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Abstract. The aim of this study was to analyze gene expres-
sion profiles for exploring the function and regulatory network 
of differentially expressed genes (DEGs) in pathogenesis of 
rhinitis by a bioinformatics method. The gene expression profile 
of GSE43523 was downloaded from the Gene Expression 
Omnibus database. The dataset contained 7 seasonal allergic 
rhinitis samples and 5 non‑allergic normal samples. DEGs 
between rhinitis samples and normal samples were identified 
via the limma package of R. The webGestal database was 
used to identify enriched Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways of the DEGs. The differentially 
co‑expressed pairs of the DEGs were identified via the DCGL 
package in R, and the differential co‑expression network was 
constructed based on these pairs. A protein‑protein interac-
tion (PPI) network of the DEGs was constructed based on the 
Search Tool for the Retrieval of Interacting Genes database. 
A total of 263 DEGs were identified in rhinitis samples 
compared with normal samples, including 125 downregulated 
ones and 138 upregulated ones. The DEGs were enriched in 
7 KEGG pathways. 308 differential co‑expression gene pairs 
were obtained. A differential co‑expression network was 
constructed, containing 212 nodes. In total, 148 PPI pairs of 
the DEGs were identified, and a PPI network was constructed 
based on these pairs. Bioinformatics methods could help us 
identify significant genes and pathways related to the patho-
genesis of rhinitis. Steroid biosynthesis pathway and metabolic 
pathways might play important roles in the development of 
allergic rhinitis (AR). Genes such as CDC42 effector protein 5, 
solute carrier family 39 member A11 and PR/SET domain 10 
might be also associated with the pathogenesis of AR, which 
provided references for the molecular mechanisms of AR.

Introduction

Allergic rhinitis (AR) is a symptomatic disorder of the nose 
induced after exposure to allergens via IgE‑mediated hyper-
sensitivity reactions, which are characterized by the cardinal 
symptoms of watery rhinorrhea, nasal obstruction, nasal itching 
and sneezing (1). It represents one of the greatest health problems 
in modern societies (2). A conservative estimate revealed that 
AR occurs in over 500 million people around the world (3). The 
prevalence is about 10‑30% in adults and nearly 40% in chil-
dren (4). This makes AR become one of the most common allergic 
diseases in the world, with increasing prevalence and often 
far‑reaching consequences for quality of life. Allergen‑specific 
immunotherapy (SIT) is the most available treatment for AR. 
It can alter the natural course of allergic disease by preventing 
new sensitization/onset and providing long‑term remission after 
discontinuation of treatment (5). However, the conventional SIT, 
subcutaneous injection, requires frequent hospital visits and is 
painful, resulting in a low patient compliance. Furthermore, it 
may cause some adverse events such as anaphylaxis (6). It is 
urgent to make a deeper understanding of the pathogenesis of 
AR and find new therapeutic methods.

Recent studies showed that genetic factors played impor-
tant roles in the development of AR. There was ample evidence 
suggesting that AR was a complex multifactorial disorder 
including both genetic and environmental factors (7,8). Several 
genes and pathways had been reported to be associated with 
AR. One of the important biological signals involved in the 
pathogenesis of AR was histamine, which was released after 
relevant antigenic stimulation of sensitized subjects, initiating 
the early phase of allergic reaction (9). Moreover, one research 
demonstrated that thymic stromal lymphopoietin (TSLP) gene 
SNP rs1837253 was associated with reduced odds for AR in 
boys with asthma (10). In addition, apolipoprotein A‑IV was 
also reported to be associated with the pathogenesis of AR, 
and could be served as a candidate target molecule for the 
treatment of seasonal AR (3). However, the precise molecular 
mechanism of AR is still not well understood.

In this study, differentially expressed genes (DEGs) in 
AR samples compared with normal samples were identified 
through bioinformatics methods. The construction of the 
differential co‑expression network and the protein‑protein 
interaction (PPI) network might provide us a better under-
standing of the pathogenesis of AR. Our study might provide 
references for the diagnosis and therapy of AR.
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Materials and methods

Microarray data. The gene expression profile of GSE43523 
was downloaded from National Center of Biotechnology 
Information (NCBI) Gene Expression Omnibus (GEO;  
http://www.ncbi.nlm.nih.gov/geo/) database. The dataset 
contained 7 nasal epithelial cells of seasonal AR samples and 
5 nasal epithelial cells of non‑allergic normal samples. The 
expression profile was detected based on GPL6883 Illumina 
HumanRef‑8 v3.0 expression beadchip platform.

