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Abstract. Hyperglycemia mediated endothelial cells (ECs) 
injury is closely associated with diabetic vascular complica-
tions. It was revealed that DJ‑1 possesses cellular protective 
effects by suppressing oxidative stress. The present study aimed 
to investigate the beneficial effects of DJ‑1 on high glucose 
(HG)‑induced human umbilical vein endothelial cell (HUVEC) 
injury and to elucidate its underlying mechanisms. HUVECs 
were incubated under 5.5  mM (control group) or 25  mM 
D‑glucose (HG group) and then transfected with recombinant 
adenoviral vectors to overexpression of DJ‑1. Cell proliferation 
and apoptosis were measured using the EdU incorporation 
assay and flow cytometry with Annexin V‑FITC/propidium 
iodide double staining, respectively. Apoptotic‑related proteins 
were determined using western blot analysis. Reactive oxygen 
species (ROS) production, lactate dehydrogenase (LDH) 
and nitric oxide (NO) levels, the content of malondialdehyde 
(MDA), and the activities of superoxide dismutase (SOD) were 
measured. Results demonstrated that overexpression of DJ‑1 
promoted cell proliferation and inhibited HUVECs apoptosis 
stimulated by HG. DJ‑1 also suppressed the HG‑induced 
reduction in the Bcl‑2/Bax ratio and HG activated ROS gener-
ation in HUVECs. Furthermore, HG significantly increased 
the levels of LDH and MDA, and reduced the level of SOD; 
however, these effects were reversed by Ad‑DJ‑1 transfection. 
Furthermore, the cellular protective effect of overexpression 
of DJ‑1 enhanced p‑Akt/Akt ratio, eNOS activation and NO 
production, and these trends were partially reversed by a phos-
phatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K) inhibitor 

(LY294002). Taken together, the present study highlighted 
the involvement of DJ‑1 in HG‑related EC injury and identi-
fied that DJ‑1 exerts a cellular protective effect in HUVECs 
exposed to HG induced oxidative stress via activation of the 
PI3K/Akt‑eNOS signaling pathway.

Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic 
syndrome that has an increasing prevalence, especially in 
China (1). T2DM is characterized by high blood glucose levels, 
relative insufficiency of insulin secretion from pancreatic beta 
cells and insulin resistance, worse still, persistent increased 
blood glucose will result in vascular complications including 
microvascular complications (2,3). The life‑threatening T2DM 
associated microvascular complications include long‑term 
damage, dysfunction and failure of the vital organs such as 
retinopathy, nephropathy neuropathy and cardiovascular 
diseases  (4,5). Of note, the metabolic changes of diabetes 
induce endothelial cells (ECs) dysfunction, which is critical 
to the initiation and progression of vascular complications (6). 
Accumulating evidence indicates that hyperglycemia induced 
by T2DM could increase cell apoptosis, which has emerged as 
one of the key mechanisms leading to ECs damage (7). Thus, 
there is an urgent need to identify the therapeutic strategies 
against ECs damage, which could be useful for prevention and 
treatment of diabetic vascular lesions.

DJ‑1 was first identified as a novel oncogene  (8), and 
subsequent studies have identified its role in the pathogenesis 
of neurodegenerative disorders, such as Parkinson's disease (9) 
and Alzheimer's disease (10). Indeed, DJ‑1 exerts ubiquitously 
in variety of EC types, containing human umbilical vein endo-
thelial cells (HUVECs) (11) and corneal ECs (12). Mutations 
in the gene encoding DJ‑1 can cause familial Parkinsonism 
and overexpression of DJ‑1 protects neurons against oxida-
tive stress‑induced cell death (13,14). Besides, various studies 
have shown that DJ‑1 could decrease oxidative damage and 
increase antioxidant gene levels, which contributing to its 
pro‑survival activity (15‑17). The evidence described above 
suggests DJ‑1 possesses potential therapeutic activities for 
oxidative stress associated ECs dysfunction. Although a recent 
study showed that overexpression of DJ‑1 protects endothelial 
progenitor cells against angiotensin II‑induced dysfunction by 
reducing reactive oxygen species (ROS) production (18), it is 
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still unclear whether DJ‑1 could also play an antioxidant role 
in ECs injuries.

It has been well established that high glucose (HG) could 
induce endothelial apoptosis, dysfunction and inflammation, 
resulting in ECs injury  (19‑21). Given above findings, we 
therefore studied the potential protective effects of DJ‑1 on 
HG‑induced ECs damage and investigated the relationship 
between its effect and the modulation of PI3K/Akt‑eNOS 
signaling pathway.

