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Abstract. The aim of the study was to demonstrate that 
preterm birth (PTB) is associated with altered C19MC 
microRNA expression profile in placental tissues. Gene 
expression of 15 placental specific microRNAs (miR‑512‑5p, 
miR‑515‑5p, miR‑516‑5p, miR‑517‑5p, miR‑518b, miR‑518f‑5p, 
miR‑519a, miR‑519d, miR‑519e‑5p, miR‑520a‑5p, miR‑520h, 
miR‑524‑5p, miR‑525‑5p, miR‑526a and miR‑526b‑5p) was 
compared between groups: 34 spontaneous PTB, 108 preterm 
prelabor rupture of membranes (PPROM) and 20  term in 
labor pregnancies. Correlation between variables including 
relative microRNA quantification in placental tissues and the 
gestational age at delivery, white blood cell (WBC) count at 
admission and serum levels of C‑reactive protein at admission 
in patients with PPROM and PTB was determined. Expression 
profile of microRNAs was different between PPROM and 
term in labor pregnancies, PTB and term in labor pregnan-
cies, and between gestational age‑matched PPROM and PTB 
groups. When compared with term in labor pregnancies, while 
C19MC microRNAs showed a downregulation in PPROM 
pregnancies (miR‑525‑5p), in PTB pregnancies C19MC 
microRNAs were upregulated (miR‑515‑5p, miR‑516‑5p, 
miR‑518b, miR‑518f‑5p, miR‑519a, miR‑519e‑5p, miR‑520a‑5p, 
miR‑520h, and miR‑526b‑5p) or showed a trend to upregu-
lation (miR‑519d and miR‑526a). In comparison to PTB 
pregnancies, the PPROM group demonstrated a significant 
portion of downregulated C19MC microRNAs (miR‑516‑5p, 
miR‑517‑5p, miR‑518b, miR‑518f‑5p, miR‑519a, miR‑519d, 
miR‑519e‑5p, miR‑520a‑5p, miR‑520h, miR‑525‑5p, miR‑526a 
and miR‑526b‑5p). In the group of PPROM pregnancies, a weak 

negative correlation between the gestational age at delivery 
and microRNA gene expression in placental tissue for all 
examined C19MC microRNAs was observed. PTB pregnan-
cies showed a positive correlation (miR‑512‑5p, miR‑515‑5p, 
miR‑519e‑5p) or a trend to positive correlation (miR‑516‑5p, 
miR‑518b, miR‑520h) between particular C19MC microRNAs 
and maternal WBC count at admission. Our study demonstrates 
that upregulation of C19MC microRNAs is a characteristic 
phenomenon of PTB. PPROM pregnancies have a tendency 
to produce lower levels of miR‑525‑5p. All examined C19MC 
microRNAs displayed decreased expression with advancing 
gestational age in PPROM group.

Introduction

Preterm delivery, defined as the delivery prior 37 complete 
weeks of gestation, occurs in 5‑13% of all pregnancies (1‑3). 
It is the most common cause of neonatal mortality and 
morbidity worldwide  (2‑5), accounts for approximately 
70% of neonatal deaths (6,7). Preterm delivery results from 
three clinical conditions occurring with nearly similar 
rates: i)  Medically indicated or elective preterm delivery 
(30‑35%); ii)  spontaneous preterm birth (PTB) with intact 
fetal membranes (40‑45%); and iii) premature rupture of fetal 
membranes (PROM; 25‑30%) (2,8,9).

Preterm delivery results usually in critical care emergen-
cies, and is associated not only with short‑term consequences 
to the health of the child including cerebral palsy, respiratory 
distress syndrome, neonatal infection/sepsis and intraventric-
ular hemorrhage, but also with long‑term adverse sequel (i.e., 
neurodevelopmental impairment, sensory defects, learning 
difficulties and behavioural problems) (5,10‑15).

Since preterm delivery rates increase over the last two 
decades in many developed countries (16), early identification 
(weeks if not months before the clinical event) of patients with 
an increased risk for PTB and PROM, as a prerequisite for the 
effective use of interventions (use of steroids, transfer to appro-
priate hospital facilities), becomes crucial in reducing adverse 
perinatal outcomes and the costs of neonatal care (5,17‑19).

Although etiology of preterm delivery is multifactorial 
and the exact causes remain unknown in most cases, intra-
uterine infection with activation of the innate immune system 
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and an exaggeration of inflammatory processes is found in 
25‑40% (9,20‑23). Many other predisposing conditions have 
been proposed, including factors such as an incomplete cervix, 
uterine abnormalities, exposure to diethylstilbestrol (synthetic 
nonsteroidal estrogen; oral contraceptive) or environmental 
pollutants such as lead, pregnancy hypertension, intrauterine 
growth restriction, multiple pregnancy, maternal stress, heavy 
physical work, and smoking (24‑27). Concerning intrauterine 
infection, development of histological chorioamnionitis is one 
of the main features and represents a pathological condition 
characterized by intraamniotic inflammation [AIA; inflam-
mation of amniochorionic (fetal) membranes and placental 
chorion] in response to microbial invasion of the amniotic 
cavity (MIAC), which is predominated by Ureaplasma species, 
or to other pathological processes (28‑30).

