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Abstract. The aim of the present study was to perform 
comparative genomics using gene expression profile datasets 
of mice and humans who had been treated with anticancer 
drugs, to determine the similarities and differences in the 
antitumor mechanisms in the two mammals. This involved 
data mining of antitumor gene expression regulation, and 
screening of genetic loci from experimental mouse models of 
antitumor targets, to provide a theoretical basis of drug design. 
Subsequently, 9 overlapping genes with opposite expression 
patterns were identified across mouse and human cell lines 
that were treated with a specific cyclin‑dependent kinase 4/6 
inhibitor, PD0332991. These genes included LIM homeobox 2, 
adenomedullin, bone marrow stromal cell antigen 1, caveolin 
1, histone cluster 1 (HIST1) H2B family member C, HIST1 
H3 family member F, low density lipoprotein‑receptor related 
protein 11, prolyl 4‑hydroxylase subunit α1 and torsin family 3 
member A. In addition, the janus kinase‑signal transducer and 
activator of transcription signaling pathway, Toll‑like receptor 
signaling pathway, T cell receptor signaling pathway and the 
nucleotide‑binding oligomerization domain‑like receptor 
signaling pathway were identified as candidate pathways for 
explaining antitumor mechanisms.

Introduction

Disorders of the cell cycle are closely associated with the 
occurrence and development of tumors and are regulated by 
complex regulatory networks, particularly those involving 
cyclin‑dependent kinases (CDKs), including CDK1, CDK2, 
CDK3, CDK4, CDK5, CDK6 and CDK7 (1,2). Of these, 

CDK4/6 has been previously reported to be expressed in 
various types of cancer, including lung, oral and breast cancer, 
and hepatocellular carcinoma (3‑6). The role of CDK4/6 in 
tumor cell proliferation is more important than other CDKs 
and has been established to be one of the essential signaling 
molecules involved in cell differentiation and metastasis (7). 
Aberrant CDK activity may lead to uncontrolled proliferation 
in many tumors, which suggests that inhibiting the activity of 
CDKs may have a therapeutic benefit. The CDK4/6 inhibitor, 
PD0332991, has been demonstrated to inhibit tumor cell cycle 
replication and proliferation in mice and rat animal models 
in addition to human cancer cell lines including MCF7 (8‑11). 
It has become the prospect for the development of new anti-
tumor drugs. Although PD0332991 is particularly effective 
in specific antitumor models that induced Rb‑dependent 
cytostasis, identifying the underlying mechanistic pathways 
of CDK inhibitors is required to fully understand therapeutic 
responses and this has been investigated in a panel of breast 
cancer cell lines (12).

Microarray technology is widely used to investigate 
the biological mechanisms in response to treatment with 
PD0332991 in humans and mice (8‑11). In the present study, 
a comparative genomics approach was used with relevant 
gene expression profile datasets of mice and humans that 
had undergone anticancer drug treatments. The similari-
ties and differences in the antitumor mechanisms in the two 
mammals at the transcriptomic level were determined. This 
was achieved by data mining the process of antitumor gene 
expression regulation, and by screening of genetic loci in a 
mouse model of an antitumor target, to provide the theoretical 
basis of drug design.