Materials and methods

Cell culture and treatment. HUVECs were purchased from 
AllCells Biotechnology Co., Ltd. (Shanghai, China). The 
culture medium was DMEM with either 5.5 mM (control 
group) or 25 mM (HG group) D‑glucose, containing 10% 
fetal bovine serum, penicillin (100 U/ml) and streptomycin 
(100 mg/ml). Cells were incubated in a humidified incubator 
with 5% CO2 at 37˚C. Recombinant adenoviral vectors, 
including green fluorescent protein expression (GFP) vectors 
pAdEasy‑1 pShuttle‑bSYN and pGEM‑3ZF (+) and carrying 
a human DJ‑1 (PARK7) gene were constructed utilizing the 
AdEasy Vector system (22). pAdEasy‑DJ‑1 was linearized with 
PacI and transfected into HUVECs to generate adenovirus 
that encoded DJ‑1 (Ad‑DJ‑1). The viral titers of adenoviral 
Ad‑DJ‑1 and Ad‑GFP used for transfection were 1.0x109 and 
2.5x109 pfu/ml.

EdU incorporation assay. Cell proliferation was determined 
with EdU incorporation assay. In brief, cells were seeded into 
96‑well plates at 1x104 cells/well and then 50 µM of EdU 
was added to each well with the incubation for 4 h. HUVECs 
were fixed with 4% formaldehyde and permeated with 0.5% 
Triton X‑100 for 20 min. After washing with PBS, 100 µl of 1X 
Apollo reaction cocktail was added for an additional 30 min. 
Then HUVECs were stained with 100 µl of Hoechst 33342 
for 30 min and the EdU positive cells (red cells) was counted 
under an inverted Nikon microscope (Nikon Corporation, 
Tokyo, Japan) at magnification, x200.

Determination of cellular apoptosis. Cell apoptotic 
rates were measured by flow cytometric analysis using 
Annexin V‑FITC/propidium iodide (PI) staining (Beyotime, 
Shanghai, China). In brief, HUVECs in groups were tryp-
sinized and rinsed with PBS. Subsequently, cells were 
resuspended in Annexin V binding buffer and stained with 
10 µl Annexin V‑FITC for 15 min under dark. Then, 5 µl 
of PI was also added for an additional 5 min. Stained cells 
were analyzed by flow cytometry (FACS Calibur; Bio-Rad 
Laboratories, Inc., Hercules, CA, USA).

Measurement of ROS production. For ROS detection, an 
Image‑iT LIVE Green ROS Detection kit (Invitrogen, 
Carlsbad, CA, USA) was used. HUVECs were incubated with 
DMEM containing 10 µM 2,7‑dichlorodihydrofluorescein 
diacetate (H2DCF‑DA) for 30 min and then washed with PBS. 
The results were obtained using flow cytometry analysis.

Biochemical assay. HUVECs (1x105 cells/ml) were plated in 
6‑well plates for 18 h and treated with the method described 

above. The appropriate volume of supernatant was collected 
to determine the release of lactate dehydrogenase (LDH) and 
nitric oxide (NO), the content of malondialdehyde (MDA), 
and the activities of superoxide dismutase (SOD) (Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China) according 
to the manufacturer's instructions.

Western blot analysis. Total protein extracts were obtained 
with RIPA lysis buffer (Shanghai Biyuntian Bio-Technology 
Co., Ltd., Shanghai, China) containing protease inhibitor cock-
tail (Sigma-Aldrich, St. Louis, MO, USA). Protein lysates were 
then separated by 8‑15% SDS‑PAGE, transferred to polyvinyli-
dene fluoride membranes (PVDF; MA, USA) and blocked with 
1% bovine serum albumin (BSA). Then the membranes were 
probed with specific primary antibodies against PARK7/DJ‑1 
(1:10,000), Bcl‑2 (1:500), Bax (1 µg/ml), caspase‑3 (1:500; 
all from Abcam, Cambridge, MA, USA), and Akt (1:1,000), 
p‑Akt (1:2,000), eNOS (1:1,000), p‑eNOS (1:1,000; all from 
Cell Signaling Technology, Shanghai, China), and GAPDH 
(Sigma‑Aldrich). Subsequently, after washing with TBST for 
three times, the blots were incubated in peroxidase conjugated 
immunoglobulin G anti‑rabbit secondary antibody (1:5,000; 
Sigma‑Aldrich) for 2 h. The immune complexes were visual-
ized using an enhanced chemiluminescence kit (Millipore, 
Billerica, MA, USA) and quantified with the Quantity One 
v5.0 software (Bio‑Rad Laboratories, Inc.).

