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Abstract. Rheumatoid arthritis (RA) is a chronic inflammatory 
articular disease that is characterized by synovial hyperplasia. 
A number of signaling pathways are associated with the devel-
opment and induced symptoms of RA. Notably, patients with 
RA have increased protein citrullination and generation of 
auto‑antibodies against citrullinated proteins. Genome wide 
association studies have revealed that peptidyl‑arginine deimi-
nase 4 (PADI4) is an enzyme implicated in citrullination in the 
RA synovium. Autoantibodies targeting citrullinated proteins 
are used as diagnostic markers in patients with RA. The 
functions associated with citrullinated proteins are thought to 
induce autoimmunity, however, the regulatory mechanisms of 
citrullination via PADI4 are unclear. The group has previously 
cloned an E3 ubiquitin ligase, synoviolin (SYVN1), from the 
RA synovium, demonstrating that SYVN1 serves critical roles 
in synovial hyperplasia. The data indicated that the endo-
plasmic reticulum (ER) associated degradation system, which 
involves SYVN1, may have important roles in the proliferation 
of synoviocytes. In addition, ubiquitination by SYVN1 is asso-
ciated with fibrosis, inflammation and cytokine production 
via the regulation of ER stress signals and quality control of 
proteins. The present study investigated the crosstalk between 
the representative post‑translational signaling processes, 
citrullination and ubiquitination. The results revealed that 
PADI4 interacted with SYVN1 directly and that overexpres-
sion of PADI4 suppressed the ubiquitination of proteins. Thus, 
a reduction in ER stress induced by PADI4 may abrogate 

the initiation of chronic RA by suppressing the proliferative 
signals of RA synoviocytes.

Introduction

Rheumatoid arthritis (RA) is one of the most common articular 
diseases and is characterized by synovial hyperplasia, which 
impairs quality of life. The estimated prevalence of RA is 0.5 
to 1% worldwide (1,2). The pathological features of RA include 
overgrowth of synoviocytes, chronic inflammation, destruction 
of cartilage and bone and terminal‑phase tissue fibrosis (3,4). 
Biological agents, such as inhibitors of tumor necrosis factor 
and interleukin‑6, have recently been developed to be used 
in RA treatments and have exhibited beneficial therapeutic 
effects (5). However, these therapies are expensive and may 
not be efficacious in a significant number of RA patients.

Posttranslational modifications are crucial in the regula-
tion of protein functions by altering protein structure and 
interactions (6). In RA, recent studies have focused on the 
impact of citrullination (7‑9). Citrullination results in the loss 
of a positive charge and altered biochemical features (10,11). 
Citrulline residues are synthesized by the deamination of 
arginine residues using the Ca2+‑dependent enzyme, peptiy-
dylarginine deiminase (PADI). The PADI family consists of 
five members, PADI 1 to 4 and 6, which exhibit tissue specific 
expression (12). Patients with RA have increased levels of 
citrullinated proteins, including vimentin, fibrinogen, collagen 
and auto‑antibodies against citrullinated protein antibodies 
(ACPAs) are thought to be synthesized (13). Serum from the 
majority of patients with RA contains auto‑antibodies against 
a number of proteins and ACPAs. ACPA is reported to have 
high sensitivity (60%) and specificity (90%) as a clinical 
diagnostic biomarker for RA (14‑16).

PADI2 and PADI4 are expressed in the synovial tissue of 
patients with RA and other types of arthritis (17‑19). PADI4 
mediated citrullination has been implicated in a number of 
inflammatory autoimmune diseases, including RA, lupus, 
colitis and multiple sclerosis (20,21). In addition, PADI4 is a 
RA‑susceptibility gene, which was identified in genome‑wide 
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association studies in patients with RA. The PADI4 haplotype 
is associated with RA, and stabilization of PADI4 mRNA leads 
to increased expression (22,23). PADI4 is a unique enzyme in 
the PADI family due to its subcellular localization; other PADI 
family members usually localize in the cytoplasm, whereas 
PADI4 is also present in the nucleus (24). In addition, PADI4 
competes with arginine N‑methyltransferase and catalyzes 
citrullination of arginine residues in histones. Furthermore, 
PADI4 promotes decondensation of chromatin structure (25,26) 
and activates the transcription of a number of genes and neutro-
phil extracellular traps (27,28). Citrullination by PADI4 has 
been demonstrated to regulate protein localization (29).