ROM is a natural physiological phenomenon that occurs 
before delivery. However, when the rupture of the amniotic 
membranes with release of the amniotic fluid occurs more 
than 1 h prior to the onset of labor, it is called PROM (31). 
PROM, that complicated 4.5‑7.6% of deliveries (32,33), may 
be subdivided into term PROM (TPROM; i.e., PROM after 
37 weeks of gestation) and preterm PROM (PPROM; i.e., 
spontaneous rupture of fetal membranes prior 37 weeks of 
gestation) (31). Most women with PPROM deliver within 48 h 
after rupture. The incidence of PPROM is 2‑3.5% (31). The 
management of patients with PROM offered two general, 
but still controversial, options: i) Prompt delivery for women 
in labor, when infection or irreversible fetal distress occurs; 
and ii) complex decision concerning prolonging of gestation, 
reducing of complications of prematurity, timing of labor and 
choosing the route of delivery for women not in labor, espe-
cially in premature gestational ages (34).

Many possible mechanisms underlying spontaneous 
PPROM, including intra‑amniotic infection and other 
factors mentioned above, have been identified: Reduction 
of membrane collagen content stretched membranes, vascu-
lopathy in placentation, decidual hemorrhage, placental 
abruption, uterine overdistension, nutritional deficiences, and 
genetic factors (i.e., race and familiar clustering) (33,35‑37). 
All these factors may play primary or secondary roles in the 
pathogenesis of PPROM.

Based on the known risk factors and pathways, diagnosis of 
preterm delivery comprises clinical evaluation and biological 
tests, which are useful in the case of clinically asymptomatic 
patients. These tests include vaginal pH determination (nitra-
zine, bromthymol blue test) and the measurement of prolactin, 
α‑fetoprotein, inflammatory cytokine IL‑6, diamine oxydase, 
insulin‑like growth factor binding protein‑1 (IGFBP‑1), 
amniotic fluid intracellular adhesion molecule 1, human 
choriogonadotrophin levels, or fetal fibronectin in cervico-
vaginal fluid, respectively (11,38‑44).

Several biomarkers in first trimester maternal blood samples 
have been tested to see if they can predict preterm delivery. 
Among those rise in C‑reactive protein (CRP) and decrease 
in mean platelet volume (MPV), pregnancy‑associated plasma 
protein‑A, selenium and lead levels in maternal serum during 
early gestation demonstrate some ability to distinguish women 
at risk of experiencing PTB or PPROM, but the insufficient 
test characteristics (specificity and sensitivity) of such methods 
limit any application in current clinical practice (45‑50).

In the last decade, the importance of microRNAs (miRNA) 
in both, health and disease was revealed which provide a new 
opportunity for biomarker discovery in the field of preterm 
delivery. MicroRNAs belong to small (18‑25 nucleotides) 
highly conserved single‑stranded RNA molecules that 
play a critical role in posttranscriptional gene regulation by 
degrading or blocking translation of target messenger RNA. 
Although microRNA analyses indicate that a variety of 
disease‑affected tissues display microRNA expression profiles 
that are significantly different from normal tissues, there are 
only several existing studies that have explored their possible 
involvement in regulating the molecular mechanisms that 
contribute to the pathophysiology of preterm delivery. First 
of all, Montenegro et al  (51) screened 157 miRNAs using 
quantitative PCR in the chorioamniotic membranes derived 
from term and preterm patients and revealed a tendency 
toward decreased expression for 13 miRNAs with advancing 
gestational age. Evaluation of preterm membranes with and 
without chorioamnionitis identified increased expression of 
miR‑223 and miR‑338 in the presence of chorioamnionitis. 
Additional microRNA microarray analysis of 455 miRNAs 
in the chorioamniotic membranes revealed 39 differentially 
expressed microRNAs between term and preterm groups, of 
which 31 were downregulated at term. Subsequent quantita-
tive PCR analysis confirmed decreased expression of miR‑338, 
miR‑449, miR‑136, and miR‑199a* in chorioamniotic 
membranes at term (52).

Another study  (53) based on microarray profiling of 
820  microRNAs in placentas identified 141  miRNAs 
(113  upregulated and 23  downregulated) differentially 
expressed in spontaneous preterm delivery (≤35 weeks of 
gestation) compared to normal term pregnancies (elective 
caesarean section without labor). Validation analysis using 
quantitative PCR revealed that lower expression of miR‑15b, 
miR‑181, miR‑210, miR‑483‑5p, and a trend toward higher 
expression of miR‑496 were able to differentiate between 
preterm delivery, preeclampsia and term pregnancies.

Elovitz et al (54) analyzed miRNA expression levels in 
cervical cells obtained from the ectocervix by a cytobrush. 
Profiling of the 5,640 miRNAs in samples collected at 20 to 
28 weeks of gestation showed 99 miRNAs expressed differ-
entially in women who eventually had a preterm delivery 
compared with their term counterparts. Of these microRNAs, 
only three (miR‑143, miR‑145 and miR‑199b‑5p) were 
confirmed to be upregulated at 24 weeks to 28 weeks of gesta-
tion and just only one (miR‑106b*) at 20 weeks to 24 weeks of 
gestation in women with a PTB.

Sanders et al  (55), who studied microRNA expression 
levels in cervical cells obtained from swabs during pregnancy 
between 16 and 19 weeks of gestation, identified 6 miRNAs 
significantly associated with gestational age at the time of 
delivery. They found that the levels of certain microRNAs 
(miR‑21, miR‑30e, miR‑142, miR‑148b, miR‑29b, and miR‑223) 
in the human cervix during pregnancy were predictive of 
gestational age at delivery. Per each doubling in miR‑21 or 
miR‑30e, miR‑142, miR‑148b, miR‑29b, and miR‑223 expres-
sion, gestations were 0.9 or 1.0‑1.6 days shorter, respectively.