Statistical analysis. All statistical analyses were undertaken 
using the SPSS 20.0 software (SPSS, Inc., Chicago, IL, 
USA). Data were presented as mean ± standard deviation. 
Comparisons among groups were carried out with a two‑tailed 
Student t‑test or one‑way ANOVA. The value of P<0.05 was 
considered to be statistically significant.

Results

Overexpression of DJ‑1 promotes proliferation in HG‑induced 
HUVECs. To determine whether DJ‑1 affects the proliferation 
of HG‑induced HUVECs, the adenoviral vector Ad‑DJ‑1 or 
Ad‑GFP was used to overexpression of DJ‑1 in HUVECs and 
the results were illustrated in Fig. 1A. The western blot analysis 
showed that DJ‑1 protein expression was markedly increased 
in Ad‑DJ‑1 group, compared to that in Ad‑GFP group (P<0.05; 
Fig. 1B). HUVECs exposed to HG showed significant decrease 
in proliferation ability comparing with control group, whereas 
overexpression of DJ‑1 reversed the inhibitory effect caused by 
HG (P<0.05; Fig. 1C and D).

DJ‑1 inhibits HG‑induced apoptosis in HUVECs. Flow 
cytometry analysis with Annexin V‑FITC and PI double 
staining was then used to determine the effect of DJ‑1 on 
HG‑induced apoptosis. In comparison with the control group, 
the results of flow cytometry displayed that HG caused an 
obvious increase on the cell apoptosis rates of HUVECs. 
Unexpectedly, this injury was restored by overexpression of 
DJ‑1 (Fig. 2A). In addition, the expressions of pro‑apoptotic 
proteins, including Bax (Fig. 2B) and caspase‑3 (Fig. 2C), were 
elevated, whereas anti‑apoptosis protein Bcl‑2 (Fig. 2B) was 
decreased in HG‑induced HUVECs. Overexpression of DJ‑1 
significantly reversed these effects.
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Figure 1. Effects of DJ‑1 on proliferation ability of HUVECs induced by HG. (A) Fluorescence showed that recombinant adenoviral vectors were successfully 
transfected into HUVECs. (B) Expression of DJ‑1 protein was detected by western blot analysis in HUVECs in different groups. (C and D) Cell proliferation 
ability of HUVECs in different groups were measured using EdU incorporation assay. *P<0.05 compared with control group; #P<0.05 compared with Ad‑GFP 
group. HUVECs, human umbilical vein endothelial cells; HG, high glucose.

Figure 2. Overexpression of DJ‑1 alleviates HG‑induced apoptosis in HUVECs. (A) Cell apoptosis was measured by flow cytometry and apoptotic cells 
represent the percentage of Annexin V single positive and Annexin V/PI double positive cells (region B2+B4). (B) Western blot analysis showed the levels 
of Bcl‑2 and Bax proteins in different groups. (C) Western blots of caspase‑3 protein expression. GAPDH was used as an internal control. ICAM‑1. #P<0.05 
compared with control, *P<0.01 compared with Ad‑GFP group. HG, high glucose; HUVECs, human umbilical vein endothelial cells; PI, propidium iodide.
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DJ‑1 possesses antioxidative property in HG‑induced 
HUVECs. Oxidative stress plays a critical role in ECs apoptosis. 
Thereby, we investigated the levels of markers of oxidative 
stress, including ROS, LDH, MDA, and SOD in HUVECs. 
Treatment of cells with HG dramatically caused ROS genera-
tion compared with the control group. While, overexpression 
of DJ‑1 suppressed ROS production in HUVECs exposed 
to HG (Fig. 3A). Besides, the subsequent tests showed that 
compared with the control group, HG significantly increased 

the levels of LDH, MDA, and reduced the level of SOD in 
the supernatant. Similarly, overexpression of DJ‑1 effectively 
reduced above elevated oxidative stress markers (Fig. 3B‑D).