In addition to citrullination, protein ubiquitination is 
important in the onset, pathogenesis and the associated symp-
toms of RA. Endoplasmic reticulum (ER) stress signals are 
associated with inflammation (30). ER stress signals, which 
are triggered by an accumulation of unfolded or misfolded 
proteins in the ER, induce a protective response known as 
the unfolded protein response in order to maintain cellular 
homeostasis (31,32). Accumulated misfolded proteins are 
degraded through the ubiquitin‑proteasome system in the 
cytoplasm. Secreted and membrane proteins are synthesized 
in the ER, and pro‑inflammatory cytokines and extracellular 
matrix proteins have been revealed to be associated with ER 
stress in patients with RA (33‑35).

The E3 ubiquitin ligase, synoviolin (SYVN1), has been 
identified in the synovial tissue of patients with RA. A 
previous study demonstrated that the expression levels of 
SYVN1 increased in the RA synovium when compared with 
that in osteoarthritis (36). SYVN1, a mammalian homologue 
of Hrd1p/Der3p, serves important roles in the ER‑associated 
protein degradation (ERAD) pathway. SYVN1 deficient mice 
exhibited resistance to collagen‑induced arthritis, by contrast, 
overexpression of SYVN1 induced arthropathy (36). In addi-
tion, SYVN1 has been revealed to control the tumor suppressor 
p53 as a substrate and negatively regulate its biological func-
tions in transcription, the cell cycle and apoptosis (37,38). 
As the expression of SYVN1 is higher in patients that do not 
respond to treatment with infriximab, SYVN1 may have appli-
cations as a biomarker to facilitate the selection of suitable 
treatments (39,40). Thus, these previous studies indicated that 
SYVN1 may have crucial roles in synovial cell hyperplasia in 
patients with RA. Therefore, the overexpression of SYVN1 in 
patients with RA may result in a hyper‑ERAD state, and in 
turn, RA may be a disease of the ERAD system (41).

SYVN1 is implicated in a number of diseases in addition 
to RA. It has been demonstrated that SYVN1 is associated 
with liver and lung fibrosis (42‑44) and obesity in mouse 
models (45). Analysis of post‑neonatal SYVN1‑knockout mice 
has indicated that SYVN1 is associated with energy metabo-
lism and mitochondrial biosynthesis through peroxisome 
proliferator‑activated receptor gamma coactivator 1β (PGC‑1β) 
degradation (45). Previous studies have identified a number of 
small molecules that inhibit SYVN1 auto‑ubiquitination activity, 
suppress synoviocyte proliferation in patients with RA and 
reduce the occurrence of arthritis in an RA model mouse (46). 
In addition, these inhibitors have been demonstrated to block 
the expression of fibrosis‑associated factors (42,44) and reduce 
body weight and white adipose tissue (45). Thus, SYVN1 may 
represent a potential therapeutic target.

Citrullinated proteins exhibit altered conformations due 
to the increased hydrophobicity of citrulline residues, which 
may be recognized as autoimmune antigens (11). Thus, it may 
be hypothesized that accumulation of citrullinated proteins is 
associated with the ubiquitin‑proteasome system, a pathway 
that is induced by unfolded proteins. Therefore, the present 
study investigated the interactions between ubiquitination and 
citrullination.