Materials and methods

Microarray data collection and preprocessing. The micro-
array dataset of the anticancer efficiency of PD0332991 
was obtained from the National Centre for Biotechnology 
Information Gene Expression Omnibus database (http://www 
.ncbi.nlm.nih.gov/geo). Datasets were reanalyzed if they met 
the following conditions: i) The data was genome‑wide; ii) the 
dataset contained human and mouse samples; iii) the number 
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of cases and controls in each dataset was ≥3; and iv) complete 
raw microarray data were available. Based on these criteria, 
the GSE40514 dataset [contributed by Choi et al (13)] was 
selected for reanalysis. This superseries is composed of two 
subseries including GSE40512 and GSE40513. In the dataset 
of GSE40512, human T‑ALL cell line KOPTK1 cells were 
cultured in the presence of the CDK4/6 inhibitor PD 0332991 
with 1 mM or vehicle (VO) for 48 h and the experiment was 
performed in triplicate. A total of 6 RNA samples (3 vehicle 
treated and 3 PD0332991 treated samples) were tested by using 
the platform of Affymetrix Human Genome U133 Plus 2.0 
Array (HG‑U133_Plus_2, GPL570). In the dataset of GSE40513, 
mouse breast cancer V720 cells were cultured in the presence of 
the CDK4/6 inhibitor PD 0332991 with 1 mM or vehicle (VO) 
for 24 h and the experiment was performed in triplicate. A total 
of 6 RNA samples (3 vehicle treated and 3 PD 0332991 treated 
samples) were tested by using the platform of Affymetrix Mouse 
Genome 430 2.0 Array (Mouse430_2, GPL1261).

R version 3.2.0 (www.r‑project.org) and Bioconductor 
version 3.5 (www.bioconductor.org) were used for data prepro-
cessing (14). The Robust Multichip Average (RMA) algorithm 
was used in the oligo package to normalize the raw expression 
data and to generate normalized gene expression intensity 
in human and mouse cell lines (15). Gene annotation of the 
probes of human and mouse cell lines was performed using 
custom written Python code version 2.7 (www.python.org). 
Probes with no gene annotation or ones that matched multiple 
gene symbols were removed. Then, the average expression 
value of multiple probe identities that matched to an official 
gene symbol was calculated, and this value represented the 
expression intensity of the corresponding gene symbol. Finally, 
20,307 human gene symbols and 20,968 mouse gene symbols 
were identified. There were 13,976 homologous genes in both 
human and mouse cell lines. These 13,976 genes were selected 
for further analysis.

Differential expression gene analysis. Differential expression 
gene analysis was performed using R version 3.2.2 and the 
Bioconductor library. The empirical Bayes algorithm (eBayes) 
in the limma package was used to detect differentially expressed 
genes between PD0332991‑treated and vehicle‑treated samples 
in human and mouse cell lines (16). Fold‑change (FC) was calcu-
lated as the mean gene expression value in PD0332991‑treated 
samples divided by the mean gene expression value in the 
vehicle‑treated samples. Upregulated genes were considered as a 
logarithmic transformed fold‑changes (log2(FC))≥log2(1.5) and 
a false discovery rate (FDR) was the adjusted P‑value of ≤0.05. 
Downregulated genes were considered as log2(FC)≤‑log2(1.5) 
and a FDR P‑value of ≤0.05.

Gene set enrichment analysis. Java Gene set Enrichment 
Analysis (GSEA) version 2.2.2 (http://software.broadinstitute 
.org/gsea/index.jsp) was used for human and mouse samples. 
The curated Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway software version 5.1 (http://www.genome 
.jp/kegg) was chosen as the gene sets database to perform the 
enrichment analysis. Gene sets with <15 or >500 genes were 
excluded. Phenotype label was set as breast cancer vs. control. 
The t‑statistic mean of the genes was calculated for each KEGG 
pathway using a permutation test 1,000 times. The upregulated 

pathways were considered as a normalized enrichment score 
(NES) >0 and the downregulated pathways were considered 
as a NES <0. Pathways with a FDR P‑value of ≤0.05 were 
considered to be significantly enriched. A Venn diagram was 
produced using InteractiVenn (www.interactivenn.net) to 
demonstrate the enriched KEGG pathways in the human and 
mouse groups (17).

Results and Discussion

Differentially expressed genes in human T‑ALL cells and 
mouse breast cancer cells. In total, there were 13,976 
homologous genes expressed in human and mouse gene 
expression profiles. Volcano plots are presented in Fig. 1. 
A greater number of dysregulated genes were identified in 
the human group compared with the mouse group. A total 
of 585 upregulated genes and 715 downregulated genes 
of PD0332991‑treated samples were identified in human 

Figure 1. Volcano plots of the gene expression profiles of (A) human 
T‑lymphoblast acute lymphoblastic leukemia cells and (B) mouse breast 
cancer cells. The red points represent upregulated genes and the green points 
represent downregulated genes. The vertical dotted grey lines represents 
the log(FC) cutoff and the horizontal grey line represents the logarithmic 
transformed FDR P‑value cutoff. FC, fold‑change; FDR, false discovery rate.