Data processing and identification of DEGs. The raw data 
were background corrected, quantile normalized and log2 
transformed using the preprocessCore package in R  (11). 
Affymetrix probe IDs were converted to official gene symbol. 
If multiple probes corresponded to one given gene, the mean 
expression value of those probes was defined as the gene expres-
sion value. DEGs in rhinitis samples compared with normal 
samples were identified via the limma package of R  (12). 
Bonferroni and Hochberg method was used for the correction 
of P‑value. The threshold was P<0.05 and |log2 (fold change)|> 
0.58. The threshold was |log2 (fold change)|>0.58 that mean 
gene expression quantity in rhinitis samples change >1.5‑fold 
compared with normal samples. Besides, hierarchical clus-
tering analysis of rhinitis samples and normal samples based 
on the DEGs were performed.

Pathway enrichment analysis. To further explore the 
biological functions and involved pathways of the DEGs, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis was performed based on the webGestal 
database with the threshold of P<0.05 (13).

Construction of the differential co‑expression network. DCGL 
was an R package for identifying differentially co‑expressed 
genes and links from gene expression microarray data (14). It 
could examine the expression correlation based on the exact 
co‑expression changes of gene pairs between two conditions (15). 
In this study, the co‑expression values for each pair of the 
DEGs in rhinitis samples and normal samples were calculated 
via the DCGL package in R. Gene pairs with different signs of 
co‑expression values in two types of samples were selected. Then, 
the differential co‑expression pairs were identified according to 
the criterion: Absolute value of the difference of co‑expression 
values in two samples >1.5. The differential co‑expression 
network of the DEGs was constructed based on these pairs.

Construction of the PPI network. Search Tool for the Retrieval 
of Interacting Genes (STRING) (http://string‑db.org/)  (16) 
was an online database for predicting functional interactions 
between proteins (17). In this study, PPI pairs of the DEGs were 
selected based on the STRING database with the threshold 
of combined score >0.4. The PPI network of the DEGs was 
constructed based on these pairs.

Results

The DEGs. A total of 263 DEGs were identified in rhinitis 
samples compared with normal samples, including 125 down-
regulated ones and 138 upregulated ones (Fig. 1). The top 20 

DEGs according to P‑value were listed in Table Ⅰ. Clustering 
analysis revealed a clearly distinct expression of all DEGs 
between rhinitis samples and normal samples (Fig. 2). From 

Figure 1. The differentially expressed genes in allergic rhinitis samples 
compared with normal samples. FC, fold change.

Table  I. The top 20 DEGs in AR samples compared with 
normal samples.

Gene name	 P‑value	 LogFC

ST3GAL5	 0.83x10‑4	 ‑0.655
NR1D2	 1.04x10‑4	 ‑1.144
AKR1B1	 1.46x10‑4	 ‑1.255
HIST1H2BD	 1.58x10‑4	 0.985
TMEM125	 1.72x10‑4	 0.698
MAP3K2	 2.38x10‑4	 ‑1.170
AGR2	 3.98x10‑4	 0.927
RNF217	 6.40x10‑4	 ‑1.171
CST1	 8.47x10‑4	 6.013
LIN54	 8.74x10‑4	 ‑0.913
ZNF750	 9.18x10‑4	 ‑1.049
DHCR24	 9.70x10‑4	 0.711
SLC39A11	 9.82x10‑4	 0.669
ATP2C2	 10.88x10‑4	 1.218
CAMK2G	 10.93x10‑4	 ‑1.003
CLC	 11.26x10‑4	 2.565
SDPR	 11.28x10‑4	 1.025
IL20RB	 11.74x10‑4	 1.237
FAM46B	 13.36x10‑4	 0.860
ANKRD13C	 13.44x10‑4	 ‑0.906

DEGs, differentially expressed genes; AR, allergic rhinitis FC, fold 
change.
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the heatmap (Fig. 2), we found that the gene expression of 
5 nasal epithelial cells of non‑allergic normal samples was 
distinguished from the 7 nasal epithelial cells of seasonal AR 
samples.

The enriched pathways. Seven enriched KEGG pathways of 
the DEGs were obtained in the webGestal database (Table Ⅱ). 
The top 4 pathways were fructose and mannose metabolism, 
riboflavin metabolism, renin‑angiotensin system (RAS), 
amino sugar and nucleotide sugar metabolism respectively.