Materials and methods

Plasmids. The sequence of full‑length human PADI4 was 
amplified from the cDNA of HL‑60 cells obtained from 
American Type Culture Collection (ATCC; cat. no. CCL240; 
Manassas, VA, USA) using the following primers: Forward 
5'‑CGCGAATTCATGGCCCAGGGGACATTGAT‑3' and 
reverse 5'‑GCGGTCGACTCAGGGCACCATGTTCCACC‑3'. 
Mutant PADI4 (p.C645S), which is characterized by a Cys 
to Ser substitution at amino acid (aa) 645 in the calcium 
binding site (26), was amplified using the following primers: 
forward 5'‑GAGGTGCACTCCGGCACCAACGT‑3' and 
reverse 5'‑ACGTTGGTGCCGGAGTGCACCTC‑3', from the 
wild‑type PADI4. The target fragments were amplified using 
TaKaRa Ex Taq® DNA Polymerase (Takara Biotechnology 
Co., Ltd., Dalian, China) under the following conditions: 
30 cycles at 94˚C for 30 sec, at 55˚C for 30 sec and at 72˚C for 
1 min, using the GeneAmp PCR System 9700 (Thermo Fisher 
Scientific, Inc., Waltham, MA, USA), and were then cloned 
into the FLAG‑tagged pcDNA3 vector (Invitrogen; Thermo 
Fisher Scientific, Inc.).

Immunoprecipita t ion assay.  Immunoprecipitat ion 
assays were performed on HEK 293 cells, as previously 
described (45). Briefly, HEK293 cells (4x106), obtained from 
ATCC (cat. no. CRL‑1573), were transfected with FLAG 
(control cells) or SYVN1‑FLAG constructs with HA‑PADI4 
(experimental cells). Cells were lysed in lysis buffer, 
containing 50 mM Tris‑HCl (pH 8.0), 150 mM NaCl, 1 mM 
EDTA, 1% NP-40, 1 mM dithiothreitol (DTT), 10 µM 
MG‑132, and protease inhibitors, for 30 min at 4˚C. Whole 
cell extracts (WCE) were incubated with 2 µg of anti‑FLAG 
(M2) antibodies in 1 ml of buffer A (20 mM Tris‑HCl, 
pH 7.5, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.1% 
NP40, 5% glycerol, 10 µM MG‑132, 1 µg/ml aprotinin and 
1 µg/ml leupeptin) for 4 h at 4˚C. Proteins precipitated with 
anti‑FLAG antibody were subjected to 7.5% SDS‑PAGE 
and detected using western blot analysis with anti‑HA or 
anti‑FLAG antibodies.

In vivo ubiquitination assay. HEK293 cells (4x106) were trans-
fected with HA‑ubiquitin, FLAG‑PADI4 and SYVN1‑FLAG 
expression plasmids. Following incubation for 24 h, cells were 
treated with 10 µM MG‑132 for 2 h. Cell extracts were prepared 
as described in the immunoprecipitation assay methodology 
and separated by 7.5% SDS‑PAGE. Ubiquitinated proteins in 
WCE were detected using western blot analysis with anti‑HA, 
anti‑SYVN1 and anti‑PADI4 antibodies, as described in the 
western blot analysis sub‑section. Anti‑SYVN1 antibodies 
detect endogenous proteins, however, anti‑PADI4 antibodies 
do not.
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For auto‑ubiquitination of SYVN1 in vivo, HEK293 
cells were transfected with HA‑ubiquitin, FLAG‑PADI4 
and His‑SYVN1. Following treatment with 10 µM MG‑132 
for 2 h, cells (4x106) were harvested and lysed in the lysis 
buffer. His‑tagged SYVN1 was purified by incubation with 
Ni‑Sepharose chromatography resin (GE Healthcare Life 
Sciences) for 5 h at 4˚C and elution using buffer B (20 mM 
Tris‑HCl pH 7.5, 0.5 M NaCl, 1 mM EDTA, 1% Triton X‑100, 
1 mM DTT, 10 µM MG‑132 and protease inhibitors). Proteins 
were subjected to 7.5% SDS‑PAGE and detected using western 
blot analysis with anti‑HA, anti‑His and anti‑FLAG antibodies, 
as described in the western blot analysis sub‑section.

Pull‑down assay. Pull‑down assay was performed as previously 
described (45). Glutathione S‑transferase (GST)‑fused SYVN1 
deletion mutant proteins were expressed in Escherichia coli 
(E. coli) and purified using glutathione sepharose beads. 
HA‑tagged PADI4 was expressed using the T7 in vitro 
transcription/translation system (Promega Corporation, 
Madison, WI, USA) for 1 h at 30˚C. GST‑SYVN1 was incu-
bated with HA‑PADI4 in 1 ml buffer A (20 mM Tris‑HCl, pH 
8.0, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.1% NP40, 
5% glycerol, 10 µM MG‑132, 1 µg/ml aprotinin, and 1 µg/ml 
leupeptin) for 6 h at 4˚C. Following washing with buffer A, 
bound proteins were fractionated by 10% SDS‑PAGE and 
detected using western blot analysis with anti‑HA antibodies, 
as described in the western blot analysis sub‑section.

