cell 
growth, and thus is associated with advanced breast cancer 
and poor prognosis of breast cancer patients (20). Nexrutine 
inhibits survival and induces G1 cell cycle arrest, which 
might provide a novel approach for protection against breast 
cancer (21). Mitosis is the most important factor in cell the 

Table II. Top 15 most significant GO terms of DEGs.

Category Term Count P-value

BP GO:0022403~cell cycle phase 29 2.07E-07
BP GO:0000087~M phase of mitotic cell cycle 20 7.28E-07
BP GO:0000278~mitotic cell cycle 26 9.76E-07
BP GO:0007059~chromosome segregation 12 1.84E-06
BP GO:0007067~mitosis 19 2.41E-06
BP GO:0000280~nuclear division 19 2.41E-06
BP GO:0022402~cell cycle process 32 4.12E-06
BP GO:0048285~organelle fission 19 4.25E‑06
BP GO:0000279~M phase 23 5.26E-06
BP GO:0007049~cell cycle 38 1.18E-05
CC GO:0000940~outer kinetochore of condensed chromosome 5 3.64E‑05
BP GO:0000075~cell cycle checkpoint 11 3.64E‑05
BP GO:0051301~cell division 20 3.92E-05
BP GO:0007093~mitotic cell cycle checkpoint 8 4.35E‑05
CC GO:0000777~condensed chromosome kinetochore 9 6.51E‑05

GO, Gene Ontology; DEGs, differentially expressed genes; BP, biological process; CC, Cellular Component.

Table I. Top 30 most significant DEGs in breast cancer samples with poor prognosis compared with those with good prognosis.

Gene  P-value LogFC Gene  P-value LogFC

CHRDL2 5.74E-05 -2.95172 CSH1 0.003025 1.197913
ERP27 0.000228 -1.67607 CPT1A 0.003214 1.239627
PRSS21 0.000235 -1.98312 LOC105370832 0.003264 -1.71612
LOC100129447 0.000542 -3.5659 IBSP 0.003517 1.247671
TRIM37 0.001246 1.758675 TMEM185B 0.00362 1.212002
TTF2 0.001416 1.823105 PPM1D 0.003634 1.3262
ANKRD60 0.001461 -2.87722 PDP1 0.003666 2.083321
HMGB3 0.001635 1.915918 CDC45 0.003698 2.059617
NBR1 0.001681 -1.71848 NEB 0.003822 1.118614
FKBP1B 0.001731 1.198828 PDE1B 0.003835 -1.64844
MGC16275 0.002375 1.402384 ZNF264 0.004253 -1.65155
C9orf64 0.0025 1.277235 GTSE1 0.004292 1.209348
OPRK1 0.002525 1.891967 HIST1H3B 0.004466 1.522681
LGI4 0.002658 -1.67571 EMX2 0.004667 -1.25036
HIST1H2BE 0.002916 1.817212 FAM9C 0.004707 1.524613

DEGs, differentially expressed genes; FC, fold-change.
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cycle, which is a complicated and refined adjusting process. 
However, relatively few studies have reported that mitosis 
is a relevant biological process involved in the prognosis of 

breast cancer. Mitosis counts in histopathological slides serve 
a crucial role for invasive breast cancer grading (22,23). To 
summarize, the biological processes of cell cycle and mitosis 

Figure 1. Cluster graph of samples and genes.

Figure 2. Associations between every module and clinical features.
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are closely involved in the prognosis of breast cancer, which 
might provide novel insights into the clinical therapy for breast 

cancer patients. Furthermore, it was possible to reveal more 
prognostic biomarkers by exporting primarily involved and 
regulatory genes.

In the present study, DEGs were enriched in 4 KEGG 
pathways, namely, cell cycle, neuroactive ligand-receptor 
interaction, oocyte meiosis and progesterone-mediated oocyte 
maturation. The neuroactive ligand-receptor interaction 
pathway mainly serves roles in neurological illness and injury, 
such as Parkinson's Disease (24). Huan et al (25) identified 
time courses of genes that were either stimulated or inhibited 
by estradiol (E2) in human breast cancer cells, and results 
showed that the changes were mainly enriched in neuroac-
tive ligand-receptor interaction at the 24 h time point. A 
study of the hub subnetwork in breast cancer revealed that 
oocyte meiosis pathways were significant subnetworks, 
in which hub nodes mostly distributed (26). Another 
bioinformatics analysis reported that the pathogenesis 
of breast cancer was associated with oocyte meiosis and 
progesterone-mediated oocyte maturation (27). In this study, 
it was indicated the prognosis of breast cancer was associ-
ated with cell cycle, neuroactive ligand-receptor interaction, 
oocyte meiosis and progesterone-mediated oocyte matura-
tion. However, further laboratory and clinical researches are 
required to verify this.

In the present study, SWI/SNF related, matrix associ-
ated, actin dependent regulator of chromatin, subfamily D, 
member 1 (SMARCD1) and dihydropyrimidinase‑like 2 
(DPYSL2) were the top two nodes in the PPI network. 
SMARCD1, a regulator gene of embryonic stem cell differ-
entiation, was considered as one of the driver mutations in 
breast cancer (28,29). Furthermore, the attenuated expression 
of SMARCD1 could inhibit breast cancer cell proliferation 
in vitro and in mouse tumor xenografts (30). DPYSLs are 
a family of proteins developmentally regulated during 
maturation of the nervous system, and mainly comprising 
of DPYSL1, DPYSL2 and DPYSL3. DPYSL2 encodes the 
DPYSL2 protein, which is a target gene of gastric cancer (31). 
DPYSL2 is identified to increase with selenomethionine treat-
ment in colon cancer (32). In the present study, it was revealed 
that SMARCD1 and DPYSL2 may be prognostic markers in 
breast cancer, although further studies are required to confirm 
this. Furthermore, in the present study, abnormal expression 
levels of RMND5A and ANGPTL1 were associated with poor 
prognosis in breast cancer patients. RMND5A is involved 
in microtubule dynamics, cell migration, nucleokinesis 
and chromosome segregation (33). However, few reports 
have revealed the association between RMND5A and breast 
cancer. ANGPTL1 encodes ANGPTL1 protein, which targets 
endothelial cells and affects tumor cell behavior. A previous 
study reported that ANGPTL1 represses lung cancer cell 
motility (34). The results of the present study revealed that 
RMND5A and ANGPTL1 are novel potential prognostic 
markers in breast cancer.

In conclusion, the results of the present study indi-
cated that SMARCD1, DPYSL2, RMND5A and ANGPTL1 
are potential prognostic markers in breast cancer. 
Furthermore, cell cycle, mitosis, neuroactive ligand-receptor 
interaction, oocyte meiosis and progesterone-mediated 
oocyte maturation may be involved in the regulation of breast 
cancer.

Table III. Top 20 nodes in the PPI network.

Gene Degree Gene Degree

SMARCD1 78 PNKD 7
DPYSL2 32 CSH1 5
HIRIP3 32 GALNT14 4
ARIH1 30 APP 3
UBFD1 27 ELAVL1 3
NEB 19 NRF1 3
PARN 15 ANGPTL1 2
ATP6V0A2 10 CALM1 2
RMND5A 10 HSPH1 2
UBC 9 IQCB1 2

PPI, protein-protein interaction.

Figure 3. Associations between gene expression and prognosis. Pgood, good 
prognosis; Ppoor, poor prognosis.
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Figure 4. Protein‑protein interaction network.

Figure 5. Survival curve of RMND5A and ANGPTL1. RMND5A, required for meiotic nuclear division 5 homolog A; ANGPTL1, angiopoietin‑like protein 1.
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