DJ‑1 activates PI3K/Akt‑eNOS pathway in HG induced 
HUVECs. To reveal the mechanism underlying the above 
protective effects of DJ‑1 on HG‑induced HUVECs, we 
investigated whether PI3K/Akt‑eNOS signaling pathway 
was involved. As shown in Fig. 4A, the treatment of cells 

Figure 3. Suppressive effects of DJ‑1 on HG‑induced HUVECs ROS production. (A) The ROS levels in HUVECs were detected by flow cytometry. (B) LDH, 
(C) MDA, and (D) SOD levels in the culture medium of HUVECs were measured in different groups. *P<0.05 compared with control group; #P<0.05 compared 
with Ad‑GFP group. HG, high glucose; HUVECs, human umbilical vein endothelial cells; ROS, reactive oxygen species; LDH, lactate dehydrogenase; MDA, 
malondialdehyde; SOD, superoxide dismutase.

Figure 4. Overexpression of DJ‑1 restored the impairment of the PI3K/Akt‑eNOS pathway in HG‑stimulated HUVECs. (A) The expression of phosphorylated 
Akt with or without an PI3K inhibitor LY294002 detected by western blot analysis. The Akt phosphorylation was calculated as the ratio of normalized 
arbitrary units of p‑Akt over total Akt. (B) Representative western blots of total and phosphorylated eNOS. (C) The production of NO was measured in cultural 
medium of HUVECs in groups. *P<0.05 compared with control group; #P<0.05 compared with Ad‑GFP group; %P<0.05 compared with HG + Ad‑DJ‑1 group. 
HG, high glucose; HUVECs, human umbilical vein endothelial cells; NO, nitric oxide.
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with HG inhibited the phosphorylation of Akt. Interestingly, 
overexpression of DJ‑1 significantly increased p‑Akt level. 
However, LY294002, the PI3K inhibitor of Akt pathway, 
markedly suppressed the effect of DJ‑1 on Akt phosphoryla-
tion level. As eNOS is an important downstream target of Akt, 
we then examined the alteration of eNOS and p‑eNOS protein 
in HG‑induced HUVECs. As a result, HG also inhibited the 
phosphorylation of eNOS in HUVECs, and this effect was 
reversed by overexpression of DJ‑1. Similarly, the effects of 
DJ‑1 on p‑eNOS protein expression was blocked by LY294002 
(Fig. 4B). Besides, we found that HG treatment significantly 
decreased the NO production in the culture medium, while 
overexpression of DJ‑1 reversed this tendency (Fig. 4C).

Discussion

In the present studies, we found that DJ‑1 significantly promoted 
HUVECs proliferation and protected it from HG‑induced cell 
apoptosis through suppressing the oxidative stress. Moreover, 
we demonstrated that the protective effects of DJ‑1 on ECs 
function rely heavily on the PI3K/Akt‑eNOS signaling 
pathway. These findings provided new information about 
the role of DJ‑1 in protecting ECs from HG mediated injury, 
representing a novel therapeutic strategy in the treatment of 
ECs damaged associated diabetic vascular lesions.

A variety of reports demonstrated that diabetes‑associated 
hyperglycemia could induce apoptosis in pancreatic islet 
ECs (23), pancreatic beta‑cells (24), and HUVECs (25), via 
an intrinsic apoptotic pathway. Similarly, we used (25) mM 
D‑glucose to simulate hyperglycemia in this work and found 
cultured HUVECs showing reduction in cell proliferation 
ability and possessed of high cell apoptotic rates after treatment 
with HG. Of note, emerging evidence indicates a link between 
HG‑induced apoptosis of ECs and ROS production (26). And 
as expected. We also showed HG triggered oxidative stress in 
HUVECs, which was detected via ROS production, levels of 
LDH, MDA, and SOD in cell supernatant.

The growing body of evidences demonstrated that DJ‑1 is 
involved in various regulatory functions, including transcrip-
tional regulation and anti‑oxidative stress regulation (27). DJ‑1 
is a homodimeric protein, belonging to the Thi/Pfp1 super-
family and is abundant in most living things from humans to 
bacteria (28). With the increase in blood glucose levels, the 
levels of DJ‑1 increase in pancreatic β‑cells, to inhibit oxida-
tive stress induced ROS (29). However, decreased expression 
of DJ1 has been detected in the islets of elderly T2DM patients 
in a gender dependent manner (29). These showed conflicting 
results concerning DJ‑1 expression in this metabolic disease. 
Here, we focused on the function of DJ‑1 on HG‑induced 
cell dysfunction rather than the expression levels of DJ‑1 in 
ECs. It has been shown that DJ‑1 protects the morphology 
and function of the mitochondria and protects against cell 
injury (30), and in the present study, we revealed that DJ‑1 
reversed HG‑induced HUVECs apoptosis. In accordance with 
our findings, Wang and Gao found that DJ‑1 silencing in HeLa 
cells increased cell apoptotic rates while DJ‑1 overexpres-
sion significantly inhibited cell apoptosis (31). In addition, 
DJ‑1 transgene protects cortical neurons from H2O2‑induced 
apoptosis and re‑expression of DJ‑1 into the cortical neurons 
from DJ‑1‑knockout mice could reduce H2O2‑induced cell 