Western blot analysis. Proteins were separated by SDS‑PAGE 
and transferred onto polyvinylidene difluoride membranes. 
The membranes were blocked with 5% milk in TBS buffer 
with 0.1% Tween‑20 (TBS‑T) at room temperature for 1 h, and 
incubated with the primary antibodies at room temperature for 
1 h. The following primary antibodies were used: Anti‑FLAG 
(M2; cat. no. F3165; 1:5,000), anti‑human influenza hemagglu-
tinin (HA)‑tag (3F10; cat. no. 11867423001; 1:5,000), obtained 
from Sigma‑Aldrich; Merck KGaA (Darmstadt, Germany); 
anti‑polyhistidine (His; cat. no. H‑15; 1:1,000; Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA) and anti‑SYVN1 rabbit 
polyclonal antibodies (1:5,000), established in our laboratory 
as previously described (37,45). Anti‑PADI4 polyclonal anti-
bodies (1:1,000) were generated by injection of antigen peptides 
coding PADI4 (aa 128‑140) to a rabbit (Protein Purify, Gunma, 
Japan). Following washing with TBS‑T, the membranes were 
incubated with horseradish peroxidase‑conjugated anti‑mouse 
(1:50,000; cat. no. A5278; Sigma‑Aldrich; Merck KGaA), 
anti‑rabbit (1:75,000; cat. no. A9169; Sigma‑Aldrich; Merck 
KGaA) or anti‑rat IgG secondary antibody (1:75,000; cat. 
no. 112‑035‑062; Jackson ImmunoResearch Laboratories, Inc., 
West Grove, PA, USA) at room temperature for 40 min. The 
protein bands were visualized using the enhanced chemilumi-
nescence Amersham ECL Select Western Blotting Detection 
system (GE Healthcare Life Sciences, Chalfont, UK).

Results

Interactions between SYVN1 and PADI4. To assess the 
association between PADI4 and ubiquitination, immunopre-
cipitation assays were performed to determine whether PADI4 
interacted with SYVN1, which represents the E3 ligase in RA. 

HEK293 cells were transfected with FLAG‑tagged SYVN1 
and HA‑tagged PADI4 expression vectors. The complexes 
were precipitated with anti‑FLAG antibodies for SYVN1 
and were detected using anti‑HA antibodies. FLAG‑tagged 
SYVN1 was revealed to interact with PADI4 (Fig. 1).

The PADI4 binding region in the SYVN1 protein was then 
identified to further elucidate the association with PADI4. 
SYVN1 contains 4 domains, the Really Interesting New Gene 
(RING) finger domain, the SYVN1 unique domain (SyU) and 
two proline riche domains. The SyU domain is responsible for 
interactions with p53 and PGC‑1β (37,45). A series of deletion 
mutants of SYVN1 (Fig. 2A) were expressed as GST‑fused 
proteins in E. coli. GST‑fused SYVN1 deletion mutants were 
incubated with HA‑tagged PADI4, which was expressed 
using the in vitro translation system. As a result, GST‑fused 
SYVN1 lacking the transmembrane domain (SYVN1 ΔTM) 

Figure 2. Identification of the PADI4 binding domain of SYVN1. 
(A) Schematic representation of SYVN1 deletion mutants. (B) Pull‑down 
assay with GST‑SYVN1 deletion mutants and HA‑PADI4. PADI4, 
peptidyl‑arginine deiminases 4; SYVN, synoviolin; GST, glutathione 
S‑transferase; HA, human influenza hemagglutinin; TM, transmembrane; 
SyU, SYVN1 unique domain; RING, Really Interesting New Gene finger 
domain; PR, proline rich domain.

