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Abstract. The present study aimed to identify the feature 
genes associated with smoking in lung adenocarcinoma (LAC) 
samples and explore the underlying mechanism. Three gene 
expression datasets of LAC samples were downloaded from the 
Gene Expression Omnibus database through pre‑set criteria 
and the expression data were processed using meta‑analysis. 
Differentially expressed genes (DEGs) between LAC samples 
of smokers and non‑smokers were identified using limma 
package in R. The classification accuracy of selected DEGs were 
visualized using hierarchical clustering analysis in R language. 
A protein‑protein interaction (PPI) network was constructed 
using gene interaction data from the Human Protein Reference 
Database for the DEGs. Betweenness centrality was calculated 
for each node in the network and genes with the greatest BC 
values were utilized for the construction of the support vector 
machine (SVM) classifier. The dataset GSE43458 was used 
as the training dataset for the construction and the other 
datasets (GSE12667 and GSE10072) were used as the valida-
tion datasets. The classification accuracy of the classifier was 
tested using sensitivity, specificity, positive predictive value, 
negative predictive value and area under curve parameters 
with the pROC package in R  language. The feature genes 
in the SVM classifier were subjected to pathway enrichment 
analysis using Fisher's exact test. A total of 347 genes were 
identified to be differentially expressed between samples of 
smokers and non‑smokers. The PPI network of DEGs were 

comprised of 202 nodes and 300 edges. An SVM classifier 
comprised of 26 feature genes was constructed to distinguish 
between different LAC samples, with prediction accuracies 
for the GSE43458, GSE12667 and GSE10072 datasets of 100, 
100 and 94.83%, respectively. Furthermore, the 26 feature 
genes that were significantly enriched in 9 overrepresented 
biological pathways, including extracellular matrix‑receptor 
interaction, proteoglycans in cancer, cell adhesion molecules, 
p53 signaling pathway, microRNAs in cancer and apoptosis, 
were identified to be smoking‑related genes in LAC. In conclu-
sion, an SVM classifier with a high prediction accuracy for 
smoking and non‑smoking samples was obtained. The genes 
in the classifier may likely be the potential feature genes asso-
ciated with the development of patients with LAC who smoke.

Introduction

Lung cancer is the most common cause of cancer‑associated 
fatality in men and the second most common in women (1). 
The 5‑year survival rate following diagnosis of lung cancer 
is 15.6%, making it one of the worst prognostic malignant 
tumors (2). The survival rate is lower compared with breast, 
colon and prostate cancer (2). Cigarette smoking is responsible 
for ~90% of lung cancer incidences and leads to decreased 
survival rates (3).

The major histological types of lung cancer include adeno-
carcinoma, squamous cell carcinoma, large cell carcinoma 
and small cell carcinoma. The incidence of lung adenocarci-
noma (LAC) increased gradually and this lung cancer has been 
the most frequently occurring histological type in most parts 
of the world in recent years (4). Adenocarcinoma account for 
~40% of all lung cancer cases (5). Smoking is a major cause of 
lung adenocarcinoma (6). However, the causes of the increase 
in adenocarcinomas are not clear.

Sequencing data from large‑scale databases, such as 
The Cancer Genome Atlas, have aided in identification of 
novel factors and potentially targetable alterations in lung 
adenocarcinomas  (7). A number of smoking‑associated 
genes have been revealed in LAC, including the cyclin D1 
A870 G gene, and polymorphisms of this gene have been 
indicated to modulate smoking‑induced lung cancer risk (8). 
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Estrogen receptor α promotes smoking carcinogen‑induced 
lung carcinogenesis via cytochrome P450 1B1  (9). The 
interactions between smoking, polymorphisms of human 
8‑oxoguanine DNA glycosylase and p53 are associated with 
the development of lung cancer (10). Interactions between 
smoking, fragile histidine triad gene alterations  (11) and 
excision repair cross‑complementation group 1 polymor-
phisms (12) have also been reported in lung cancer. However, 
the recognized genetic changes in patients with LAC who 
are smokers remain to be elucidated and further studies are 
necessary to determine the underlying molecular mechanism 
of smoking‑induced LAC.

A recent study has aimed to identify smoking‑associated 
genes via the differential analysis of RNA sequencing 
data  (13). The study analyzed two datasets with only two 
samples and identified 1,603  differentially expressed 
genes (DEGs). The authors also identified that the possible 
alternative splicing of gene FCGBP may have an impact on 
lung cancer. However, the small sample size could lead to low 
reliability of the results.