Figure 2. Differentially expressed genes in human T‑lymphoblast acute 
lymphoblastic leukemia cells and mouse breast cancer cells. (A) The log 
(fold‑change) of the dysregulated genes in human and mouse cells. Red lines 
represent the upregulated genes and the green lines represent the downregu-
lated genes. All genes were sorted by name. Venn diagram of (B) upregulated 
genes in human and mouse cells, (C) upregulated genes in human cells and 
downregulated genes in mouse cells, (D) downregulated genes in human 
cells and the upregulated genes in mouse cells and (E) downregulated genes 
in human and mouse cells.



MOLECULAR MEDICINE REPORTS  16:  4469-4474,  2017 4471

KOPTK1 cells. By comparison, 125 upregulated genes and 
284 downregulated genes were identified in mouse V720 cells. 
There were 233 common downregulated genes in both human 
and mouse samples, which was presented in the Venn diagram 

in Fig. 2. However, there were only 18 upregulated genes that 
overlapped in these two groups (Fig. 2). The overlapping genes 
which were significantly up or downregulated across human 
and mouse cells are presented in Tables I and II.

Table I. Enriched Kyoto Encyclopedia of Genes and Genomes 
pathway analysis in human T‑lymphoblast acute lymphoblastic 
leukemia cells.

A, Upregulated  

Pathway NES FDR

Allograft rejection 2.22 <0.001
Cytokine‑cytokine receptor 2.18 <0.001
interaction
JAK‑STAT signaling pathway 2.10 <0.001
Toll‑like receptor signaling 2.06 <0.001
pathway
Type I diabetes mellitus 2.04 0.001
Lysosome 2.00 0.001
Autoimmune thyroid disease 2.00 0.001
Intestinal immune network for 1.96 0.001
IgA production
Hematopoietic cell lineage 1.92 0.003
T cell receptor signaling 1.85 0.007
pathway
Asthma 1.82 0.009
Natural killer cell mediated 1.78 0.014
cytotoxicity
O‑glycan biosynthesis 1.69 0.032
Leishmania infection 1.70 0.033
SNARE interactions in 1.65 0.050
vesicular transport

B, Downregulated  

Pathway NES FDR

Cell cycle ‑2.49 <0.001
DNA replication ‑2.46 <0.001
Oocyte meiosis ‑2.26 <0.001
Mismatch repair ‑2.14 <0.001
Homologous recombination ‑2.12 <0.001
Pyrimidine metabolism ‑1.98 0.001
Base excision repair ‑1.98 0.001
Nucleotide excision repair ‑1.94 0.001
Progesterone‑mediated ‑1.88 0.003
oocyte maturation
One carbon pool by folate ‑1.84 0.005
Glycolysis/gluconeogenesis ‑1.68 0.034

JAK‑STAT, janus kinase‑signal transducer and activator of transcrip-
tion; SNARE, soluble N‑ethylmaleimide‑sensitive factor activating 
protein receptor; FDR, false discovery rate; NES, normalized 
enrichment score.

Table II. Enriched Kyoto Encyclopedia of Genes and Genomes 
pathway analysis in mouse breast cancer cells.