Recent study by Elovitz  et  al  (56) examined miRNA 
profile in maternal serum collected from women destined to 
have a preterm delivery compared with a term birth. Only 
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4 out of 5,640 miRNAs (miR‑200a*, miR‑4695‑5p, miR‑665, 
and miR‑887) were significantly different between cases and 
control subjects, however the fold difference in expression 
did not exceed 2, which limits their potential for clinical 
utilization.

Numerous studies have shown that alterations in miRNA 
expression in the placenta are associated with various preg-
nancy complications, such as preeclampsia and fetal growth 
restriction (57‑62). The objective of this study was to inves-
tigate expression profile of C19MC miRNAs (miR‑512‑5p, 
miR‑515‑5p, miR‑516b‑5p, miR‑517‑5p, miR‑518b, miR‑518f‑5p, 
miR‑519a, miR‑519d, miR‑519e‑5p, miR‑520a‑5p, miR‑520h, 
miR‑524‑5p, miR‑525‑5p, miR‑526a and miR‑526b‑5p) in 
placental tissues collected from women with PTB or PPROM. 
C19MC is the largest human miRNA gene cluster and consists 
of 46 genes encoding a total of 56 mature miRNAs (63). This 
cluster is only present in the primate and human genomes 
and expresses miRNAs almost exclusively in placenta (64), 
with expression detected in only a few other cell types such 
as embryonic stem cells and certain tumors (65‑68). However, 
for testing we selected only those 15 C19MC microRNAs 
which, according to the miRNAMap database and the study 
presented by Liang et al (69), have been reported to be placenta 
specific (i.e., to be significantly expressed in the placenta while 
showing no or minimal expression in other tissues).

To our knowledge, no study on C19MC microRNA 
expression in PTB and PPROM has been carried out. Since 
placenta is a complex and vital organ that not only mediates 
the selective transfer of solutes and gasses between the mother 
and the fetus, but also produces hormones and other factors 
that support pregnancy, changes in miRNAs levels may lead 
to dysregulation of several proteins which can contribute to 
the mechanisms underlying pathogenesis of PTB or PPROM. 
We hypothesize that a distinct profile of C19MC miRNAs in 
placental tissues may differentiate between women with PTB, 
PPROM and term pregnancies in labor.

Materials and methods

Patients. The study was retrospective. Clinical samples were 
collected between 2013 and 2016 at the Institute for the Care 
of Mother and Child (Prague, Czech Republic). Samples 
processing and analyses were performed at the Department 
of Molecular Biology and Cell Pathology, Third Faculty of 
Medicine, Charles University (Prague, Czech Republic). The 
study protocol was approved by the appropriate Local Ethics 
Committees and all patients who participated in the study 
provided written informed consent.

Placental tissues were collected from pregnant women 
with singleton pregnancies only. The studied cohort consisted 
of 34 pregnancies with spontaneous PTB delivering within 
25+1‑36+5 (median 34+5) weeks of gestation, and 108 gesta-
tional age matched (range 24+0‑36+6, median 34+2 weeks) 
pregnancies with PPROM. The control cohort consisted of 
20 women at term in labor with normal course of gestation 
delivering healthy infants weighing >2,500 g at term (after 
37 completed weeks of gestation). Gestational age was assessed 
using ultrasonography.

PTB was defined as the occurrence of regular uterine 
contractions at a minimum frequency of two contractions per 

10 min, along with cervical changes, leading to delivery before 
the 37th week of gestation was completed.

PPROM was defined as amniotic fluid leakage preceding 
the onset of labor by at least 2 h. PPROM was diagnosed 
visually using a sterile speculum examination to confirm the 
pooling of amniotic fluid in the vagina and an alkaline pH of 
cervicovaginal discharge. When necessary, it was confirmed 
by a positive test for the presence of IGFBP‑1 (ACTIM PROM 
test; Medix Biochemica, Kauniainen, Finland) in the vaginal 
fluid.

The exclusion criteria included women with gestational 
hypertension, preeclampsia, diabetes mellitus, significant 
vaginal bleeding, foetuses with the presence of congenital 
or chromosomal fetal abnormalities, signs of fetal growth 
restriction (an estimated weight below the 10th percentile for 
appropriate gestational age) and fetal hypoxia.

Women with PPROM and PTB at less than 34 weeks of 
gestation with negative markers of inflammation [maternal 
white blood cell (WBC) count and serum CRP levels] were 
treated with corticosteroids to accelerate lung maturation 
(one or maximally two doses of betamethasone administered 
intramuscularly 24  h apart). Tocolysis was used only in 
those patients before 34 weeks of gestation with no sign of 
fetal infection, fetal distress, maternal infection and negative 
perineal and perianal culture for GBS to allow the first course 
of antenatal corticosteroids to be completed and/or to transfer 
the patient to a tertiary care center. Prophylactic antibiotics 
were given to the majority of patients with preterm delivery 
to prevent signs of prepartum, intrapartum and postpartum 
infection.

In case of PPROM, induction of labor was initiated or 
an elective Cesarean section was performed within 24 to 
72 h after the rupture of the membranes, depending on the 
gestational age of the pregnancy, the fetal status, the maternal 
serum levels of CRP and cervicovaginal Streptococcus β 
colonization.

The clinical characteristics of normal and complicated 
pregnancies are presented in Table I.