In the present study, three gene expression datasets of 
smokers and non‑smokers with LAC (>50  samples/group) 
were obtained and DEGs were identified using meta‑analysis. 
A protein‑protein interaction (PPI) network of the DEGs was 
constructed with the betweenness centrality (BC) analysis 
for the selection of feature genes. Using the feature genes, 
a support vector machine (SVM) classifier, which is able to 
distinguish between samples from smokers and non‑smokers 
with a high classification accuracy, was constructed. The 
feature genes in the SVM classifier were considered as the 
smoking‑related genes in LAC and enrichment analysis was 
conducted to identify significant pathways.

Materials and methods

Gene expression data. To collect gene expression data from 
patients with LAC who smoke or do not smoke, the Gene 
Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/) 
database was used and the key words ‘lung adenocarcinoma’, 
‘Homo sapiens’ and ‘smoke’ were searched. The following 
inclusion criteria were used to extract the corresponding 
datasets: i) They were gene expression data; ii)  they were 
from LAC samples; iii)  information concerning smoking 
was described; and iv) ≥50 samples were included in each 
dataset. A total of three datasets were collected from the 
GEO database, including GSE43458 (14), GSE10072 (15) and 
GSE12667 (16) (Table I).

Raw data in these three datasets were analyzed with the 
affy package in R 3.2.1 (http://bioconductor.org/packages/ 
release/bioc/html/affy.html) (17). Probes were subsequently 
mapped into genes. Probes corresponding to one gene 
were averaged as the final expression value of the gene. 
Normalization was performed with package limma (18) of R 
to conduct the analysis of the datasets.

Screening of DEGs. Meta‑analysis was used to enforce the 
analytical reliability for gene expression data by combining 
data from different datasets. DEGs associated with smoking 
in the three gene expression datasets were screened via 
meta‑analysis using the MetaDE.ES package of R (19). The 

method tested the heterogeneity of gene expression value 
from three datasets with three statistic parameters: Tau2, 
Q‑value and Qpval. Subsequently, differential expression 
of genes between smoking and non‑smoking samples was 
assessed by determining the P‑value and false discovery 
rate (FDR). To determine the DEGs associated with 
smoking, tau2=0, Qpval >0.05 and FDR <0.05 were set as 
the cut‑off points. Bidirectional clustering analysis using 
the pheatmap package in R language (https://cran.r‑project.
org/web/packages/pheatmap/index.html), which was based 
on the euclidean distance calculations for gene expres-
sion values, was also conducted to examine whether the 
selected DEGs were able to distinguish different samples, as 
described previously (20).

Construction of PPI network. To investigate the interactions 
of DEGs, the DEGs were mapped to the PPI database using 
the Human Protein Reference Database (21). The interactions 
of DEGs obtained were constructed into a PPI network with 
the proteins that were connected with at least three DEGs. The 
network was visualized with Cytoscape (22).

Calculation of BC. Feature genes that function as hub nodes 
in the PPI network were screened using a BC algorithm (23). 
BC represented the degree of node in the network and was 
calculated as follows:

Where σst is the total number of shortest paths from node s to 
node t; σst(ν) is the number of shortest paths from s to t going 
through v; BC scores were between 0 and 1, and a higher BC 
score indicated a higher degree of the node.

Training and validation of SVM classifier. SVM classi-
fier comprises of feature genes that distinguishes between 
different samples (24,25). To construct the SVM classifier, 
one of the downloaded datasets, GSE43458 (containing 
40 non‑smokers and 40 smokers) was selected as the training 
dataset basing on the top 10, 20, 30, 40 and 50 feature genes 
ranked by BC scores. The feature genes in the SVM classi-
fier that could exactly distinguish between different samples 
in GSE42458 were subjected to two‑way clustering analysis 
using pheatmap package in R 3.1.4 (https://cran.r‑project.
org/web/packages/pheatmap/index.html). Sample similarity 
matrices were also obtained by computing the Pearson's corre-
lation coefficients of these genes using Cor package in R 3.1.4 
(https://stat.ethz.ch/R‑manual/R‑devel/library/stats/html/cor.
html) and top 50 genes were selected for further analysis. The 
clustering and similarity matrices were visualized using heat-
maps in pheatmap package in R 3.1.4 (https://cran.r‑project.
org/web/packages/pheatmap/index.html).

