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Abstract. Oral squamous cell carcinoma (OSCC) is the sixth 
most common type cancer worldwide, with poor prognosis. 
The present study aimed to identify gene signatures that could 
classify OSCC and predict prognosis in different stages. A 
training data set (GSE41613) and two validation data sets 
(GSE42743 and GSE26549) were acquired from the online 
Gene Expression Omnibus database. In the training data set, 
patients were classified based on the tumor‑node‑metastasis 
staging system, and subsequently grouped into low stage (L) 
or high stage (H). Signature genes between L and H stages 
were selected by disparity index analysis, and classification 
was performed by the expression of these signature genes. The 
established classification was compared with the L and H clas-
sification, and fivefold cross validation was used to evaluate 
the stability. Enrichment analysis for the signature genes was 
implemented by the Database for Annotation, Visualization 
and Integration Discovery. Two validation data sets were used 
to determine the precise of classification. Survival analysis 
was conducted followed each classification using the package 
‘survival’ in R software. A set of 24 signature genes was identi-
fied based on the classification model with the Fi value of 0.47, 
which was used to distinguish OSCC samples in two different 
stages. Overall survival of patients in the H stage was higher 
than those in the L stage. Signature genes were primarily 
enriched in ‘ether lipid metabolism’ pathway and biological 
processes such as ‘positive regulation of adaptive immune 
response’ and ‘apoptotic cell clearance’. The results provided 
a novel 24‑gene set that may be used as biomarkers to predict 
OSCC prognosis with high accuracy, which may be used to 
determine an appropriate treatment program for patients with 
OSCC in addition to the traditional evaluation index.

Introduction

Head and neck cancer (HNC) comprises a set of cancers that 
affect the oral cavity, pharynx and larynx (1), with ~600,000 
newly diagnosed cases and ~300,000 mortalities annually (2). 
Oral squamous cell carcinoma (OSCC) is the most common 
malignant tumor of the HNCs and the sixth most common 
cancer worldwide, and accounts for ~90% of all the oral 
cancers (3,4). OSCC early detection and diagnosis lead to 
improved survival rates. However, most of OSCC cases are 
detected in advanced cancer. In this case, delayed detection 
may result in a high OSCC mortality rate (5). In addition, 
OSCC has a high recurrence rate in many patients (6). 
Therefore, the development of novel methods to predict the 
prognosis of OSCC is urgent.

Several previous studies have revealed that molecular-based 
classification may improve the prognosis of OSCC. For 
example, Belbin et al (7) were able to distinguish two subgroups 
of OSCC using a set of molecular signatures that are distinct in 
the two different groups such as transforming growth factor-β. 
Another study identified crucial gene expressions in tumors and 
four subgroups of OSCC using cDNA microarrays (8). Human 
papilloma virus (HPV) infection has a close relationship with 
OSCC, and the high risk of infection is associated with the 
high risk of developing OSCC (9). In addition, the etiologies of 
HPV-positive and HPV-negative OSCC subtypes are different, 
and 347 differentially expressed genes have been identified in 
these two groups, such as thymidylate synthetase, stathmin 1 
and cyclin D1 (9). Notably, HPV-positive oral cancers have an 
improved response to treatment and better prognosis compared 
with HPV-negative OSCCs (10). One previous study further 
predicted that HPV types 16 and 18 may be two independent 
risk factors for oral cancer (11). A recently study used two 
expression data sets, a training data set and a validation data 
set to identify genes with distinct expressions between patients 
with HPV-negative OSCC and normal controls. Subsequently, 
a set of 131 gene signatures was selected, which was reduced 
to a total of 13 gene signatures that were identified as the best 
survival predictors for patients with HPV-negative OSCC (12).

However, none of the aforementioned studies compared the 
precision of these classifications with the tumor‑node‑metas-
tasis (TNM) stage. In addition, the patients used in a study 
by Lohavanichbutr et al were in different tumoral stages, and 
additional data is required (12). Therefore, the present study 
reanalyzed their data set, GSE41613, and extracted only the 
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data associated with patients with HPV-negative OSCC. The 
patients were subsequently classified based on the TNM 
stage; subsequently, signature genes were identified in the 
two groups, and patient samples were further classified based 
on these signature genes. Following this classification, two 
validation data sets, GSE42743 (12) and GSE26549 (13), were 
used to detect the precision of the signature-gene-based clas-
sification. In addition, survival analysis was performed in each 
classification. Through these comprehensive analyses, the 
present study aimed to identify several gene signatures that 
were able to distinguish patients with HPV-negative OSCC at 
different TNM stages.