Processing of samples. Samples of placenta were stored in 
RNAlater (Ambion, Austin, TX, USA) at ‑80˚C until further 
processing.

Total RNA was extracted from 25 mg of placental tissue 
followed by an enrichment procedure for small RNAs (siRNAs, 
microRNAs), according to manufacturer's instructions using 
mirVana microRNA Isolation kit (Ambion). To minimize DNA 
contamination, we treated the eluted RNA with 5 µl of DNase 
I (Fermentas international, Inc., Burlington, ON, Canada) for 
30 min at 37˚C. Using this approach, a RNA fraction highly 
enriched in RNA species <200 nt was obtained, whose concen-
tration and quality was assessed using a NanoDrop ND‑1,000 
spectrophotometer (NanoDrop Technologies, Wilmington, 
DE, USA). The A (260/280) absorbance ratio of isolated RNA 
was 1.8‑2.0, demonstrating that the RNA fraction was pure and 
could be used for analysis. Additionally, the A (260/230) ratio 
was greater than 1.6, demonstrating negligible contamination 
by polysaccharides.

Reverse transcriptase reaction using a stem‑loop primer. Each 
of the 15 microRNAs (miR‑512‑5p, miR‑515‑5p, miR‑516‑5p, 
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miR‑517‑5p, miR‑518b, miR‑518f‑5p, miR‑519a, miR‑519d, 
miR‑519e‑5p, miR‑520a‑5p, miR‑520h, miR‑524‑5p, 
miR‑525‑5p, miR‑526a and miR‑526b‑5p) was reverse tran-
scribed into complementary DNA (cDNA) using a TaqMan 
MicroRNA Assay, containing microRNA‑specific stem‑loop 
RT primers, and a TaqMan MicroRNA Reverse Transcription 
kit (Applied Biosystems, Branchburg, NJ, USA) in a total 
reaction volume of 32 µl, according to manufacturer's instruc-
tions. Reverse transcriptase reactions were performed using 
a 7,500 Real‑Time PCR system (Applied Biosystems) with 
the following thermal cycling parameters: 30 min at 16˚C; 
30 min at 42˚C; 5 min at 85˚C; and then held at 4˚C. Finally, 
20 ng of the RNA template was used for each RT reaction. The 
characteristics of studied C19MC microRNAs are outlined in 
Table II.

Relative quantification of microRNAs by quantitative PCR. 
15 µl of cDNA, corresponding to each selected microRNA, 
were mixed with specific primers and the TaqMan MGB 
probe (TaqMan MicroRNA Assay; Applied Biosystems,), and 
the ingredients of the TaqMan Universal PCR Master Mix 
(Applied Biosystems) in a total reaction volume of 35 µl. The 
analysis was performed using a 7,500 Real‑Time PCR System. 
TaqMan PCR conditions were set as described in the TaqMan 
guidelines using 50 cycles of 95˚C for 15 sec and 60˚C for 
1 min with 2‑min preincubation at 50˚C required for optimal 
AmpErase UNG activity and 10‑min preincubation at 95˚C 
required for activation of AmpliTaq Gold DNA polymerase. 
All PCRs were performed in duplicate. Multiple negative 
controls such as NTC (water instead of cDNA sample), NAC 
(non‑transcribed RNA samples), and genomic DNA (isolated 
from equal biological samples) did not generate any signals 
during PCR reactions. Each sample was considered positive if 
the amplification signal occurred before the 40th quantifica-
tion cycle (Cq <40).

The expression of particular microRNA was determined 
using the comparative Cq method (70) relative to normaliza-
tion factor (geometric mean of three selected endogenous 
controls) (71). RNA isolated from a randomly selected placenta 
derived from a normal gestation was chosen as a reference for 
each comparison. RNA that was highly enriched with small 
RNA, isolated from the fetal part of the placenta (the part of 
the placenta derived from the chorionic sac that encloses the 
embryo, consisting of the chorionic plate and villi), was used 
as a reference sample for relative quantification throughout the 
study.

All 15 selected microRNAs were reliably detectable in 
the fetal part of the placenta, when a fixed concentration of 
RNA (5 ng/µl) was used in the analysis; however their expres-
sion differed significantly with respect to various Cq values, 
ranging from 17.4 to 35.2 (72).

The difference (ΔCq) between the Cq values of particular 
microRNA and the internal control (geometric mean of 
three selected endogenous controls: RNU6B, RNU38B and 
synthetic C. elegans microRNA cell‑miR‑39 was calculated 
for each sample). Synthetic C. elegans microRNA was used 
as an internal control for variations during the preparation of 
RNA, cDNA synthesis, and quantitative PCR. The compara-
tive ΔΔCq calculation involved finding the difference between 
each sample's ΔCq and the reference's ΔCq. Finally, ΔΔCq 
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values were transformed to absolute values using the formula 
2‑ΔΔCq. This distinctive approach allows long‑term, large‑scale 
analysis composed of multiple analyses performed at different 
periods.

Statistical analysis. Data normality was assessed using 
the Shapiro‑Wilk test, which showed that our data did not 
follow a normal distribution. Therefore, microRNA levels 
were compared between groups using non‑parametric tests 
(the Mann‑Whitney U test for the comparison between two 
groups and the Kruskal‑Wallis test for the comparison among 
multiple groups). P<0.05 was considered to indicate a statisti-
cally significant difference.