The differential co‑expression network. A total of 308 differen-
tial co‑expression gene pairs were obtained. The co‑expression 
network based on these pairs was constructed (Fig. 3), which 
contained 212 nodes. The top 20 nodes according to the degree 
were listed in Table Ⅲ.

The PPI network. 148 PPI pairs were identified by the STRING 
database. A PPI network was constructed based on these pairs 
and contained 125 genes (Fig. 4). The top 20 nodes of the PPI 
network were listed in Table Ⅳ.

Discussion

AR significantly affects the quality of the patient's daily 
life. Despite the development of various of pharmacological 
methods, avoidance of the allergen is usually not possible and 
symptom relief is often limited (18). The precise pathogenesis 
of AR is still not well understood. In this study, DEGs in AR 
samples compared with normal samples were identified via 

bioinformatics methods. Then the DEGs were further analyzed 
by the construction of differential co‑expression network and 
PPI network to a better understanding of the molecular mecha-
nism of AR.

The gene expression profile of GSE43523 contained 7 nasal 
epithelial cells of seasonal AR samples and 5 nasal epithelial 
cells of non‑allergic normal samples. Small sample size was 
a limitation of the study but the results of our analysis was 
reliable to a certain extent. The small samples of studies have 
been recognized by many researchers. For example, Zhu et al 
identified endometrial cancer prognosis markers which the 

Figure 2. The hierarchical cluster analysis of the allergic rhinitis samples and normal samples based on the differentially expressed genes. Green, black and 
red colors represent the expression values of the DEGs, as indicated by the histogram. DEGs, differentially expressed genes.

Table II. The enriched KEGG pathways of the DEGs.

Category	 Pathway name	 P‑value

KEGG pathway	 Fructose and mannose	 0.001
	 metabolism
KEGG pathway	 Riboflavin metabolism	 0.008
KEGG pathway	 Renin‑angiotensin system	 0.020
KEGG pathway	 Amino sugar and nucleotide	 0.027
	 sugar metabolism
KEGG pathway	 Steroid biosynthesis	 0.024
KEGG pathway	 Ribosome	 0.027
KEGG pathway	 Metabolic pathways	 0.032

KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differ-
entially expressed genes.
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tissue samples for the microarray study consisted of 7 control 
samples, 3‑G1 samples, 8‑G2 samples and 2‑G3 samples (19). 
A total of 263 DEGs were identified in rhinitis samples 
compared with normal samples which were further analyzed 
by the construction of differential co‑expression network 
and PPI network to a better understanding of the molecular 
mechanism of AR. Individual analysis of the 263 DEGs was 
nοt performed as this was not considered necessary.

The enriched KEGG pathways of the DEGs were fructose 
and mannose metabolism, riboflavin metabolism, RAS, amino 
sugar and nucleotide sugar metabolism, steroid biosynthesis, 
ribosome and metabolic pathways. Many of these pathways 
were associated with the pathogenesis of AR. Angiotensin was 
a peptide hormone that caused vasoconstriction and a subse-
quent increase in blood pressure. It was part of the RAS, which 
was a major target for drugs that lowered blood pressure (20). 
Angiotensin converting enzyme (ACE), which contained 
26 exons and 25 introns, was reported to be an important 
AR susceptibility gene (21). ACE was essential in converting 
angiotensin I into angiotensin II, which was an mainly 
effector molecule in the RAS and acted as pro‑inflammatory 
modulator in the augmentation of immune responses (22,23). 
The insertion or deletion polymorphism of ACE was a risk 
factor for AR and verified by large number and representative 
population (24). A steroid was an organic compound with four 
rings arranged in a specific configuration (25). Steroid were 
generally considered the most effective medications for the 
management of inflammatory diseases including asthma and 
AR (26). The corticosteroids could be given locally into the 
nose and bronchi without risk of systemic adverse effects. The 
introduction of potent corticosteroids in the treatment of AR 

had been a major therapeutic advance, and had emphasized 
the importance of pharmacological and morphological aspects 
of AR (27). Topical steroid treatment of AR could decrease 
nasal fluid TH2 cytokines, eosinophils, eosinophil cationic 
protein and IgE (28). Metabolic pathways also played critical 
roles in the development of AR. Kinin metabolism in human 
nasal secretions during experimentally could induce AR (29). 
In addition, one study demonstrated that serum tryptophan 
metabolism could be served as a biomarker in patients with 
AR (30). The metabolism of vitamin D was also reported to be 
different in AR patients (31).

