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Abstract. Previous reports have indicated that microRNAs 
(miRNAs) have an important role in the pathogenesis of diabetic 
nephropathy (DN). Podocyte apoptosis induced by high glucose 
(HG) is characteristic of DN. However, the role of miRNAs in 
HG‑induced podocyte apoptosis remains poorly understood. 
The present study investigated the role and potential underlying 
mechanism of miRNA‑20b (miR‑20b) in podocyte apoptosis 
induced by HG. The results demonstrated that miR‑20b was 
significantly upregulated in HG‑treated podocytes, as deter-
mined by reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR). Caspase‑3 activity and TUNEL assays 
indicated that suppression of miR‑20b using miR‑20b inhibi-
tors significantly inhibited the podocyte apoptosis induced 
by HG. Sirtuin 7 (SIRT7) was identified as a functional 
target of miR‑20b by a Dual‑Luciferase activity reporter 
assay, RT‑qPCR and western blot analysis. Silencing SIRT7 
promoted HG‑induced podocyte apoptosis, as determined by 
the caspase‑3 activity, while SIRT7 overexpression attenuated 
HG‑induced podocyte apoptosis. However, SIRT7 silencing 
significantly blocked the protective effect of miR‑20b suppres-
sion against HG‑induced apoptosis. In conclusion, these 
results indicate that miR‑20b may contribute to HG‑induced 
podocyte apoptosis by targeting SIRT7, providing a potential 
therapeutic target for the treatment of DN.

Introduction

Diabetic nephropathy (DN), a serious complication of 
diabetes, has emerged as the primary cause of end‑stage 

renal disease (1). DN severely affects the quality of life of 
patients  (2). Therefore, there is an urgent demand for the 
development of novel therapies to prevent the progression of 
DN. Podocytes are a group of terminally differentiated cells 
that are attached to the outer surface of the glomerular base-
ment membrane and function in maintaining the integrity of 
the glomerular basement membrane (3). Previous reports have 
indicated that podocytes have a pivotal role in the develop-
ment and progression of DN (4,5). High glucose (HG) induces 
podocyte apoptosis, which contributes to the pathogenesis of 
DN (6,7). Therefore, targeting podocyte apoptosis may provide 
a novel therapeutic strategy for the treatment of DN.

Previous reports have indicated that microRNAs (miRNAs) 
function as regulators of gene expression. miRNAs inhibit 
protein translation by interacting with the 3'‑untranslated 
region (UTR) of the mRNA of target genes (8,9). Therefore, 
miRNAs are involved in the regulation of various cellular 
processes, including cell proliferation, survival, apoptosis and 
differentiation (10). Furthermore, an increasing number of 
studies have indicated that miRNAs participate in the patho-
genesis of various diseases and represents novel biomarkers for 
diagnosis, prognosis and treatment (11‑13). Certain miRNAs 
have been reported to be associated with the pathogenesis 
of DN, which highlights their potential as promising thera-
peutic targets for DN (14,15). In addition, recent studies have 
demonstrated that several miRNAs, including miRNA‑34c 
(miR‑34c), miR‑30a and miR‑218, are aberrantly expressed in 
podocytes induced by HG and have important roles in regu-
lating podocyte apoptosis (16,17). However, the exact role of 
miRNAs in podocyte apoptosis remains largely unknown.

The sirtuin family of proteins consists of seven members 
(SIRT1‑7), which are nicotinamide adenine dinucleotide 
oxidized form‑dependent deacetylases that have important 
roles in the regulation of various biological processes, including 
metabolism, DNA repair, inflammation, stress response, cell 
cycle and apoptosis  (18,19). Sirtuin 7 (SIRT7) is the most 
recently characterized sirtuin, however, important roles for 
SIRT7 in several pathological processes have been recently 
reported (20). SIRT7 regulates lipid metabolism, chromatin 
remodeling and protein synthesis  (20). SIRT7 has been 
reported to have a key role in cellular survival in response 
to a variety of stress conditions, including hypoxia, and 
endoplasmic reticulum and genomic stress (21‑23). However, 
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whether SIRT7 regulates podocyte apoptosis remains to be 
established.