Data analysis was performed and box plots were gener-
ated using Statistica software (version 9.0; StatSoft, Inc., 
Tulsa, OK, USA). Each box encompasses the median (dark 
horizontal line) of log‑normalized gene expression values for 
microRNAs of interest in cohorts; the upper and lower limits 
of the boxes represent the 75 and 25th percentiles, respectively. 
The upper and lower whiskers represent the maximum and 
minimum values that are no more than 1.5 times the span of 
the interquartile range (range of the values between the 25th 
and the 75th percentiles). Outliers are indicated by circles and 
extremes by asterisks.

Correlation between variables including relative microRNA 
quantification in placental tissues and the gestational age at 
delivery, maternal WBC count at admission (x109/l), maternal 
serum levels of CRP at admission (mg/l) in patients with 
PPROM and PTB was calculated using the Spearman's rank 
correlation coefficient (rho). If the correlation coefficient value 
is ‑1 or 1, there is a perfect negative or positive correlation. If 
it ranges within <‑1; 0.5> or <0.5; 1>, there is a strong negative 
or positive correlation. If it varies from ‑0.5 to 0 and from 0 
to 0.5, there is a weak negative or positive correlation. The 
significance level was established at a P‑value of P<0.05.

Results

Initially, gene expression of C19MC microRNAs was compared 
between the groups of women at term in labor, spontaneous 
PTB and PPROM. Consecutively, an effect of gestational age 
on C19MC microRNA gene expression was evaluated in the 
group of PPROM and PTB patients.

Moreover, the association between C19MC microRNA 
gene expression in placental tissue and maternal WBC count 
and maternal serum CRP levels in patients with PPROM and 
PTB was determined.

Downregulation of C19MC microRNAs in PPROM preg‑
nancies and upregulation of C19MC microRNAs in PTB 
pregnancies. Overall, the expression of C19MC microRNAs 
in placental tissue samples differed significantly or was 
on the border of statistical significance between the control 
group (term in labor pregnancies) and pregnancies affected 
with PPROM or PTB. While decreased expression of 1/15 
C19MC microRNAs was observed in women with PPROM 
(miR‑525‑5p, P=0.025), the upregulation of 9/15 C19MC 
microRNAs was found in PTB pregnancies (miR‑515‑5p, 
P=0.040; miR‑516b‑5p, P=0.032; miR‑518b, P=0.039; 
miR‑518f‑5p, P=0.036; miR‑519a, P=0.032; miR‑519e‑5p, 

P=0.006; miR‑520a‑5p, P=0.014; miR‑520h, P=0.039; and 
miR‑526b‑5p, P=0.022). The difference on the border of statis-
tical significance was identified between the groups of PTB 
patients and term in labor pregnancies for miR‑519d (P=0.067) 
and miR‑526a (P=0.067) (Fig. 1, Table III).

Differentiation between gestational age‑matched pregnan‑
cies with PTB and PPROM based on placental expression 
profile of C19MC microRNAs. Overall, the expression of 
miR‑516b‑5p (P=0.009), miR‑517‑5p (P=0.021), miR‑518b 
(P=0.009, miR‑518f‑5p (P=0.033), miR‑519a (P=0.022), 
miR‑519d (P=0.003), miR‑519e‑5p (P=0.016), miR‑520a‑5p 
(P=0.018), miR‑520h (P=0.005), miR‑525‑5p (P=0.015), 
miR‑526a (P=0.006) and miR‑526b‑5p (P=0.007) differed 
significantly between the PTB group and pregnancies affected 
with PPROM. Lower expression rates were detected in patients 
with PPROM. A trend towards statistical significance for 
downregulation of miR‑524‑5p (P=0.064) was observed for 
PPROM pregnancies (Fig. 1, Table III).

The effect of the gestational age on C19MC microRNA 
expression in placental tissue within the groups of PPROM 
and PTB pregnancies. A weak negative correlation between 
the gestational age at delivery and microRNA gene expres-
sion in placental tissue within the group of PPROM patients 
was observed (miR‑512‑5p, ρ=‑0.344, P=0.002; miR‑515‑5p, 
ρ=‑0.342, P=0.002; miR‑516b‑5p, ρ=‑0.293, P=0.010; 
miR‑517‑5p, ρ=‑0.258, P=0.023; miR‑518b, ρ=‑0.375, P<0.001; 
miR‑518f‑5p, ρ=‑0.316, P=0.005; miR‑519a, ρ=‑0.293, 
P=0.010; miR‑519d, ρ=‑0.333, P=0.003; miR‑519e‑5p, 
ρ=‑0.278, P=0.014; miR‑520a‑5p, ρ=‑0.257, P=0.024; 
miR‑520h, ρ=‑0.334, P=0.003; miR‑524‑5p, ρ=‑0.351, 
P=0.001; miR‑525‑5p, ρ=‑0.284, P=0.012; miR‑526a, 
ρ=‑0.308, P=0.006; and miR‑526b‑5p, ρ=‑0.453, P<0.001), 
which means that the expression of all 15 examined C19MC 
microRNAs decreased with advancing gestational age at 
delivery (Fig. 2). On the other hand, no association between 
microRNA gene expression in placental tissue and the gesta-
tional age at delivery was found in the group of PTB patients.