The SVM classifier was validated with two independent 
datasets, GSE10072 and GSE12667. Sensitivity (Se), speci-
ficity (Sp), positive predictive value (PPV), negative predictive 
value (NPV) and area under curve (AUC) were calculated 
using the pROC package in R language (https://cran.r‑project.
org/web/packages/pROC/index.html) to examine the clas-
sification accuracy of the SVM classifier as described 
previously (26,27).
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Pathway enrichment analysis. Feature gene‑related Kyoto 
Encyclopedia of Genes and Genomes pathways (http://www.
genome.jp/kegg/) were revealed using Fisher's exact test as 
follows:

Where N represented the total number of genes; M represented 
the number of genes in the pathway; and K indicated the 
number of feature genes.

Results

DEGs. A total of 12,476 genes were in the three gene expres-
sion datasets, and according to the set criteria, 347 DEGs 
between smoking and non‑smoking LAC samples were identi-
fied. The top 10 DEGs ranked by FDR are listed in Table II. As 
indicated in Fig. 1, the 347 DEGs distinguished the samples of 
smokers from the non‑smokers.

PPI network. A PPI network containing 202 nodes (genes) and 
300 edges (connection between nodes) was obtained (Fig. 2). 
The proteins that were connected with ≥3 DEGs were also 
included in the PPI network. Degree distribution of genes 
in the network is indicated in Fig. 3. Similar to biological 
networks, the PPI network was scale‑free, with the majority 
of genes (80 genes) exhibiting small degrees (Log transformed 
degree <1) and few genes (only 5) exhibiting larger degrees 
(Log transformed degree between 3 and 4). The genes with 
high degrees were hub genes, indicating their roles in the 
development of smoking‑associated LAC.

Feature genes. BC was calculated for each node in the PPI 
network. The top 10 genes by BC value were considered as the 
feature genes, including high mobility group box 1 (HMGB1); 
dynein light chain LC8‑type 1; tubulin α 4a; 14‑3‑3 protein γ; 
tyrosine 3‑monooxygenase; spectrin β, non‑erythrocytic 1; 
ubiquilin 4; DNA methyltransferase 1 (DNMT1); enhancer of 
zeste 2 polycomb repressive complex 2 subunit (EZH2) and 
glucocorticoid modulatory element binding protein 1 (Table III).

SVM classifier. Feature genes with the greatest BC values 
were used to construct the SVM classifier basing on dataset 
GSE43458. There were 8, 11, 14, 16, 18, 20, 22 and 26 feature 
genes in the top 10, 15, 20, 25, 30, 35, 40 and 50 genes, respec-
tively. The training process is indicated in Fig. 4. The accuracy 
of the classifier reached 100% when the 26 feature genes in the 
top 50 were included. Therefore, the classifier comprised by 
these 26 feature genes were chosen as the final SVM classifier. 
These feature genes included Cbl proto‑oncogene B (CBLB), 
DNMT1, EZH2, HMGB1, integrin  α‑5 (ITGA5), MDK, 
protein kinase C  ι (PRKCI) and sprouty receptor tyrosine 
kinase signaling antagonist 2 (SPRY2).

Hierarchical clustering was performed for samples from 
the training dataset using the 26 feature genes (Fig. 5). The 
classifier separated samples of smokers from samples of 
non‑smokers in dataset GSE43458 (Fig. 6A).

The SVM classifier was validated using dataset GSE12667 
and GSE10072. The classification accuracy in GSE12667 
was 100% (Fig. 6B). In GSE10072, the classifier identified 
42 smokers (42/42, 100%) and 13 non‑smokers (13/16, 81.25%), 
and total accuracy was 94.83% (55/58) (Fig. 6C; Table IV). The 
classifier demonstrated high accuracy of 100, 100 and 94.83% 

Table I. Data of the three collected gene expression datasets.

Accession number	 Platform	 Total samples (n)	 Non‑smokers (n)	 Smokers (n)

GSE43458	 HuGene‑1_0‑st‑v1	 110	 40	 40
GSE10072	 HG‑U133A	 107	 16	 42
GSE12667	 HG‑U133_Plus_2	   75	   8	 43

Table II. Top 10 candidate feature genes by FDR.