Materials and methods

Data resource and the pretreatments. Data set GSE41613 (12) 
was obtained from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). This expres-
sion profile was based on the Affymetrix Human Genome 
U133 Plus 2.0 Array platform, and included 97 human samples 
from patients with HPV-negative OSCC, along with their clin-
ical follow-up information. Among these samples, 30 patients 
succumbed to OSCC, 21 succumbed to other diseases and the 
remaining 46 patients survived, and these were classified in 
stages I to IV.

The data, which were already normalized, were down-
loaded and 76 of the OSCC-related samples were used in the 
present study; that is, the 30 patients that succumbed to OSCC 
and the 46 surviving patients. A set of 54,613 probe values 
was acquired, following the elimination of probes in empty 
carriers.

Classification of different samples. Patients were classi-
fied based on TNM stage; those in stages I and II were 
placed in the low (L) stage, whereas those in stages III and 
IV were placed in the high (H) stage. Survival analysis was 
an important prognostic analysis and it was implemented 
according to the survival package in the R software 
(R 3.4.1; https://www.r-project.org/) (14).

Signature gene identification in L and H samples. To iden-
tify the optimal signature genes that were able to distinguish 
samples between the L and H groups, the disparity index s was 
calculated according to each gene expression, based on the 
formula: Fi=(meaniH-meaniL)/(SDiH + SDiL); where i represents 
a gene and Fi represents its corresponding disparity index in 
the different samples (15). The significance of each gene to 
distinguish the different groups of samples was calculated 
using the permutation test by perm in R (16). The iteration 
step k with an interval of 0.01 in 0‑1 was used to identify the 
best threshold of Fi. The optimal signature genes were selected 
based on the criteria |F|>k and P<0.01. The selected genes were 
used to establish the classification model:

bi=(meaniH-meaniL)/2.

Vi=Fi(ei-bi)

Where i represents a gene, ei represents its gene expression 
value, N represents selected gene numbers and PSj is the score 
reflecting the classification of the sample j. Two classifications, 
positive and negative, were identified based on these scores. 
The overlap scale of the samples under these two classifica-
tions compared with that under the H and L classifications 
were calculated to identify the optimal signature genes under 
the classification threshold that had the best consistency.

Fivefold cross validation. To detect the stability of using these 
signature genes to classify the samples, fivefold cross valida-
tion was implemented 10 times, and the overlap scale of the 
classifications under each cross validation with the classifica-
tions of H and L was calculated.

Clinical prognostic analysis for samples classified based 
on signature genes. To determine the prognostic difference 
between the samples classified by signature genes, the samples 
were clustered into two groups based on the PSj scores calcu-
lated by the established model, and the survival package in 
R was used to analyze the prognostic difference of the two 
clusters (14).

Expression profile analysis of signature genes. Unsupervised 
hierarchical clustering was conducted for the signature 
genes, based on their expression values in different samples. 
Subsequently, the prognostic differences in different clusters 
were identified using the Kaplan‑Meier package in R (17).

Enrichment analyses of signature genes. Function and pathway 
enrichment analyses of the signature genes were performed 
based on the Gene Ontology (GO; http://www.geneontology.org) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG; 
http://www.genome.jp/kegg/pathway.html) databases, respec-
tively, and the Database for Annotation, Visualization and 
Integration Discovery (DAVID; http://david.abcc.Ncifcrf.gov) 
online tool (18). A threshold of P<0.05 was used to indicate 
significant function and pathway categories.

Multivariate survival analysis of signature genes. Signature 
genes were examined by multivariate survival analysis to 
determine their putative effects on prognosis as a whole. 
Receiver operating characteristic (ROC) curve was depicted 
using the SurvivalROC package in R (19).