It has been hypothesized that miR‑20b may be an miRNA 
that is associated with apoptosis (24). Recently, miR‑20b was 
reported to be a response gene under hyperglycemic conditions 
in retinal endothelial cells (25). However, whether miR‑20b 
participates in podocyte apoptosis under hyperglycemic 
conditions is yet to be determined. The present study aimed 
to investigate the biological role and potential underlying 
mechanism of miR‑20b in podocyte apoptosis induced by 
HG. The results demonstrated that miR‑20b was significantly 
upregulated in HG‑treated podocytes. Suppression of miR‑20b 
significantly inhibited podocyte apoptosis induced by HG. In 
addition, SIR7 was identified as a functional target of miR‑20b 
that may contribute to the protective effect of miR‑20b 
suppression on HG‑induced apoptosis. These results indicate 
that miR‑20b may contribute to HG‑induced podocyte apop-
tosis by targeting SIRT7, therefore representing a potential 
therapeutic target for DN.

Materials and methods

Cell cultures and treatments. Conditionally immortal-
ized mouse podocytes were purchased from the Cell 
Resource Center of Peking Union Medical College (Beijing, 
China). Podocytes were routinely cultured as previously 
described (26). Briefly, podocytes were cultured in RPMI‑1640 
medium (Gibco; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) containing 10% fetal bovine serum (FBS; Gibco; 
Thermo Fisher Scientific, Inc.), 10 U/ml interferon‑γ (Sangon 
Biotech Co., Ltd., Shanghai, China), 100  U/ml Penicillin 
and 0.1 mg/ml Streptomycin (Sigma‑Aldrich; Merck KGaA, 
Darmstadt, Germany) at 33˚C in a 5% CO2 atmosphere with 
relative humidity of 95%. Once cells reached a confluence of 
~80%, the cells were cultured in the medium described above 
without interferon‑γ for 14 days at 37˚C in a 5% CO2 atmo-
sphere. Prior to experiments, the podocytes were cultured in 
serum‑free medium for 24 h at 37˚C in a 5% CO2 atmosphere 
and relative humidity of 95% to synchronize cell growth. 
Subsequently, podocytes were cultured in serum‑free medium 
containing 5, 10, 15, 20, 25 or 30 mM D‑glucose for 6, 12 
or 24 h at 37˚C. HEK293T cells were purchased from the 
American Type Culture Collection (Manassas, VA, USA) 
and maintained in Dulbecco's modified Eagle's medium 
(Gibco; Thermo Fisher Scientific, Inc.) containing 10% FBS 
and 100 U/ml Penicillin and 0.1 mg/ml Streptomycin in a 
humidified atmosphere with 5% CO2 at 37˚C.

Cell transfection. miR‑20b inhibitor (5'‑cuaccugcacuaugagca-
caaag‑3'), miR‑20b mimic (5'‑caaagugcucauagugcagguag‑3') 
and negative control (NC; 5'‑agacugauuccgcgauaccaggc‑3') 
were synthesized by Shanghai GenePharma Co., Ltd. 
(Shanghai, China) and transfected into cells at a final concen-
tration of 30  nM using Lipofectamine 2000 (Invitrogen; 
Thermo Fisher Scientific, Inc.) for 24 h at 37˚C. SIRT7 small 
interfering RNA (siRNA) and NC siRNA were purchased 
from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA) and 
transfected into cells at a final concentration of 50 nM using 
Lipofectamine 2000 (Invitrogen). For SIRT7 overexpression, 
the open reading frame of SIRT7 cDNA was inserted into 

pcDNA3.1 plasmids (BioVector NTCC, Inc., Beijing, China) 
to generate pcDNA3.1/SIRT7 overexpressing vectors. The 
pcDNA3.1/SIRT7 vectors were transfected into cells at a final 
concentration of 1 µg/ml using Lipofectamine 2000. Empty 
pcDNA3.1 vectors were used for the control group. Following 
transfection for 24 h, cells were subjected to the subsequent 
experiments.