ID	 P‑value	 FDR	 tau2	 Qpval	 Qval	 Expression

ABCB11	 1.52x10‑05	 5.59x10‑04	 0	 9.27x10‑01	 8.28x10‑03	 Up
ABCB6	 2.27x10‑03	 2.23x10‑02	 0	 9.63x10‑01	 2.18x10‑03	 Up
ABCC2	 2.11x10‑03	 2.11x10‑02	 0	 9.51x10‑01	 3.83x10‑03	 Up
ABCG5	 4.01x10‑06	 2.10x10‑04	 0	 9.00x10‑01	 1.58x10‑02	 Up
ACD	 4.81x10‑06	 2.38x10‑04	 0	 9.40x10‑01	 5.71x10‑03	 Up
ADAMTS5	 1.88x10‑04	 3.79x10‑03	 0	 9.10x10‑01	 1.26x10‑02	 Up
AGT	 2.89x10‑03	 2.64x10‑02	 0	 8.47x10‑01	 3.71x10‑02	 Up
AIM1L	 1.00x10‑20	 7.47x10‑19	 0	 8.26x10‑01	 4.84x10‑02	 Up
AKAP6	 1.15x10‑04	 2.69x10‑03	 0	 9.82x10‑01	 5.08x10‑04	 Down
ALPL	 5.01x10‑03	 3.88x10‑02	 0	 9.06x10‑01	 1.40x10‑02	 Down

FDR, false discovery rate; UP, upregulation in smokers; DOWN, downregulation in smokers.



YANG et al:  SCREENING OF SMOKING-RELATED FEATURE GENES IN LUNG ADENOCARCINOMA3008

Figure 2. PPI network of differentially expressed genes identified between lung adenocarcinoma samples of smokers and non‑smokers. Differentially expressed 
genes were differentially expressed in samples of smokers compared with samples of non‑smokers. Upregulated genes are marked in orange, downregulated 
genes are marked in blue. Non‑differentially expressed genes that interacted with ≥3 differentially expressed genes were also included in the PPI network. 
Non‑differentially expressed genes are marked in green. PPI, protein‑protein interaction.

Figure 1. Hierarchical clustering results of lung adenocarcinoma samples from smokers and non‑smokers according to the 347 differentially expressed genes. x‑axis 
represents samples, in which samples of smokers are in purple whereas samples of non‑smokers are in green; y‑axis represents differentially expressed genes.
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in GSE43458, GSE12667 and GSE10072, respectively. Se, Sp, 
PPV, NPV and AUC results (Table IV) and receiver operating 
characteristic curves were generated (Fig. 7).

Overrepresented biological pathways. The 26 feature genes 
were indicated to be significantly enriched in nine biological 
pathways (Table V): Extracellular matrix (ECM)‑receptor 
interaction, proteoglycans in cancer, cell adhesion molecules, 
pathogenic Escherichia coli infection, p53 signaling pathway, 
microRNAs in cancer, bacterial invasion of epithelial cells, 
apoptosis and hematopoietic cell lineage.

Discussion

In the present study, three gene expression datasets were 
obtained and a total of 347 DEGs were identified in samples 
from smokers with LAC compared with non‑smokers with 
LAC using meta‑analysis. A PPI network including 202 nodes 
and 300 edges was constructed, from which 26 feature genes 
were identified. The SVM classifier of these 26 genes sepa-
rated smokers from non‑smokers with an accuracy >94% in all 

the three datasets. Pathway enrichment analysis demonstrated 
that these feature genes were primarily associated with cancer 
development‑ and metastasis‑associated pathways, including 
ECM‑receptor interaction, proteoglycans in cancer, cell adhe-
sion molecules, p53 signaling pathway, microRNAs in cancer 
and apoptosis.

Due to the generalization ability, SVM has been widely 
used for analysis, including data classification and function 
approximation (28‑30). SVM classifier has been demonstrated to 
distinguish whether one cancer sample type possessed distinc-
tive signatures of gene expressions compared with other sample 
types (31). In the present study, an SVM classifier with 26 feature 
genes successfully distinguished LAC samples of smokers and 
non‑smokers using bioinformatics analysis. Yousef et al (32) 
previously conducted a similar study for the identification of 
biomarkers, by integrating interaction networks and an SVM 
classifier, and subsequently obtained >90% accuracy in classifi-
cation of selected microarray datasets. Furthermore, a previous 
study also demonstrated that the discriminant analysis based 
on an SVM classifier achieved satisfactory results in the clas-
sification of lung cancer samples (33).