A, Upregulated  

Pathway NES FDR

Cytosolic DNA‑sensing 2.27 <0.001
pathway
NOD‑like receptor signaling 2.17 <0.001
pathway
Hematopoietic cell lineage 1.98 0.003
Focal adhesion 1.99 0.004
Toll‑like receptor signaling 1.83 0.018
pathway
Leishmania infection 1.85 0.019
Prion diseases 1.84 0.020
Cytokine‑cytokine receptor 1.79 0.024
interaction
JAK‑STAT signaling pathway 1.77 0.026
ECM‑receptor interaction 1.77 0.028
Glycosaminoglycan degradation 1.73 0.037
Type I diabetes mellitus 1.72 0.040
Complement and coagulation 1.70 0.045
cascades
Lysosome 1.69 0.046

B, Downregulated  

Pathway NES FDR

Cell cycle ‑2.71 <0.001
DNA replication ‑2.67 <0.001
Homologous recombination ‑2.47 <0.001
Oocyte meiosis ‑2.41 <0.001
Spliceosome ‑2.37 <0.001
Nucleotide excision repair ‑2.32 <0.001
Mismatch repair ‑2.27 <0.001
Base excision repair ‑2.20 <0.001
Progesterone‑mediated ‑2.11 <0.001
oocyte maturation
RNA degradation ‑2.10 <0.001
Pyrimidine metabolism ‑1.99 0.001
RNA polymerase ‑1.71 0.019
Cysteine and methionine ‑1.62 0.043
metabolism

JAK‑STAT, janus kinase‑signal transducer and activator of tran-
scription; NOD, nucleotide‑binding oligomerization domain; ECM, 
extracellular matrix; FDR, false discovery rate; NES, normalized 
enrichment score.
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To investigate the anticancer efficiency of PD0332991, 9 
genes with diverse regulatory patterns between mouse and 
human were identified (Fig. 3). In the PD0332991 group, LIM 
homeobox 2 (LHX2) was overexpressed in humans compared 
with the vehicle group, whereas in mice, LHX2 expression 
was reduced (Fig. 3). Dysregulated expression of LHX2 in 
human cancers has been previously reported (18). In addition, 
cancer‑associated epigenetic alterations were significantly 
associated with LHX2 regulation, including DNA methyla-
tion and microRNA regulation (19‑22). In the present study, 
adrenomedullin (ADM), bone marrow stromal cell antigen 
1 (BST1), caveolin 1 (CAV1), histone cluster 1 H2B family 
member C (HIST1H2BC), histone cluster 1 H3 family member 
F (HIST1H3F), low density lipoprotein‑receptor related 
protein 11 (LRP11), prolyl 4‑hydroxylase subunit α1 (P4HA1) 
and torsin family 3 member A (TOR3A) were downregulated 
in human KOPTK1 cells, and were upregulated in mouse 
V720 cells. HIST1H3F demonstrated the largest difference 
between PD0332991‑ and vehicle‑treated samples in human 
and mouse cell lines (log2(FC)=‑1.77, FDR=5.99E‑6 in human; 
log2(FC)=1.21, FDR=8.20E‑4 in mice) from the 8 genes 
investigated. The histone HIST1H3F has been previously 
identified as a biomarker for predicting cancer risk (23). In 
addition, the mean log2 gene expression value of HIST1H2BC 
in humans was ~4. However, the mean value in mice was ~12. 
This suggested that there was a large difference between 

Figure 3. Expression profiles of nine target genes in human T‑lymphoblast acute lymphoblastic leukemia cells and mouse breast cancer cells. The dark color 
bars represent the gene expression value in the PD0332991‑treatment group and the light color bars represent the gene expression values in vehicle‑treatment 
group. Error bars represent standard deviation of the mean expression values of each gene of three replicates. LHX2, LIM homeobox 2; ADM, adenomedullin; 
BST1, bone marrow stromal cell antigen 1; CAV1, caveolin 1; HIST1H2BC, histone cluster 1 H2B family member C; HIST1H3F, histone cluster 1 H3 family 
member F; LRP11, low density lipoprotein‑receptor related protein 11; P4HA1, prolyl 4‑hydroxylase subunit α1; TOR3A, torsin family 3 member A.