The association between C19MC microRNA gene expression 
in placental tissue and maternal serum CRP levels within 
the groups of PPROM and PTB pregnancies. No association 
between maternal serum CRP levels at admission and C19MC 
microRNA gene expression levels in placental tissues was found 
in the group of PPROM pregnancies (miR‑512‑5p: ρ=‑0.117, 
P=0.333; miR‑515‑5p, ρ=‑0.131, P=0.276; miR‑516b‑5p, 
ρ=‑0.105, P=0.384; miR‑517‑5p, ρ=‑0.167, P=0.164; miR‑518b, 
ρ=‑0.112, P=0.354; miR‑518f‑5p, ρ=‑0.154, P=0.202; miR‑519a, 
ρ=‑0.149, P=0.215; miR‑519d, ρ=‑0.160, P=0.183; miR‑519e‑5p, 
ρ=‑0.167, P=0.166; miR‑520a‑5p, ρ=‑0.142, P=0.238; 
miR‑520h, ρ=‑0.134, P=0.268; miR‑524‑5p, ρ=‑0.188, P=0.117; 
miR‑525‑5p, ρ=‑0.145, P=0.229; miR‑526a, ρ=‑0.143, P=0.235; 
and miR‑526b‑5p, ρ=‑0.027, P=0.823) and PTB pregnancies 
(miR‑512‑5p, ρ=0.144, P=0.594; miR‑515‑5p, ρ=0.114, P=0.672; 
miR‑516b‑5p, ρ=‑0.058, P=0.828; miR‑517‑5p, ρ=0.036, 
P=0.892; miR‑518b, ρ=‑0.151, P=0.575; miR‑518f‑5p, ρ=‑0.091, 
P=0.736; miR‑519a: ρ=‑0.139, P=0.605; miR‑519d, ρ=0.035, 
P=0.896; miR‑519e‑5p, ρ=‑0.061, P=0.820; miR‑520a‑5p, 
ρ=‑0.005, P=0.982; miR‑520h, ρ=0.064, P=0.811; miR‑524‑5p, 
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Figure 1. Downregulation of C19MC microRNAs in PPROM pregnancies and upregulation of C19MC microRNAs in PTB pregnancies. Differentiation 
between gestational age matched PTB and PPROM pregnancies. Gene expression of C19MC microRNAs was compared between the groups of women at term 
in labor (20), spontaneous preterm birth (34 PTB) and preterm prelabor rupture of membranes (108 PPROM) using the Kruskal Wallis test for the comparison 
among multiple groups. The significance level was established at P<0.05. While decreased expression of (L) miR-525-5p was observed in women with PPROM, 
the upregulation of (A) miR-515-5p, (B) miR-516b-5p, (D) miR-518b, (E) miR-518f-5p, (F) miR-519a, (H) miR-519e-5p, (I) miR-520a-5p, (J) miR-520h and 
(N) miR-526b-5p was found in PTB pregnancies. The expression of (B) miR-516b-5p, (C) miR-517-5p, (D) miR-518b, (E) miR-518f-5p, (F) miR-519a, (G) 
miR-519d, (H) miR-519e-5p, (I) miR-520a-5p, (J) miR-520h, (L) miR-525-5p, (M) miR-526a and (N) miR-526b-5p differed significantly between the PTB 
group and pregnancies affected with PPROM. Data analysis was performed and box plots were generated using Statistica software (version 9.0; StatSoft, Inc., 
Tulsa, OK, USA). Each box encompasses the median (dark horizontal line) of log normalized gene expression values for microRNAs of interest in cohorts; the 
upper and lower limits of the boxes represent the 75th and 25th percentiles, respectively. The upper and lower whiskers represent the maximum and minimum 
values that are no more than 1.5 times the span of the interquartile range (range of the values between the 25 and the 75th percentiles). Outliers are indicated 
by circles and extremes by asterisks.
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Figure 2. Decline of C19MC microRNA expression in placental tissues with advancing gestational age in the group of preterm prelabor rupture of membranes 
(PPROM) pregnancies. Correlation between variables including relative microRNA quantification in placental tissues and the gestational age at delivery in 
patients with PPROM was calculated using the Spearman's rank correlation coefficient (rho). If the correlation coefficient value varies from 0.5 to 0, there 
is a weak negative correlation. The significance level was established at P<0.05. A weak negative correlation between the gestational age at delivery and 
gene expression of (A) miR-512-5p, (B) miR-515-5p, (C) miR-516b-5p, (D) miR-517-5p, (E) miR-518b, (F) miR-518f-5p, (G) miR-519a, (H) miR-519d, (I) 
miR-519e-5p, (J) miR-520a-5p, (K) miR-520h, (L) miR-524-5p, (M) miR-525-5p, (N) miR-526a and (O) miR-526b-5p in placental tissue within the group of 
PPROM patients was observed.
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ρ=‑0.132, P=0.624; miR‑525‑5p, ρ=0.069, P=0.799; miR‑526a, 
ρ=‑0.035, P=0.896; and miR‑526b‑5p, ρ=‑0.117, P=0.948).

The association between C19MC microRNA gene expression 
in placental tissue and maternal WBC count within the groups 
of PPROM and PTB pregnancies. No association between 
maternal WBC count at admission and C19MC microRNA 
gene expression levels in placental tissues was found in the 
group of PPROM pregnancies.

Nevertheless, in the group of PTB pregnancies a strong 
positive correlation (miR‑515‑5p: ρ=0.508, P=0.026), a 
positive correlation (miR‑512‑5p: ρ=0.491, P=0.032; and 
miR‑519e‑5p: ρ=0.457, P=0.048), or a trend to positive corre-
lation (miR‑516‑5p: ρ=0.405, P=0.085; miR‑518b: ρ=0.414, 
P=0.078; and miR‑520h: ρ=0.405, P=0.085) between 
maternal WBC count at admission and some C19MC 
microRNA gene expression levels in placental tissues was 
observed (Fig. 3).