Specific genes within the 26  feature genes have been 
implicated in lung cancer or LAC. CBLB is a regulator 

Table III. Top 10 genes ranked using BC.

Gene	 BC	 Expression	 Degree	 P‑value	 FDR	 Qpval	 Qval

HMGB1	 1.98x10‑01	 Down	 11	 1.63x10‑03	 1.76x10‑02	 8.95x10‑01	 1.74x10‑02

DYNLL1	 1.77x10‑01	 Up	 15	 1.00x10‑20	 7.47x10‑19	 8.92x10‑01	 1.83x10‑02

TUBA4A	 1.37x10‑01	 Up	 10	 2.08x10‑05	 7.32x10‑04	 8.50x10‑01	 3.56x10‑02

YWHAG	 1.20x10‑01	 ‑	 11	 9.86x10‑01	 9.95x10‑01	 5.38x10‑06	 2.07x10
YWHAQ	 1.07x10‑01	 Up	 10	 2.40x10‑04	 4.55x10‑03	 8.46x10‑01	 3.77x10‑02

SPTBN1	 1.04x10‑01	 Down	   7	 9.39x10‑04	 1.23x10‑02	 8.53x10‑01	 3.43x10‑02

UBQLN4	 1.00x10‑01	 ‑	   7	 9.31x10‑01	 9.67x10‑01	 5.95x10‑02	 3.55x100

DNMT1	 9.98x10‑02	 Up	   7	 1.20x10‑04	 2.77x10‑03	 8.61x10‑01	 3.05x10‑02

EZH2	 8.51x10‑02	 Up	   8	 2.65x10‑03	 2.48x10‑02	 8.44x10‑01	 3.89x10‑02

GMEB1	 8.45x10‑02	 Down	   8	 2.31x10‑04	 4.40x10‑03	 9.32x10‑01	 7.20x10‑03

BC, betweenness centrality; UP, upregulation in smokers; DOWN, downregulation in smokers; ‑, no significant difference in expression; FDR, 
false discovery rate.

Figure 3. Degree distribution of nodes (genes) in the protein‑protein inter-
action network of differentially expressed genes. x‑axis indicates the Log 
transformed degree and y‑axis indicates the number of nodes.

Figure 4. Predictive accuracy and error ratios of support vector machine clas-
sifier with different numbers of feature genes. Accuracy is indicated in light 
gray whereas error rate is indicated in dark gray.
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Figure 6. Scatter plots of the support vector machine classifier on three microarray datasets. (A) GSE43458, (B) GSE12667, and (C) GSE10072 microarray 
datasets were indicated. Smokers are marked in red and non‑smokers are marked in green.

Figure 5. Hierarchical clustering result from samples from smokers and non‑smokers with lung adenocarcinoma using the 26 feature genes. x‑axis represents 
samples, in which smokers were marked in orange and non‑smokers were marked in purple; y‑axis represents the 26 feature genes.
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Table V. A total of 9 biological pathways significantly overrepresented by the 26 feature genes.

ID	 Term	 P‑value	 Genes

hsa04512	 Extracellular matrix‑receptor interaction	 5.68x10‑03	 SDC4, ITGA5, COL3A1
hsa05205	 Proteoglycans in cancer	 9.82x10‑03	 SDC4, CBLB, ITGA5, SDC2
hsa04514	 Cell adhesion molecules	 2.17x10‑02	 SDC4, CD4, SDC2
hsa05130	 Pathogenic Escherichia coli infection	 2.19x10‑02	 YWHAQ, TUBA4A
hsa04115	 p53 signaling pathway	 3.21x10‑02	 APAF1, BID
hsa05206	 MicroRNAs in cancer	 3.29x10‑02	 EZH2, SPRY2, ITGA5, DNMT1
hsa05100	 Bacterial invasion of epithelial cells	 3.91x10‑02	 CBLB, ITGA5
hsa04210	 Apoptosis	 4.86x10‑02	 APAF1, BID
hsa04640	 Hematopoietic cell lineage	 4.96x10‑02	 CD4, ITGA5

Figure 7. Receiver operating characteristic curves of support vector machine classifier for the three microarray datasets. (A) GSE43458, (B) GSE12667 and 
(C) GSE10072 microarray datasets were indicated. AUC, area under curve.