death via Akt1 signaling pathway  (32). The Bcl‑2 family 
proteins, consisting pro‑apoptotic (Bax) and anti‑apoptotic 
(Bcl‑2) molecules, are known to participate in the regulation 
of the apoptotic pathway (33). DJ‑1 increased the reduction 
of Bcl‑2/Bax ratio and reduced the upregulation of caspase‑3, 
caused by HG in the current study.

Furthermore, it was recognized that loss of DJ‑1 increases 
ROS production (34). In corneal ECs, downregulation of DJ‑1 
increases caspase‑3 activation and phospho‑p53 under ultra-
violet A oxidative stress and the decline in DJ‑1 levels results 
to increased oxidative damage (12). Excessive DJ‑1 expression 
also inhibited oxidative stress‑induced HepG2 cell death (35) 
and pancreatic β‑cell death (36). Thereby, the effects of DJ‑1 
against oxidative stress induced intracellular ROS production, 
were then explored in HUVECs. We showed that DJ‑1 alle-
viates the HUVECs damage induced by HG by suppressing 
oxidative stress through detecting ROS, LDH, MDA and SOD 
levels. In accordance with our results, Shen et al demonstrated 
that overexpression of DJ‑1 exerts protective effects against 
HG‑induced tubular epithelial cells injury, as evidenced by 
increased SOD activity, the decreased release of LDH and the 
decreased MDA content (37).

Nevertheless, how DJ‑1 regulates ROS is still not completely 
clear. DJ‑1 is oxidized on its cysteine residues which are also 
critical for the ability of DJ‑1 to manage ROS (38). Studies 
showed that DJ‑1 exerts its antioxidant ability through interac-
tion with nuclear factor erythroid 2‑related factor2 (Nrf2) (12), 
paraoxonase‑2 (39), receptor of activated C kinase 1, or activation 
of signaling pathway such as PI3K/Akt/mTOR (40), NF‑κB and 
MAPK pathway (36). Of note, the PI3K/Akt signaling pathway 
is widely present in cells playing a regulatory role for eNOS, 
and is also involved in cell proliferation and apoptosis (41). As 
a vascular endothelial protective factor, eNOS exerts its role 
by adjusting the biosynthesis of NO. So far, there remains a 
lack of investigation on the effects of DJ‑1 on PI3K/Akt‑eNOS 
signaling pathway in HG induced HUVECs. Once activated, the 
phosphorylation of Akt can directly phosphorylate eNOS and 
induce the subsequent production of NO (42). We found that, 
accompanied with the inhibition of oxidative stress induced 
HUVECs apoptosis, DJ‑1 also attenuated the decrease in the 
phosphorylation of Akt and eNOS when exposed to HG, as well 
as increased NO levels. It is known that impaired ECs func-
tion arises from decreased production and/or bioactivity of NO 
induced by eNOS phosphorylation (43,44). In addition, deficien-
cies in generation of eNOS‑derived NO have been proposed as 
mechanisms responsible for ECs dysfunction in diabetes (45). 
Our subsequent chemical stressors analysis demonstrated that 
PI3K specific inhibitors, LY294002, significantly abolished the 
activation of this pathway induced by overexpression of DJ‑1, 
suggesting that DJ‑1 might exert its antiapoptotic effect by 
activating the PI3K/Akt‑eNOS pathways.

Collectively, our preliminary study showed that DJ‑1 could 
antagonize endothelial dysfunction by attenuating oxidative 
stress via activation of the PI3K/Akt‑eNOS signaling pathway. 
As increasing evidence have validated the important role 
of oxidative stress in the pathological process of diabetic 
vascular complications (46‑48), the results of the present study 
highlights DJ‑1 as a potential therapeutic target. Accordingly, 
further studies should focus on the function of DJ‑1 in the 
hyperglycemia related ECs dysfunction in the future.
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