RNA extraction and reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR). Total RNA was 
extracted by using TRIzol reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's protocol. RT 
of mRNA and miRNA were performed by using M‑MLV 
reverse transcriptase (Takara Biotechnology Co., Ltd., Dalian, 
China) or a One Step PrimeScript® miRNA cDNA Synthesis 
kit (Takara Biotechnology Co., Ltd.), respectively. For the RT 
of mRNA, a mixture of RNA, Oligo (dt)12‑18 primer, dNTP 
mixture, M‑MLV buffer (all from Takara Biotechnology 
Co., Ltd.), and M‑MLV reverse transcriptase was incubated 
at 42˚C for 1 h and then at 70˚C for 15 min. For the RT of 
miRNA, a mixture of RNA, miRNA Reaction Buffer Mix, 
Universal Adaptor Primer, and miRNA PrimeScript® RT 
Enzyme Mix (all from Takara Biotechnology Co., Ltd.) was 
incubated at 37˚C for 60 min and 85˚C for 5 sec. Gene expres-
sion was detected by using the Power SYBR Green PCR 
Master Mix (Applied Biosystems; Thermo Fisher Scientific, 
Inc.) on an Applied Biosystems AB7500 Real‑Time PCR 
System (Applied Biosystems; Thermo Fisher Scientific, Inc.) 
under the following conditions: 95˚C for 5 min; 30 cycles 
of 94˚C for 20 sec, 55˚C for 30 sec and 72˚C for 35 sec; and 
72˚C for 5 min. The primers used were as follows: SIRT7, 
5'‑agaactgtgatgggctccac‑3' (forward) and 5'‑tgaagggcag-
tacgctcagt‑3' (reverse); β‑actin, 5'‑ttccttcttgggtatggaat‑3' 
(forward) and 5'‑gagcaatgatcttgatcttc‑3' (reverse); miR‑20b, 
5'‑acactccagctgggcaaagtgctcatagtgc‑3' (forward) and 5'‑tggt-
gtcgtggagtcg‑3' (reverse); and U6, 5'‑tgcgggtgctcgcttcggcagc‑3' 
(forward) and 5'‑ccagtgcagggtccgaggt‑3' (reverse). β‑actin or 
U6 were used as the internal controls for normalization. Data 
were obtained from three independent experiments. Gene 
expression was calculated by using 2‑ΔΔCq (27), normalized 
against β‑actin or U6 and compared with the control group.

Caspase‑3 activity assay. Caspase‑3 activity was measured 
using a Caspase‑3 Activity assay kit (Beyotime Institute of 
Biotechnology, Haimen, China), according to the manu-
facturer's protocol. Briefly, 2x106 cells were lysed using 
radioimmunoprecipitation assay buffer (Beyotime Institute 
of Biotechnology) and the supernatant was collected. The 
protein concentration was measured using Enhanced BCA 
Protein Assay kit (Beyotime Institute of Biotechnology). 
A total of 100 µg protein was incubated with 5 µl DEVD‑pNA 
substrate (4 mM) in 50 µl reaction buffer at 37˚C for 2 h. The 
absorbance value at a wavelength of 405 nm was detected 
using an ELISA reader (BioTek Instruments, Inc., Winooski, 
VT, USA).

TUNEL assay. Cell apoptosis was detected by using Roche In 
Situ Cell Death Detection kit (Roche Diagnostics, Indianapolis, 
IN, USA), according to the manufacturer's protocol. Briefly, 
slides of 1x106 cells were fixed with 4% paraformaldehyde for 
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30 min at room temperature and permeabilized with 0.2% 
Triton‑X‑100 for 5 min at room temperature. The cells were then 
incubated with 450 µl TUNEL label solution and 50 µl TUNEL 
enzyme solution at 37˚C for 1 h in the dark. Subsequently, the 
slides were observed under a fluorescence microscope (Olympus 
Corporation, Tokyo, Japan). The number of apoptotic cells in 
five random fields per slide were counted and averaged.