Table IV. Prediction results of the support vector machine classifier in the three datasets.

Dataset	 Samples (n)	 Accuracy (%)	 Se	 Sp	 PPV	 NPV	 AUC

GSE43458	 80	 100	 1	 1	 1	 1	 1
GSE12667	 51	 100	 1	 1	 1	 1	 1
GSE10072	 58	 94.83	 1	 0.813	 0.933	 1	 0.994

Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve.
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of T‑cell response (34). It has been reported that the single 
nucleotide polymorphisms of CBLB may predict the defini-
tive radiotherapy outcomes for non‑small cell lung cancer 
(NSCLC)  (34). CBLB is associated with icotinib‑induced 
apoptosis and G1 phase arrest of epidermal growth factor 
receptor mutation‑positive NSCLC (35).

DNMT1 is responsible for maintaining methylation 
patterns following DNA replication and has an important role 
in the development of various types of cancer (36). DNA meth-
ylation alterations are recognized as key epigenetic changes 
in cancer, influencing the chromosomal instability through 
global hypomethylation and aberrant gene expression via the 
alterations in methylation levels (37). The tobacco‑specific 
carcinogen nicotine‑derived nitrosamine ketone induces the 
accumulation of DNMT1 in patients with lung cancer (38). 
Furthermore, DNMT1 inhibits the expression of, the tumor 
suppressor Wnt7a in NSCLC (39).

EZH2 is a member of the polycomb‑group family, which is 
associated with maintaining the transcriptional repressive state 
of genes over successive cell generations (40). Yoon et al (41) 
previously suggested a correlation between the genotype 
variants in EZH2 and reduced lung cancer risk. Additionally, 
Zhang et al (42) determined that miR‑138 inhibited tumor 
growth through the repression of EZH2 in NSCLC. Notably, 
a recent study indicated that EZH2 silencing with RNA 
interference induced G2/M arrest in human lung cancer cells 
in vitro (43), and Wang et al (44) recently demonstrated that 
EZH2 overexpression was associated with a poor prognosis for 
patients with LAC. In the present study, it was indicated that 
EZH2 was upregulated in the samples of smokers and thus the 
present findings suggest that EZH2 upregulation may result 
from smoking.

HMGB1 has a role in tumor cell migration  (45). 
Shen et al (46) indicated that the expression of HMGB1 corre-
lates with the progression of NSCLC. ITGA5 is considered as 
a prognostic indicator in NSCLC (47).

MDK promotes cell growth, migration and angiogenesis, 
in particular during tumorigenesis (48). A previous study indi-
cated that MDK protein overexpression is correlated with the 
malignant status and prognosis of NSCLC (49). Furthermore, 
MDK has been targeted as a therapeutic biomarker for lung 
cancer (50).

PRKCI is required for lung tumorigenesis as genetic loss 
of PRKCI inhibits Kras‑initiated hyperplasia and subsequent 
lung tumor formation in vivo (51). SPRY2 inhibits cell migra-
tion and proliferation in NSCLC (52). In addition, a previous 
study has indicated that downregulation of SPRY2 in NSCLC 
contributes to tumor malignancy (53).

Smoking can cause LAC and the incidence of this disease 
increased in recent years  (4). However, the reason for this 
increase and the mechanism underlying smoking‑associated 
development of LAC remain to be elucidated. The present 
study identified genes implicated in smoking‑associated LAC, 
including CBLB, DNMT1, EZH2, HMGB1, ITGA5, MDK, 
PRKCI and SPRY2. Most of these genes have been reported 
in association with malignancy and certain were associated 
with lung cancer. The identification of these characteristic 
genes may aid in elucidating the mechanism underlying 
smoking associated‑lung adenocarcinoma. Although further 
experiments such as validation the gene and protein expression 

level in the smoking and non‑smoking LAC samples were not 
performed limited by the LAC samples available, these results 
may provide information to other researchers in the field.

In conclusion, a number of key genes have been revealed in 
smokers with LAC and some of these have been implicated in 
lung cancer. However, the associations between the 26 feature 
genes, smoking and LAC remain to be fully elucidated with 
further studies.
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