Validation by individual gene data sets. To validate the repro-
ducibility of the established model in classifying the OSCC 
samples to different prognosis groups, two independent gene 
expression profiles, GSE42743 (12) and GSE26549 (13), were 
downloaded from the GEO database, which were based on the 
Affymetrix Human Genome U133 Plus 2.0 Array platform and 
the Affymetrix Human Gene 1.0 ST Array [transcript (gene) 
version] platform, respectively. A total of 103 samples were in 
the GSE42743 data set, which also contained follow-up infor-
mation of 23 patients succumbed to OSCC and 22 patients alive 
until the final follow‑up time point. In this data set, raw data in 
the CEL format was obtained by ReadAffy in the affy package 
of R, and was normalized by robust multichip average (20,21). 
The GSE26549 data set comprised 86 samples: 35 were recur-
rent patients and 51 were non-recurrent, and the normalized 
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data in this profile was downloaded. Cox regression was used 
to analyze these data sets, and to compare prognostic and 
recurrent differences between different samples using the 
survival package in R (14).

Results

Survival analysis of H and L samples. Samples were divided 
into two types, H and L, based on TNM stages. Survival 
analysis results indicated that there were significant differ-
ences between the two classifications, and patients in the L 
stage had a significantly higher survival probability compared 
with those in the H stage (P=2.00x10-05; Fig. 1).

Threshold of signature genes in different samples. The gene 
set contained a total of 54,613 probes in the 76 GSE41613 
tumor samples used. The overlap scale of the classifications 
obtained was compared using different Fi values in the clas-
sification model and the H and L classifications. As a result, 
the classification accuracy under different Fi values was not 
completely consistent: When the Fi was low and more gene sets 
were contained than others, the accuracy was ~0.86 (Fig. 2A); 
when Fi was 0.35-0.5, the accuracy was slightly improved 
and reached a maximum at Fi=0.47. However, when the Fi 
was >0.5, the accuracy exhibited a linear decline (Fig. 2A). 
Therefore, Fi=0.47 was used as the cut-off value to classify 
the samples. Results from fivefold cross‑validation analysis 
indicated that the accuracy was almost always >80%, and the 
average value was 0.897 (Fig. 2B). This result confirmed the 
precise classification using gene sets with Fi=0.47).

Signature genes and gene expression profile analysis. 
Signature gene sets under the threshold of Fi=0.47 were 
selected, and 24 genes were identified (Table I). These genes 
were subsequently used to mark each sample, based on the 
classification model. Samples in H stage had a significantly 
higher score compared with those in L stage, and ‘0’ was used 
as the boundary to divide the two samples (Fig. 3A). Survival 
analysis using 0 as the boundary indicated that there were 
significant prognostic differences between the two sample 
clusters (P=6.30x10-07; Fig. 3B). Notably, the difference was 
more significant than those determined in H and L classifica-
tions, which suggested that this score-based model was able to 
adjust the original model with H and L. Unsupervised hierar-
chical clustering analysis of gene expression profiles revealed 
that these signature genes could distinctly divide the samples 
into two classifications: Cluster1 and Cluster2 (Fig. 3C). 
Kaplan‑Meier survival curve of these sample clusters also 
demonstrated significant differences (P=2.00x10-05; Fig. 3D). 
These data suggested that the samples could be distinguished 
by using gene expression clustering.

Function enrichment of signature genes. As indicated in 
Table II, the 24 signature genes were enriched in 1 KEGG 
pathway, ether lipid metabolism pathway [P=0.0472; genes: 
1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) 
and phosphatidic acid phosphatase type 2B (PPAP2B)], and 
31 GO functional categories, including 1 cellular component, 
cell projection part [P=0.0263; genes: protease, serine 12 
(PRSS12), coiled-coil and C2 domain containing 2A 

(CC2D2A) and adenosine deaminase (ADA)] and 30 biological 
processes (BPs), such as phagocytosis [P=0.0016; genes: 
thrombospondin 1 (THBS1), solute carrier family 11 member 1 
(SLC11A) and Jumonji domain containing 6 (JMJD6)], regu-
lation of dendritic cell antigen processing and presentation 
(P=0.0025; genes: THBS1 and SLC11A1), apoptotic cell clear-
ance (P=0.0075; genes: THBS1 and JMJD6), T cell activation 
(P=0.0107; genes: ADA, SLC11A1 and JMJD6), lymphocyte 
activation during immune response (P=0.0224; genes: ADA, 
SLC11A1) and leukocyte activation during immune response 
(P=0.0443; genes: ADA and SLC11A1).