Figure 1. Interactions between SYVN1 and PADI4. Immunoprecipitation 
of SYVN1 and PADI4. Lysates of HEK293 cells expressing FLAG‑tagged 
SYVN1 and HA‑tagged PADI4 were immunoprecipitated using anti‑FLAG 
antibodies. Proteins were detected with anti‑HA antibodies. SYVN, 
synoviolin; PADI4, peptidyl‑arginine deiminases 4; HA, human influenza 
hemagglutinin; WCE, whole cell extract; WB, western blot analysis.



ARATANI et al:  PADI4 STOICHIOMETRICALLY INHIBITS SYNOVIOLIN UBIQUITINATION ACTIVITY9206

could bind PADI4. The region from aa 236 to 338, which 
contains the RING finger domain, and the SyU domain could 
bind PADI4. The region from aa 339 to 478, which contains 
proline rich domains, may interact with PADI4 weakly. 
In addition, the mutants lacking the RING finger domain 
(SYVN1ΔTM ΔRING) and the SyU domain could bind with 
PADI4. In contrast, the C‑terminal region (aa 479 to 617) and 
SYVN1ΔTM lacking the SyU domain (SYVN1ΔTM ΔSyU) 
did not interact with PADI4 (Fig. 2B). These results indicated 
that SYVN1 may interact with PADI4 primarily via the SyU 
domain.

Inhibition of ubiquitination by PADI4. To assess the asso-
ciation of PADI4 with ubiquitination, the effects of PADI4 
overexpression on ubiquitination levels in cells with or without 
SYVN1 was investigated (36,39,41). HEK293 cells were 
cotransfected with FLAG‑PADI4 and SYVN1 expression 
vectors, and HA‑tagged ubiquitin. In control cells, ubiquitin 
ladder formations were detected, and SYVN1 expression 
enhanced this ubiquitination. In contrast, co‑expression with 
PADI4 reduced ubiquitination levels when compared with that 
observed in control cells (Fig. 3).

Inhibition of the ubiquitination activity of SYVN1 by PADI4. 
To confirm whether PADI4 inhibited ubiquitination by SYVN1, 
in vivo ubiquitination assays were performed. HEK293 cells 
were transfected with His‑tagged SYVN1 and FLAG‑tagged 
PADI4 with HA‑tagged ubiquitin. SYVN1 was purified with 
a Ni‑sepharose, and auto‑ubiquitination was detected. The 
precipitated SYVN1 was specifically ubiquitinated. PADI4 is 
a citrullination enzyme, and the cysteine residue at amino acid 
position 645 in PADI4 is essential for binding with calcium 
ions and its associated enzymatic activity (26,47). Therefore, 
the effects of PADI4 enzymatic activity on ubiquitination were 
assessed using a PADI4 C645S mutant (26). The mutant PADI4 
was demonstrated to interact with SYVN1 in the same way 
as the wild type (Fig. 1). The mutant inhibited ubiquitination 

in HEK293 cells, decreasing ubiquitination to the same level 
observed for wild type PADI4 (Fig. 4), indicating that the stoi-
chiometric mode rather than the enzymatic activity of PADI4 
may be important for inhibition of ubiquitination.

Discussion

Citrullination affects the structure and function of protein 
substrates by altering the charge (25,48). Such alterations are 
thought to induce autoimmune reactions, generating autoanti-
gens in RA. Citrullination is involved in cell growth signals, 
therefore PADI4 is important for RA pathogenesis (49). The 
present study revealed that overexpression of PADI4 decreased 
ubiquitination levels in HEK293 cells and that SYVN1 inter-
acted with PADI4 via the SyU domain and the C‑terminal 
region. The results indicated that PADI4 may suppress the 
ubiquitination of proteins through associations with E3 
ligases. A PADI4 mutant, lacking enzymatic activity, yielded 
similar results. Thus, PADI4 may prevent ubiquitination via 
stoichiometric effects, not via enzymatic activity.