Western blot analysis. Cells were harvested and lysed in radio-
immunoprecipitation assay lysis buffer (Beyotime Institute of 
Biotechnology) and protein concentration was determined by 
a BCA kit (Beyotime Institute of Biotechnology). A total of 
40 µg protein was separated by 12% SDS‑PAGE and electro-
transferred to polyvinylidene difluoride membranes (EMD 
Millipore, Billerica, MA, USA). Following incubation with 
3% nonfat milk for 1 h at 37˚C, the membranes were incubated 
with the following rabbit primary antibodies: Anti‑SIRT7 
(cat. no. ab78977; 1:250; Abcam, Cambridge, MA, USA) and 
anti‑β‑actin (cat. no. ab8227; 1:1,000; Abcam) at 4˚C over-
night. Subsequently, the membrane was washed thrice with 
Tris‑buffered saline with 0.05% Tween‑20 and incubated with 
horseradish peroxidase‑conjugated secondary antibodies (cat. 
no. bs‑0295G‑HRP; 1:1,000; BIOSS, Beijing, China) for 1 h 
at 37˚C. The immunoblots were visualized by a Pierce ECL 
Western Blotting Substrate (Pierce; Thermo Fisher Scientific, 
Inc.). Densitometric analysis of the protein bands was 
performed using Image‑Pro Plus software version 6.0 (Media 
Cybernetics, Inc., Rockville, MD, USA).

Dual‑Luciferase reporter assay. Bioinformatics analysis for 
miR‑20b was performed using a web server of TargetScan: 
Prediction of microRNA targets (http://www.targetscan 
.org/). The 3'‑untranslated region (UTR) of SIRT7 containing 
miR‑20b binding sites was synthesized and cloned into the 
pmirGLO Dual‑Luciferase miRNA Target Expression Vector 
(Promega Corporation, Madison, WI, USA). The 3'‑UTR 
of SIRT7 containing mutations in the miR‑20b recognition 
sites was synthesized by QuikChange Multi Site‑Directed 
Mutagenesis kit (Agilent Technologies, Inc., Santa Clara, CA, 
USA) and cloned into the pmirGLO Dual‑Luciferase miRNA 
Target Expression Vector. The constructed pmirGLO vectors 
were cotransfected into HEK293T cells with miR‑20b mimics 

(30 nM) or NC mimics (30 nM) by using Lipofectamine 2000. 
Following transfection for 48 h, the cells were immediately 
harvested and subjected to detection of luciferase activity. the 
relative luciferase activity was analyzed by using a Dual‑Glo 
Luciferase assay system (Promega Corporation), according to 
the manufacturer's protocol. Relative luciferase activity was 
calculated according to the formula: Firefly luciferase/Renilla 
luciferase.

Statistical analysis. Quantitative data are presented as the 
mean + standard deviation. Statistical analyses were performed 
by one‑way analysis of variance followed by the Bonferroni 
post‑hoc test using SPSS software version 11.5 (SPSS, Inc., 
Chicago, IL, USA). P<0.05 was considered to indicate a 
statistically significant difference.

Results

miR‑20b expression is upregulated by HG in podocytes. To 
investigate the relevance of miR‑20b in podocytes, the present 
study determined the expression pattern of miR‑20b in podo-
cytes exposed to HG in vitro by RT‑qPCR. As demonstrated 
in Fig. 1A, the expression level of miR‑20b was significantly 
and dose‑dependently upregulated in podocytes exposed 
to concentrations of glucose >20 mM after 24 h treatment, 
compared with treatment with 5 mM glucose. Furthermore, 
miR‑20b was significantly increased after 6, 12 and 24 h treat-
ment with 30 mM glucose (Fig. 1B), compared with the 0 h 
treatment group. These results indicate that miR‑20b may be 
involved in the response to HG in podocytes.

Suppression of miR‑20b attenuates apoptosis of podocytes. 
To investigate the precise biological role of miR‑20b in 
HG‑induced podocyte apoptosis, the current study suppressed 
the expression of miR‑20b by transiently transfecting podo-
cytes with miR‑20b inhibitor. The results demonstrated 
that miR‑20b expression was significantly suppressed by 
miR‑20b inhibitor transfection in cultured podocytes treated 
with HG, compared with podocytes treated with HG only 
(Fig.  2A). The effect of miR‑20b suppression on apop-
tosis was subsequently detected by TUNEL (Fig. 2B) and 
caspase‑3 activity (Fig. 2C) assays. The results demonstrated 

Figure 1. miR‑20b is induced by high glucose in podocytes. (A) RT‑qPCR detection of miR‑20b expression in podocytes exposed to 5, 10, 15, 20, 25 and 30 mM 
glucose for 24 h. *P<0.05 vs. 5 mM. (B) RT‑qPCR detection of miR‑20b expression in podocytes exposed to 30 mM glucose for 6, 12 and 24 h. *P<0.05 vs. 0 h. 
miR, microRNA; RT‑qPCR, reverse transcription‑quantitative polymerase chain reaction.
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that HG exposure significantly induced podocyte apoptosis 
compared with cells treated with normal glucose (5 mM), 
whereas suppression of miR‑20b significantly prevented 
podocyte apoptosis induced by HG (Fig. 2B and C). These 
results indicate that miR‑20b may be involved in podocyte 
apoptosis induced by HG.