Survival analysis of 24 signature genes. The 24 signature 
genes exhibited a clustering effect with an area under the ROC 
curve (AUC) of 0.97 (Fig. 4A), and a significant difference in 
survival was identified between the H and L classifications 
(P=2.48x10-19; Fig. 4B), which suggested that the 24 genes were 
able to effectively classify different samples and to predict the 
prognostic risk.

Validation of the classification by individual data sets. The 
model containing 24 signature genes were demonstrated to be 
able to classify samples into two prognosis distinct groups in 
the GSE42743 data set (AUC=0.994) (Fig. 5A). The survival 
time between high and low risk samples was different signifi-
cantly (P=4.55x10-15; Fig. 5B).

Similarly, the model classified samples into two recurrence 
risk groups in the GSE26549 data set (AUC=0.984; Fig. 5C). 
A Kaplan‑Meier curve indicated a significant different recur-
rence risk between high and low risk samples (P=1.41x10-14; 
Fig. 5D).

Discussion

OSCC has a poor prognosis and molecular‑based classification 
provide improved the prognosis. In the present study, 24 signa-
ture genes, including AGPAT2, PPAP2B, SLC11A1, JMJD6 
and ADA, were identified that were able to classify the patients 
with HPV-negative OSCC into two different stages, H and L. 
They were significantly enriched in the ether lipid metabolism 
pathway and immune response- or apoptosis-related GO BPs.

The protein encoded by AGPAT2 (1-AGPAT 2) is 
specific for lysophosphatidic acid (LPA) (22). It is involved 
in the lipid metabolism, as it catalyzes LPA conversion into 
phosphatidic acid (PA), a crucial intermediate step in phos-
pholipid biosynthesis (23). 1-AGPAT 2 is an essential factor 
for adipogenesis; it serves a role in controlling adipogenesis 
by mediating the activation of phosphatidylinositol 3‑kinase 
(PI3K)/Akt signaling (24). Mutation of this gene may result in 
an adipogenic defects (24). One previous study revealed that 
disruption of AGPAT2 leads to severe congenital generalized 
lipodystrophy in humans (25). PPAP2B is a phosphatidic acid 
phosphatase (PAP) family member that converts PA to diacyl-
glycerol, and the PAP2B protein was reported to be involved 
in the regulation of intracellular lipid metabolism (26).

Lipid metabolism has an important role in cancer progres-
sion. It has been proposed that increased lipid metabolic 
flux may serve as the substrate source for phospholipid 
synthesis in the rapid growth stage of cancer cells (27). 
Notably, fatty acid synthase was demonstrated to be necessary 
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during the proliferation of human OSCCs (28). In addition, 
fatty-acid-binding protein 5 is upregulated in OSCC at the 
early stage, and this upregulated expression was reported to 
improve OSCC cell proliferation and invasiveness (29). Results 
from the present study predicted AGPAT2 and PPAP2B as two 
signature genes that could differentiate OSCC samples from 
different stages, and both of these genes were significantly 
enriched in the ether lipid metabolism pathway. These data 
suggested that the two genes may serve crucial roles in the 
progression of OSCC by regulating lipid metabolism, and may 
be used as therapeutic markers for early stage OSCC prog-
nosis.

The immune system is known to serve crucial roles in 
the control of cancer development (30,31). Inadequate host 
immune responses may account for the high incidence rates 
of cancer and poor prognosis (32). Patients with OSCC in 
different pathological lymph node (pN) statuses exhibit 
different overall survival rates; patients with OSCC in pN3 
(that is, extracapsular spread) have a lower overall survival 
compared with patients in other stages, which may be due to 
a relatively decreased host immune response (32). A previous 
study using an immunoproteomics method identified several 
host immune response-related protein candidates in the serum 
of patients with OSCC, such as clusterin, haptoglobin and 
complement C3c (33).