A number of post‑translational modifications have been 
reported to interact with each other (6). With regards to PADI 
and citrullination, it has been demonstrated to interact with 
acetylation and methylation. Arginine residues are substrates 
for PADI and protein arginine methyltransferases, therefore 
citrullination may antagonize methylation modifications and 
prevent the decondensation of chromatin (25,50). Similarly, 
ubiquitination and acetylation also compete for lysine residues 
during the regulation of sodium channels (51). These regula-
tory mechanisms are based on the competition for enzymatic 
target residues on the common substrates. However, the 
association between citrullination and ubiquitination may be 
mediated via an indirect pathway. Notably, in type 1 diabetes, 
citrullination and ER stress signals are implicated in the same 
inflammatory reaction. Binding immunoglobulin protein 

Figure 4. Direct inhibition of SYVN1 ubiquitination by PADI4. HEK293 
cells were cotransfected with plasmids containing His‑SYVN1 and 
HA‑ubiquitin plus FLAG‑PADI4 or its mutant. His‑SYVN was precipitated 
with a Ni‑sepharose resin and washed with high‑salt buffer. The ubiquiti-
nation level of SYVN1 was detected using anti‑HA antibodies. SYVN, 
synoviolin; PADI4, peptidyl‑arginine deiminases 4; HA, human influenza 
hemagglutinin; His, polyhistidine; Ub, ubiquitin; WT, wild type; WCE, 
whole‑cell extracts; WB, western blot analysis.

Figure 3. Inhibition of ubiquitination by PADI4. HEK293 cells were trans-
fected with HA‑ubiquitin, FLAG‑PADI4 and SYVN1‑FLAG. Whole‑cell 
extracts were analyzed by western blotting with anti‑HA (top blot), 
anti‑SYVN1 (middle blot) and anti‑PADI4 (bottom blot) antibodies. The 
bands detected with anti‑SYVN1 in lanes 2 and 4 were endogenous SYVN1. 
Ub, ubiquitin; PADI4, peptidyl‑arginine deiminases 4; SYVN, synoviolin; 
HA, human influenza hemagglutinin; WB, western blot analysis.
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(Bip)/glucose‑related protein (GRP)‑78, a sensing protein 
that detects the accumulation of unfolded proteins in the ER, 
translocates to the plasma membrane where it is modified by 
PADI2. In this mechanism, the calcium influx induced by 
inflammatory cytokines and ER stress may be able to activate 
PADI (52). Citrullinated Bip secreted from cells is recognized 
as an autoantigen, as previously reported (52‑54). Thus, in the 
present study, inhibition of SYVN1‑mediated ubiquitination 
by PADI4 may represent a novel mechanism for the association 
between deiminase and ubiquitin ligase.

Notably, PADI4 and SYVN1 regulate the same signaling 
pathway. The present study demonstrated that SYVN1 binds to 
p53 in the cytoplasm and negatively regulates p53 signaling via 
ubiquitination. In addition, downregulation of SYVN1 expres-
sion levels has been revealed to decrease the expression of 
p53 target genes, such as p21 (37). In contrast, upregulation of 
SYVN1 represses synoviocyte apoptosis in patients with RA, 
leading to arthritis (37,38,55). Additionally, PADI4 is recruited 
to target genes with p53 and suppresses transactivation via 
citrullination of histone H3 (29,56‑59). In RA synoviocytes, 
activation of PADI4 function induces arthritis by inhibiting 
apoptosis (23). Thus, these reports suggest that activation of 
PADI4 and SYVN1 signals may enhance cell proliferation 
by inhibiting apoptosis. However, the results of the present 
study demonstrated that PADI4 repressed ubiquitination by 
SYVN1. These results may be inconsistent with the previous 
reports due to the presence of multiple regulatory mechanisms 
involving PADI4 and SYVN1.