SIRT7 is a target of miR‑20b. To elucidate the underlying 
molecular mechanism by which miR‑20b regulates podo-
cyte apoptosis, the present study aimed to identify the 
potential target gene for miR‑20b using bioinformatics 

analysis. Notably, SIRT7, an important stress adaptor 
molecule for cell survival, was identified as a putative target 
of miR‑20b (Fig. 3A). To verify whether SIRT7 is a direct 
target gene of miR‑20b, a Dual‑Luciferase reporter assay 
was performed. Cotransfection of wild‑type SIRT7 3'‑UTR 
construct with miR‑20b mimics into HEK293T cells resulted 
into a significant decrease in luciferase activity compared 
with cells cotransfected with NC mimics (Fig. 3B). However, 
miR‑20b mimics exhibited no significant effect on the lucif-
erase activity when cotransfected with mutant SIRT7 3'‑UTR 
construct (Fig. 3B). The results indicate that miR‑20b directly 
targets the 3'‑UTR of SIRT7. To further confirm this predic-
tion, the direct effect of miR‑20b on SIRT7 expression was 
investigated. The results demonstrated that the mRNA and 
protein expression of SIRT7 was significantly upregulated by 
miR‑20b suppression in podocytes treated with HG (Fig. 4). 
Taken together, these results indicate that SIRT7 is a direct 
target gene of miR‑20b.

SIRT7 is involved in HG‑induced podocyte apoptosis. To 
investigate whether SIRT7 is involved in HG‑induced podocyte 
apoptosis, the present study investigated the effect of SIRT7 
knockdown or SIRT7 overexpression on podocyte apoptosis. 
For knockdown of SIRT7, podocytes were transfected with 
SIRT7 siRNA. The results demonstrated that transfection 
with SIRT7 siRNA significantly decreased the protein expres-
sion of SIRT7 in HG‑treated cells (Fig. 5A). Furthermore, 
knockdown of SIRT7 significantly increased podocyte 
apoptosis induced by HG (Fig. 5B). Conversely, SIRT7 overex-
pression led to significantly increased protein levels of SIRT7 
in HG‑treated cells (Fig. 5C) and markedly inhibited podocyte 

Figure 2. Suppression of miR‑20b inhibits HG‑induced podocyte apoptosis. 
Podocytes were treated with NG (5 mM) or HG (30 mM) with or without 
transfection with miR‑20b inhibitor or NC inhibitor for 24 h. (A) miR‑20b 
expression in different groups was examined by reverse transcription‑quanti-
tative polymerase chain reaction. Apoptosis of podocytes in different groups 
was detected by (B) TUNEL and (C) caspase‑3 activity assays. *P<0.05 vs. 
NG; &P<0.05 vs. HG and HG + NC inhibitor. miR, microRNA; HG, high 
glucose; NG, normal glucose; NC, negative control.

Figure 3. miR‑20b targets the 3'‑UTR of SIRT7. (A) miR‑20b sequence and 
its target sequence in the 3'‑UTR of SIRT7. (B) Relative luciferase activi-
ties of vector constructs carrying WT or MT SIRT7 3'‑UTR in HEK293T 
cells cotransfected with miR‑20b or NC mimics. The luciferase activity 
was detected by a Dual‑Luciferase assay system following incubation for 
48 h. *P<0.05 vs. NC mimics. miR, microRNA; UTR, untranslated region; 
SIRT7, sirtuin 7; WT, wild‑type; MT, mutant; NC, negative control.
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apoptosis induced by HG (Fig. 5D), which mimicked the effect 
of miR‑20b suppression. These results indicate that SIRT7 may 
be involved in the protection of podocytes from HG‑induced 
apoptosis.