The multi‑pass membrane protein SLC11A1, also known 
as natural resistance-associated macrophage protein 1 
(NRAMP1), serves important role in host innate immune 
response against infections (34). ADA functions in the 
process of A-to-I RNA editing to generate the inosine (I) from 
adenosine (A); the double‑stranded RNA structure may then 
trigger innate immune responses (35). Elevated ADA levels 
have been detected in a number of cancers, such as colorectal 
cancer and breast cancer (36,37). In patients with OSCC, the 
expression levels of ADA are significantly increased compared 
with the healthy control patients (38). Notably, this increased 
expression level was significantly associated with the histo-
pathological grade (38). The present results indicated that 
SLC11A1 and ADA were two of the signature genes that were 
differentially expressed in the two stages of the classification 
model, and both were enriched in GO BPs, such as positive 

regulation of adaptive immune response and leukocyte activa-
tion during immune response, which suggested that they may 
function in the development of OSCC through the involvement 
of immune response-related processes. Based on these results, 
the present study speculated that SLC11A1 and ADA may 
also be used as prognostic targets in different tumor stages of 
OSCC.

The protein encoded by JMJD6 was previously considered 
to serve a role in the phagocytosis of apoptotic cells (39). 
However, subsequent studies failed to confirm this function 
and, conversely, indicated that it translocates to the nucleus 
and serves as a histone arginine demethylase (40), or it may 
be responsible for angiogenic sprouting (41). Another study 
reported that JMJD6 may improve cancer stem cell (CSC) 

Table I. List of 24 signature genes.

Gene symbol Gene name

ADA Adenosine deaminase
CC2D2A Coiled-coil and C2-domain containing 2A
C9ORF102 Chromosome 9 open reading frame 102
PRSS12 Protease, serine 12 (also known as 
 neurotrypsin and motopsin)
TNXB Tenascin XB
SLC11A1 Solute carrier family 11 member 1 (also
 known as natural resistance‑associated
 macrophage protein 1)
GAPVD1 GTPase activating protein and VPS9
 domains 1
THBS1 Thrombospondin 1
C19ORF53 Chromosome 19 open reading frame 53
IGSF10 Immunoglobulin superfamily, member 10
PLGLB2 Plasminogen‑like B2 
ROD1 ROD1 regulator of differentiation 1 (also
 known as polypyrimidine tract‑binding
 protein 3)
AGPAT2 1-acylglycerol-3-phosphate O-acyltransferase
 2 (also known as lysophosphatidic acid
 acyltransferase β)
SESN3 Sestrin 3
CSNK1G1 Casein kinase 1 γ1
HMGN3 High-mobility group nucleosomal-binding
 domain 3
SLC2A3 Solute carrier family 2 member 3
FAM161A Family with sequence similarity 161
 member A
DDX31 DEAD-box helicase 31
JMJD6 Jumonji‑domain containing 6 (also known
 as arginine demethylase and lysine hydrolase)
PPAP2B Phosphatidic acid phosphatase type 2B (also
 known as phospholipid phosphatase 3)
YEATS2 YEATS-domain containing 2
SERTAD4 SERTA-domain containing 4
NAPEPLD N-acyl phosphatidylethanolamine
 phospholipase D

Figure 1. Kaplan‑Meier curve analysis indicated a significant differ-
ence in survival between H (n=41) and L (n=35) stages samples based on 
tumor‑node‑metastasis classification. P=2.00x10-05. H, high; L, low.
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phenotypes in OSCC cells (42). In addition, increased JMJD6 
expression was previously demonstrated in CSC-enriched 
populations of OSCC cell lines, which may contribute to oral 
carcinogenesis and, therefore, it has been suggested as a poten-
tial biomarker of oral cancer (43). In the present study, JMJD6 
was amongst the 24 signature genes able to classify patients 
with OSCC into different tumor stages. Notably, JMJD6 
was significantly enriched in the GO BP category apoptotic 

cell clearance, which indicated a potential role for JMJD6 
in clearing apoptotic cells, at least in OSCC cells. Therefore, 
JMJD6 may be considered another novel biomarkers for 
OSCC prognosis, relating to different tumor stages.