Figure 3. Increase of C19MC microRNA expression in placental tissues with rising maternal WBC count in the group of PTB pregnancies. Correlation between 
variables including relative microRNA quantification in placental tissues and maternal WBC count at admission (x109/l) in patients with PTB was calculated 
using the Spearman's rank correlation coefficient (rho). If the correlation coefficient value ranges within <0.5; 1>, there is a strong positive correlation. If it 
varies from 0 to 0.5, there is a weak positive correlation. The significance level was established at P<0.05. PTB pregnancies showed a strong positive correlation 
between maternal WBC count at admission and gene expression of (A) miR-515-5p in placental tissues. A positive correlation between the levels of (B) miR-
512-5p and (C) miR-519e-5p in placental tissues of PTB patients and maternal WBC count at admission was observed. A trend to positive correlation between 
the levels of (D) miR-516-5p, (E) miR-518b and (F) miR-520h in placental tissues of PTB patients and maternal WBC count at admission was observed. WBC, 
white blood cell; PTB, preterm birth.
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Discussion

Different C19MC microRNA expression profiles in different 
cell types within villous tissue and in different areas of 
placental tissues were documented. The expression of C19MC 
microRNAs has been observed at least in first‑trimester and 
full‑term placental tissues  (73,74), human first and third 
trimester trophoblast cell lines, ACH‑3P and AC1‑M59 (75), 
and placenta‑derived stromal cells (67). In our initial study, we 
have observed the presence of all 15 tested C19MC microRNAs 
(miR‑512‑5p, miR‑515‑5p, miR‑516‑5p, miR‑517‑5p, 
miR‑518b, miR‑518f‑5p, miR‑519a, miR‑519d, miR‑519e‑5p, 
miR‑520a‑5p, miR‑520h, miR‑524‑5p, miR‑525‑5p, miR‑526a 
and miR‑526b‑5p) on the fetal side of the placenta  (72). 
In addition, the set of microRNAs (miR‑517c, miR‑518a, 
miR‑519d, and miR‑520h) forming a cluster on chromosome 
19q13 was observed to be expressed in umbilical cord blood 
CD34+ cells (76).

In addition, our recent study demonstrated that preg-
nancy‑related complications such as gestational hypertension, 
preeclampsia and fetal growth restriction were associated 
with downregulation of those C19MC microRNAs that were 
previously demonstrated to be highly or exclusively expressed 
in placental tissues  (77). The downregulation of 4 of 15 
(miR‑517‑5p, miR‑519d, miR‑520a‑5p and miR‑525‑5p), 6 of 15 
(miR‑517‑5p, miR‑518f‑5p, miR‑519a, miR‑519d, miR‑520a‑5p 
and miR‑525‑5p) and 11 of 15 (miR‑515‑5p, miR‑517‑5p, 
miR‑518b, miR‑518f‑5p, miR‑519a, miR‑519d, miR‑520a‑5p, 
miR‑520h, miR‑524‑5p, miR‑525‑5p and miR‑526a) 
microRNAs was associated with gestational hypertension, 
fetal growth restriction, and preeclampsia, respectively. The 
aim of the current study was to demonstrate if spontaneous 
PTB and PPROM are also associated with alterations in 
placental microRNA expression. Overall, the expression 
profile of studied C19MC microRNAs was different between 
spontaneous PTB, PPROM, and term in labor pregnancies.

Most of examined C19MC microRNAs were dysregulated 
in PTB pregnancies. The analysis revealed the upregulation of 
9 C19MC microRNAs (miR‑515‑5p, miR‑516‑5p, miR‑518b, 
miR‑518f‑5p, miR‑519a, miR‑519e‑5p, miR‑520a‑5p, miR‑520h 
and miR‑526b‑5p) and a trend toward upregulation for other 
2 C19MC microRNAs (miR‑519d, and miR‑526a) in PTB 
pregnancies. Therefore, it seems that spontaneous PTB has a 
dissimilar course as term in labor pregnancies.

With regard to PPROM, the analysis indicated that the 
levels of only 1 out of 15 C19MC microRNAs were signifi-
cantly decreased in placental tissues samples (miR‑525‑5p), 
which indicates that the course of labor in PPROM pregnan-
cies did not differ as much from term in labor pregnancies as 
the course of labor in PTB pregnancies. Nevertheless, in some 
ways similar findings to other pregnancy‑related complications 
may be observed in PPROM pregnancies. Downregulation of 
miR‑525‑5p was also found in placental tissues derived from 
patients with gestational hypertension, preeclampsia, and fetal 
growth restriction (77).

Moreover, clear evidence was brought, that the pathogen-
esis of spontaneous PTB and PPROM is different. The analysis 
demonstrated the difference in expression in almost all exam-
ined C19MC microRNAs (12 out of 15 C19MC microRNAs 
reached statistical significance and 1 out of 15  C19MC 

microRNAs was on the border of statistical significance). 
C19MC microRNAs (miR‑516b‑5p, miR‑517‑5p, miR‑518b, 
miR‑518f‑5p, miR‑519a, miR‑519d, miR‑519e‑5p, miR‑520a‑5p, 
miR‑520h, miR‑525‑5p, miR‑526a and miR‑526b‑5p) were 
found to be downregulated in placental tissues derived from 
PPROM pregnancies when compared with gestational age 
matched PTB pregnancies. A trend toward statistical signifi-
cance for downregulation of miR‑524‑5p was observed in 
PPROM pregnancies.