Knockdown of SIRT7 blocks the protective effect of miR‑20b 
suppression. To verify whether SIRT7 is involved in the 
observed miR‑20b‑mediated protective effect, podocytes 
were cotransfected with miR‑20b inhibitor and SIRT7 

Figure 4. Suppression of miR‑20b upregulates SIRT7 expression. The (A) mRNA and (B) protein expression of SIRT7 in NG (5 mM) and HG (30 mM)‑treated 
cells with or without transfection with miR‑20b inhibitor or NC inhibitor was detected by reverse transcription‑quantitative polymerase chain reaction and 
western blot analysis, respectively. *P<0.05 vs. NG; &P<0.05 vs. HG and HG + NC inhibitor. miR, microRNA; SIRT7, sirtuin 7; NG, normal glucose; HG, high 
glucose; NC, negative control.

Figure 5. SIRT7 is involved in HG‑induced podocyte apoptosis. Podocytes were treated with NG (5 mM) or HG (30 mM) with or without transfection with 
SIRT7 siRNA or NC siRNA. (A) Western blot analysis of SIRT7 protein expression in podocytes transfected with SIRT7 siRNA or NC siRNA for 24 h. 
(B) Effect of SIRT7 knockdown on podocyte apoptosis was detected by a caspase‑3 activity assay. *P<0.05 vs. NG; &P<0.05 vs. HG and HG + NC siRNA. 
Podocytes were treated with NG (5 mM) or HG (30 mM) with or without transfection with SIRT7 overexpression vector or control vector. (C) Western blot 
analysis of SIRT7 protein expression in podocytes transfected with pcDNA3.1/SIRT7 overexpression vector or empty vector for 24 h. (D) Effect of SIRT7 
overexpression on podocyte apoptosis was detected by a caspase‑3 activity assay. *P<0.05 vs. NG; &P<0.05 vs. HG and HG + vector. SIRT7, sirtuin 7; HG, 
high glucose; NG, normal glucose; siRNA, small interfering RNA; NC, negative control; HG + vector, HG‑treated cells transfected with empty vector;  
HG + SIRT7, HG‑treated cells transfected with pcDNA3.1/SIRT7 overexpression vector.
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siRNA. The results demonstrated that the increase in SIRT7 
expression following miR‑20b suppression was significantly 
reduced by SIRT7 knockdown (Fig. 6A). In addition, the 
protective effect of miR‑20b suppression against HG‑induced 
apoptosis was significantly blocked by SIRT7 knock-
down (Fig. 6B).

Discussion

Previous evidence has indicated that miRNAs have an impor-
tant role in DN and that miRNAs may serve as diagnosis 
biomarkers and therapeutic candidates  (14,15). Therefore, 
the identification of DN‑associated miRNAs is essential for 
the development of novel therapeutic strategies. The present 
study, to the best of our knowledge, is the first to demonstrate 
that miR‑20b may be a hyperglycemia‑responsive miRNA 
as it was induced by HG in podocytes and suppression of 
miR‑20b provided a protective effect against HG‑induced 
apoptosis. The present study also identified that SIRT7 is a 
functional target of miR‑20b that contributed to the miR‑20b 
suppression‑mediated protective effect against apoptosis. In 
conclusion, the results of the present study revealed a novel 
miRNA‑based mechanism for regulating podocyte apoptosis.

An increasing number of studies have reported important 
roles for miRNAs in the regulation of podocyte apoptosis (28). 
Among these, certain studies have concluded that HG‑induced 
podocyte apoptosis was attenuated by miR‑29a overexpres-
sion  (29) and overexpression of miR‑29c strongly induced 
podocyte apoptosis by targeting sprouty homolog 1 (30). In 
addition, Chen et al (31) reported that miR‑195 was increased 
in diabetic mice and promoted podocyte apoptosis induced 
by HG by inhibiting Bcl‑2. Recently, miR‑34c and miR‑218 
were reported to contribute to HG‑induced podocyte apoptosis 
by targeting Notch signaling or heme oxygenase‑1, respec-
tively (16,32). The present study demonstrated that miR‑20b 
was significantly induced by HG in cultured podocytes and 
suppression of miR‑20b provided a protective effect against 

HG. The current study has identified a potential novel regu-
lator of podocyte apoptosis.