PADI4 may impair the repression of apoptosis via SYVN1. 
PADI4 and SYVN1 induce cell proliferation via inhibition of 
the p53 pathway and apoptosis. In addition, mice deficient 
in each of these targets have exhibited resistance against 
the collagen‑induced arthritis (36) and glucose‑6‑phosphate 
isomerase‑induced arthritis models (60), respectively. In 
addition, synovium derived from patients with RA possess 
tumor‑like characteristics, including their growth ability and 
morphology (61). However, the proliferation of synoviocytes 
is not limitless and can be suppressed spontaneously at some 
stages, unlike the growth of cancer cells (62). One of the 
mechanisms regulating these features may be Fas‑mediated 
apoptosis in RA synovium (62). Collectively, the results 
indicated that PADI4 may mediate the balance between the 
proliferation and death of cells through citrullination and 
inhibition of ubiquitination by SYVN1. These findings may 
represent a second mechanism for regulating the overgrowth 
of the synovium, which is in contrast to tumor cells. Some 
patients with RA exhibit vasculitis or severe extra‑articular 
manifestations, classified as malignant RA (MRA). The 
causes of MRA have not yet been clearly defined (63). 
NETosis, the release of neutrophil extracellular chromatin 
traps (NETs), has been implicated in these severe rheumatoid 
disorders (64,65). Autoantigens released outside of the cells 
during NETosis enhance inflammatory responses as positive 
feedback, and citrullination induced extracellular PADI4 is 
accelerated (66). However, the mechanisms mediating the 
progression of these diseases have not been determined. 
It is possible that apoptosis of synoviocytes may activate 
NETosis with inflammatory cytokines derived from the 
synovium (64). Thus, apoptosis via the crosstalk between 
PADI4 and SYVN1 may be one of the mechanisms limiting 

cell proliferation in RA or regulating the exacerbation of RA 
symptoms.

Another possibility is that inhibition of ubiquitination may 
mimic the ER stress‑repressed state. SYVN1 is implicated 
in some stages of RA including, inflammation, fibrosis and 
cartilage destruction through the ERAD system and quality 
control of substrates (41,67‑69). The overexpression of SYVN1 
in RA synovium may suppress apoptosis via the activation of 
the ERAD system and cell proliferation (41,55). Promoting 
the degradation of unfolded proteins accumulated in the ER 
by overexpression of SYVN1 results in the reduction of ER 
stress, therefore ER stress may be reduced or prevented in 
rheumatoid synovium highly expressing SYVN1. This may 
lead to inhibition of apoptosis and proliferation of synovio-
cytes. Namely, PADI4 may cause RA via suppression of the 
ER stress pathway in addition to the production of autoan-
tigens and demethylation. A number of proteins, including 
fibrin, fibronectin, vimentin and collagen are citrullinated 
by PADI in RA (20). The association between PADI family 
proteins and substrates are unclear. PADI4 is mainly localized 
in the nucleus and catalyzes histones, however, it has also 
been detected in sera (24). In addition, in the present study, 
PADI4 exhibited several functions in addition to its role as 
a transcriptional repressor. SYVN1 catalyzes the ubiquitina-
tion of membrane‑anchored proteins and secreted proteins, 
including cytokines, extracellular matrix proteins and recep-
tors as substrates, and so SYVN1 and PADI4 may catalyze the 
same substrates. In addition to PADI4, PADI2 has also been 
implicated in RA. Further studies are required to understand 
the crosstalk between ubiquitination and citrullination.

In some tumor tissues, PADI4-null mutations are associ-
ated with resistance to apoptosis. This phenomenon may be 
explained by the function of PADI4 as an inhibitor of cell 
proliferation via citrullination of histone H4R3 under some 
cellular stresses conditions, such as oxidative stress or radia-
tion (58). PADI4 has been predicted to have the opposite effects 
in response to cellular stress. However, the roles of PADI4 
in ER stress have not been determined. In contrast, SYVN1 
has been implicated in oncogenesis and oxidative stress (43). 
Collectively, these results indicated that cell proliferation may 
be regulated by PADI4‑dependent SYVN1 suppression in 
response to several types of stress.

The underlying crosstalk mechanisms between PADI4 
and SYVN1 remain unclear, and so more extensive analysis is 
required. PADI4 and SYVN1 serve important roles in a number 
of diseases, including cancer and autoimmune diseases, such 
as RA. Understanding of the crosstalk mechanisms associ-
ated with PADI4 and SYVN1 may lead to the development of 
novel therapies for these diseases. In addition, SYVN1 inhibi-
tors have previously been demonstrated to inhibit arthritis 
and fibrosis in vivo (44‑46,70). Thus, these compounds may 
be useful in the treatment of diseases involving PADI4 or 
citrullination.
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