As the cause of labor still remains elusive, the exact cause 
of PTB is also unsolved. In fact, the cause of 50% of PTBs 
is never determined. Labor is a complex process involving 
many factors. Four different pathways have been identi-
fied that can result in PTB and have considerable evidence: 
precocious fetal endocrine activation, uterine overdistension 
(placental abruption), decidual bleeding, and intrauterine 
inflammation/infection (78). Activation of one or more of these 
pathways may happen gradually over weeks, even months. 
From a practical point a number of factors have been identified 
that are associated with PTB, however, an association does not 
establish causality. Nevertheless, altered miRNA networks 
may be a consequence of abnormal physiology leading to 
PTB. In addition, microRNA alterations can disrupt protein 
homeostasis and may be at the root of PTB.

While the full repertoire of the biological action of 
C19MC microRNAs remains to be established, data from 
various expression studies of C19MC microRNAs imply a 
role for them in cell proliferation, self‑renewal, angiogenesis, 
and particularly in pro‑/anti‑cancer activity (79‑81). In fact, 
there is not much research data about the function of C19MC 
microRNAs in the literature.

Available prediction algorithms usually predict hundreds 
of potential target genes for a single microRNA, but often 
generate false‑positive candidates (82). Although methods to 
comprehensively identify miRNAs that regulate individual 
genes of interest are currently available, pathways involving 
miRNAs are often complex regulatory networks, whose 
regulation is difficult to understand. Additionally, it makes the 
direct interpretation of experimental data complicated. Many 
genes are targeted for repression by a high number of miRNAs, 
which seem to regulate those genes cooperatively (83).

The decreased levels of C19MC microRNAs in placental 
tissues of patients with PPROM may lead to upregulation of 
relevant proteins involved in the direction of key biological 
pathways such as premature aging of the fetal membranes 
where senescence, apoptosis and proteolysis play an important 
role (84‑86). The cause of PPROM is multifactorial and next 
to intraamniotic infection, reduction in membrane collagen 
content, stretched membranes, vasculopathy in placentation 
and decidual haemorrhage are considered to be possible 
mechanisms underlying PPROM (33,35). We have previously 
published an extensive list of predicted target genes of all 
downregulated C19MC microRNAs in patients with gesta-
tional hypertension, preeclampsia and fetal growth restriction 
involved in the regulation of the immune system and the 
inflammatory response (77).

Among these predicted target genes a lot of those involved 
in apoptosis were identified (TP53, tumor protein p53; CASP2, 
Caspase‑2, apoptosis‑related cysteine peptidase; CASP3, 
Caspase‑3, apoptosis‑related cysteine peptidase; CASP10, 
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Caspase‑10, apoptosis‑related cysteine peptidase; BCL2, 
B‑cell CLL/lymphoma 2; BCL10, B‑cell CLL/lymphoma 10; 
TNF, Tumor necrosis factor; TRAF6, TNF receptor associated 
factor 6; E3, Ubiquitin protein ligase) that have been previously 
shown to be upregulated in placental tissues derived from 
patients with preeclampsia and IUGR (77,87‑99). Therefore 
the downregulation of C19MC microRNAs in placental tissues 
of patients with PPROM may result in increased levels of these 
proteins, whose levels are exaggerated in pregnancies with 
other pregnancy‑related complications such as preeclampsia 
and IUGR.

No association between C19MC microRNA gene expres-
sion in placental tissues and maternal serum CRP at admission 
in groups of PPROM and PTB patients was observed.

Likewise, no effect of maternal WBC count on C19MC 
microRNA gene expression levels of any of the microRNAs in 
the group of PPROM patients was demonstrated. Both CRP and 
leukocyte levels were shown to be increased in serum of patients 
preceding PPROM (46,100). Nevertheless, maternal WBC 
count and CRP levels are not specific to intrauterine infections 
and may be influenced by other factors (101). However, in the 
group of patients with PTB a positive correlation between 3 out 
of 15 studied C19MC microRNAs (miR‑512‑5p, miR‑515‑5p 
and miR‑519e‑5p) and maternal WBC count was identified. A 
trend towards upregulation was observed for other 3 C19MC 
microRNAs (miR‑516‑5p, miR‑518b and miR‑520h) in the 
group of PTB patients with increased WBC levels.

Nevertheless, in PPROM group all examined C19MC 
microRNAs displayed decreased expression with advancing 
gestational age, which suggests a functional involvement of 
microRNAs in the translational inhibition of multiple mRNA 
targets. Parallel, Montenegro et al (51) brought similar finding 
for other 13 microRNAs (miR‑199b, miR‑373, miR‑218, 
miR‑154, miR‑338, miR‑198, miR‑214, miR‑370, miR‑213, 
miR‑107, miR‑199a, miR‑222, and miR‑330), whose levels were 
also decreased with advancing gestational age, but this study 
was performed on chorioamniotic membranes in patients with 
preterm labor without histologic chorioamnionitis.

In conclusion, this study demonstrated for the first time 
that PPROM and PTB were associated with altered C19MC 
microRNA expression profile. The expression profile of 
placental specific microRNAs was the most distinct between 
PTB group and women at term in labor, and between gesta-
tional age‑matched PPROM and PTB groups.
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