The top 5 genes in the differential co‑expression network 
according to the degree were CDC42EP5, SERPINF1, 
SLC39A11, SLC7A1 and MAGEE1, respectively. While 
the top 5 genes in the PPI network were PRDM10, EP300, 
ITGA2, RRAS and VASN, respectively. Shi and his team 
found that FOS, JUN, and CEBPD may play crucial roles 
during the process of seasonal allergic rhinitis (SAR) by the 
microarray data GSE50101 (32). The different results with 
our study may be caused by distinction between AR and 
SAR. AR was an inflammatory diseases, and many of the 
above genes were reported to be associated with the patho-
genesis of AR or inflammatory diseases  (33). SLC39A11 
encoded a type of human zinc transporter, which was one 
of the critical regulators that maintained intracellular zinc 
concentrations, and played a role in regulating cell survival 
during inflammation (34,35). Zinc was an essential micro-
nutrient and cytoprotectant involved in the host response 
to inflammatory stress. Zip protein was demonstrated to be 

Table Ⅲ. The top 20 nodes in the differential co‑expression 
network with high degree.

Gene	 Degree

CDC42EP5	 14
SERPINF1	 13
SLC39A11	 13
SLC7A1	 12
MAGEE1	 10
FABP6	 9
ABCA1	 8
TRNP1	 8
C1orf112	 7
DNAJB9	 7
GCNT3	 7
GOLT1A	 7
HLA	 7
MRPL52	 7
NR2C2	 7
NT5DC2	 7
POLD4	 7
AKR1B1	 6
CHST6	 6
CLDN1	 6

Table  Ⅳ. The top 20 nodes in the PPI network with high 
degree.

Gene	 Degree

PRDM10	 22
EP300	 12
ITGA2	 11
RRAS	 7
VASN	 6
ATP12A	 5
SERPINE2	 5
SRSF7	 5
ABCA1	 4
ALDH3A1	 4
ASF1A	 4
EDF1	 4
FKBP4	 4
GZMB	 4
HPS3	 4
MAF	 4
MUC2	 4
SQSTM1	 4
TYRO3	 4
ALDH16A1	 3

PPI, protein‑protein interaction.
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Figure 3. The differential co‑expression network of the differentially expressed genes.

Figure 4. The protein‑protein interaction network of the differentially expressed genes.
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an essential zinc importer at the onset of inflammation for 
facilitating cytoprotection (36). Zinc was also an antioxidant 
and had anti‑inflammatory actions. Zinc could induce A20 
which inhibited nuclear transcription factor κB (NF‑κB) 
activation resulting in decreased generation of inflammatory 
cytokines (37). Zinc deficiency was confirmed in patients 
with AR (38). CDC42EP5 was a member of CDC42 effector 
protein family. It could bind to CDC42 and regulate its function 
negatively (39). CDC42 was a Rho‑family GTPase. It had been 
implicated in several signal transduction pathways, including 
NF‑κB activation, activation of the c‑Jun N‑terminal MAP 
kinase and stimulation of the NF‑κB (40,41). CDC42 could 
be activated by the inflammatory cytokines TNFα and IL‑1, 
which was associated with the development of inflammatory 
diseases (42). In addition, CDC42 signaling was identified 
as a mediator of chronic inflammation associated with endo-
thelial senescence. Inhibition of CDC42 or NF‑κB signaling 
would attenuate the sustained upregulation of pro‑inflam-
matory genes in human endothelial cells. CDC42 pathway 
was critically involved in senescence‑associated inflamma-
tion and could be served as a therapeutic target for chronic 
inflammation in patients with inflammatory diseases (43). 
However, the directly relationship between CDC42 and AR 
had not been reported. PRDM10 was a member of the PRDM 
family, which has emerged as prime regulators of many types 
of tissue differentiation and disease pathogenesis (44‑46). 
Studies demonstrated that PRDM family played critical roles 
in the development of inflammatory diseases. For example, 
PRDM1 genetic variants could be used to prognose, diag-
nose, and treat inflammatory disease (47). PRDM11 mutation 
was associated with inflammatory response in mice  (48). 
However, the direct relationship between PRDM10 and AR 
were still not well understood.

Bioinformatics methods could help us identify significant 
genes and pathways related to the pathogenesis of AR. Steroid 
biosynthesis pathway and metabolic pathways might play 
an important role in the development of AR. Genes such as 
CDC42EP5, SLC39A11 and PRDM10 might be also associ-
ated with the pathogenesis of AR. However, further studies 
were still needed to confirm our results and explore the specific 
regulatory mechanism of these genes and pathways.
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