Figure 4. The comparison of enriched Kyoto Encyclopedia of Genes and 
Genomes pathways analysis in response to PD0332991 treatment between 
human and mouse. (A) Upregulated pathways in human T‑lymphoblast acute 
lymphoblastic leukemia cells (red) and mouse breast cancer cells (orange). 
(B) Downregulated pathways in human (blue) and mouse (cyan) cells.
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human and mouse cell lines. HIST1H2BC is one of the most 
significant susceptible locus in the transcriptome study of 
schizophrenia, which has been also reported to be a suitable 
reference gene in non‑small cell lung cancer (24,25). The asso-
ciation between ADM and epithelial‑mesenchymal transition, 
and the underlying signaling pathways in intrahepatic chol-
angiocellular carcinoma has been previously elucidated (26). 
The overexpression of ADM in tumor cells may accelerate 
breast cancer bone metastasis, which suggests that it may be 
a potential target for therapeutic intervention against bone 
metastases (27). The association between movement disorders 
and genetic polymorphisms of BST1 has been confirmed in 
different populations, including Parkinson's and Alzheimer's 
disease (28‑30). BST1 has been also investigated in a previous 
study on the drug resistance of tumors, including anticancer 
drugs for artesunate resistance (31). CAV1 may have a tumor 
suppression role in breast cancer and its expression is regulated 
by CpG island shore methylation (32). LRP11 is a member of 
the low‑density lipoprotein receptor family, and has a poten-
tial role in mediating cellular drug uptake (33). One of the 
isoforms of P4HA, P4HA1, has an important role in prostate 
cancer progression and is associated with microRNA‑124 (34). 
TOR3A functions with the gene encoding the Ras‑related 
protein RAB1B, which regulates molecular transport, protein 
trafficking and developmental disorders (35).

Anticancer efficiency of PD0332991 on multiple path‑
ways levels. GSEA analysis was performed to identify the 
signaling pathways that were significantly associated with 
anticancer effect of PD0332991. The findings of the present 
study revealed that there were 15 upregulated pathways and 
11 downregulated pathways in PD0332991‑treated human 
KOPTK1 cells. In addition, there were 14 upregulated path-
ways and 13 downregulated pathways in PD0332991‑treated 
mouse V720 cells (Fig. 4A and B). There were 7 common 
upregulated pathways and 9 common downregulated path-
ways in the human and mouse samples. However, oppositely 
dysregulated pathways in the two groups were not identified. 
The details of these pathways are presented in Tables I and II. 
The downregulated pathways in human and mouse cell lines 
were primarily associated with cell cycle, DNA replication and 
nucleotide metabolism. The upregulated pathways in the two 
groups treated with PD0332991 were involved in various intra-
cellular signaling pathways, including the JAK‑STAT, Toll‑like 
receptor, T cell receptor and nucleotide‑binding oligomeriza-
tion domain (NOD)‑like receptor signaling pathways.

It has been previously reported that the JAK/STAT pathway 
may be aberrantly activated in solid tumors including breast 
cancer, whose activation in malignant and nonmalignant 
cells contributes to the cancer pathogenesis and therapeutic 
response (36,37). Toll‑like receptor (TLR)3 signaling is an 
integral component of solid tumors, and inhibition of this 
pathway may increase the effectiveness of current treatments 
of breast cancer in combination with anticancer drugs (38). 
The TLR8 signaling pathway has been associated with the 
functional regulation of tumor‑specific ∆γ T cells, which are 
important contributors to innate immunity against cancer (39). 
Gene polymorphisms of NOD1/caspase recruitment domain 
(CARD)4 and NOD2/CARD15 may be associated with altered 
risk of diverse malignancies, including breast cancer (40).

In conclusion, the present study identified 9 overlap-
ping genes with opposite expression patterns across 
PD0332991‑treated human T‑ALL cells and mouse breast 
cancer cells. In addition, various cellular signaling pathways 
were identified to be closely associated with the efficacy of 
anticancer drugs. Therefore, this data may aid future breast 
cancer drug screening and design.
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