Previous reports have demonstrated that miR‑20b is 
extensively involved in several pathological processes (33,34). 
The inhibition of oncogenes in various cancer cell lines has 
revealed an antiproliferative properties of miR‑20b (35‑37). In 
addition, suppression of miR‑20b provided cardioprotection 
against ischemia/reperfusion injury (38), and overexpression 
of miR‑20b promoted apoptosis of P19 cells by inducing mito-
chondrial impairment (24). The present study demonstrated 
that miR‑20b contributed to HG‑induced podocyte apoptosis, 
further confirming the proapoptotic role of miR‑20b. However, 
the underlying mechanism of miR‑20b in regulating apoptosis 
remains to be elucidated.

The current study identified that SIRT7 is a functional 
target of miR‑20b in the regulation of podocyte apoptosis. 
SIRT7 is the seventh member of the sirtuin family and has 
an important role in cell proliferation, stress and disease (20). 
Cumulative evidence has indicated that SIRT7 functions as an 
important regulator of cell survival and apoptosis (20,23,39). 
SIRT7 was also reported to prevent cardiomyocyte apoptosis 
by inhibiting the p53 proapoptotic signaling pathway (40), 
and promote myocardial tissue repair following myocardial 
infarction and hind‑limb ischemia (41). Furthermore, knock-
down of SIRT7 induced gastric cancer cell apoptosis (39), and 
promoted cellular survival and inhibited apoptosis induced 
by genomic stress via repression of stress‑activated kinases 
(p38 and c‑Jun N‑terminal kinase) and the p53 signaling 
pathway (23,42). SIRT7 was also reported to have a vital role 
in sensing cellular energy levels and conserving energy during 
stress (43). Thus, SIRT7 aids cellular survival in response to 
stress conditions. The present study demonstrated that SIRT7 
is also an important regulator under HG conditions. The results 
indicated that SIRT7 overexpression protected podocytes 
against HG‑induced apoptosis, while SIRT7 silencing 
promoted apoptosis, indicating that SIRT7 may promote 
the survival of podocytes under HG conditions.

Figure 6. Knockdown of SIRT7 blocks the protective effect of miR‑20b suppression. Cells were treated with high glucose (30 mM) and transfected with NC 
inhibitor or miR‑20b inhibitor, or cotransfected with miR‑20b inhibitor and NC or SIRT7 siRNA. (A) Western blot analysis was performed to investigate the 
protein expression of SIRT7 in podocytes cotransfected with miR‑20b inhibitor and SIRT7 siRNA. (B) Podocyte apoptosis was measured using a caspase‑3 
activity assay. *P<0.05 vs. NC inhibitor; &P<0.05 vs. miR‑20b inhibitor and miR‑20b inhibitor + NC siRNA. SIRT7, sirtuin 7; miR, microRNA; NC, negative 
control; siRNA, small interfering RNA.
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Regulation of SIRT7 by specific miRNAs has been reported 
by recent studies (44,45). Several studies have revealed that 
miR‑125b inhibits cancer development by targeting SIRT7 
in bladder cancer (46) and hepatocellular carcinoma (47,48). 
In addition, suppression of SIRT7 by miR‑3666 induced cell 
apoptosis of non‑small cell lung cancer (49), and Gu et al (50) 
reported that miR‑152 induced human dental pulp stem cell 
senescence by targeting SIRT7. The results of the current 
study indicated that miR‑20b may be a novel regulator of 
SIRT7, indicating that SIRT7 undergoes epigenetic regula-
tion by various miRNAs, which may exert effects in various 
pathological processes.

To the best of our knowledge, the present study is the first 
to demonstrate that miR‑20b may be an important regulator of 
HG‑induced podocyte apoptosis. The results demonstrated that 
SIRT7 is a direct target of miR‑20b in the regulation of podo-
cyte apoptosis. The results of the current study may provide 
novel insight into the effects of miR‑20b in DN. Therefore, 
miR‑20b may serve as a promising therapeutic target for the 
treatment of DN. However, further in vitro and in vivo studies 
are required to fully elucidate the precise role and molecular 
mechanism of miR‑20b in DN.
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