Although the accuracy of using these 24 signature genes to 
classify different tumor stages of OSCC was validated by other 
data sets and provided satisfactory results, there were several 
limitations to the present study: i) None of the identified gene 

Figure 3. Clustering analysis of signature gene expressions and corresponding survival analyses. (A) Signature genes were used to mark samples in H and L 
classifications under the score‑classification model. (B) Kaplan‑Meier curve indicating a significant difference in survival between Cluster 1 and Cluster2 clas-
sified with the boundary of ‘0’. (C) Heat map of signature gene expressions in two cluster samples. (D) Kaplan‑Meier curve indicating a significant difference 
in survival between Cluster1 and Cluster2 that were identified by expression profiling of the signature genes. H, high; L, low.

Figure 2. Optimal threshold selection in the classification model. (A) Overlap scale of classifications using the model with the High and Low classifications. 
Gene sets with |Fi|>k were selected, and k from 0‑1 was set with a step size of 0.01; Fi=0.47 (vertical line) was used as the cut-off value to classify the samples. 
(B) 5‑fold cross validation results for 10 iterations, which are indicated by the different colored lines. Fi, disparity index; k, iteration step.
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expressions in OSCC, particularly in HPV-negative OSCC, 
were validated experimentally; and ii) the obtained OSCC 
sample data were classified into L and H stages, which may 
have caused deviations from the true TNM stages. Further 

studies using additional data sets are required to confirm the 
precision of our classification and the signature gene functions.

In conclusion, a novel 24-gene set was identified that 
was able to predict OSCC prognosis with high accuracy, 

Table II. GO function term and KEGG pathway enrichment analysis of 24 signature genes.

A, GOTERM_BP P-value Genes

GO:0006909~phagocytosis 0.0016 THBS1, SLC11A1 and JMJD6
GO:0006897~endocytosis 0.0024 THBS1, SLC11A1, and JMJD6
GO:0010324~membrane invagination 0.0024 THBS1, SLC11A1, and JMJD6
GO:0002604~regulation of dendritic cell antigen processing 0.0025 THBS1 and SLC11A1
and presentation  
GO:0002577~regulation of antigen processing and presentation 0.0025 THBS1 and SLC11A1
GO:0051240~positive regulation of multicellular organismal process 0.0033 THBS1, AGPAT2, ADA and SLC11A1
GO:0001819~positive regulation of cytokine production 0.0056 THBS1, AGPAT2 and SLC11A1
GO:0043277~apoptotic cell clearance 0.0075 THBS1 and JMJD6
GO:0042110~T cell activation 0.0107 ADA, SLC11A1 and JMJD6
GO:0016044~membrane organization 0.0112 THBS1, SLC11A1, and JMJD6
GO:0051241~negative regulation of multicellular organismal process 0.0176 THBS1, ADA and SLC11A1
GO:0042116~macrophage activation 0.0187 SLC11A1 and JMJD6
GO:0001817~regulation of cytokine production 0.0212 THBS1, AGPAT2 and SLC11A1
GO:0002285~lymphocyte activation during immune response 0.0224 ADA and SLC11A1
GO:0006644~phospholipid metabolic process 0.0232 AGPAT2, PPAP2B and NAPEPLD
GO:0002685~regulation of leukocyte migration 0.0249 THBS1 and ADA
GO:0046649~lymphocyte activation 0.0253 ADA, SLC11A1 and JMJD6
GO:0019637~organophosphate metabolic process 0.0256 AGPAT2, PPAP2B and NAPEPLD
GO:0016192~vesicle-mediated transport 0.0335 THBS1, SLC11A1, and JMJD6
GO:0048584~positive regulation of response to stimulus 0.0347 THBS1, ADA and SLC11A1
GO:0002684~positive regulation of immune system process 0.0352 THBS1, ADA and SLC11A1
GO:0045321~leukocyte activation 0.0363 ADA, SLC11A1 and JMJD6
GO:0002824~positive regulation of adaptive immune response based  0.0371 ADA and SLC11A1
on somatic recombination of immune receptors built from  
immunoglobulin superfamily domains  
GO:0001568~blood vessel development 0.0372 THBS1, PPAP2B and JMJD6
GO:0002821~positive regulation of adaptive immune response 0.0383 ADA and SLC11A1
GO:0001944~vasculature development 0.0388 THBS1, PPAP2B and JMJD6
GO:0002366~leukocyte activation during immune response 0.0443 ADA and SLC11A1
GO:0002263~cell activation during immune response 0.0443 ADA and SLC11A1
GO:0001818~negative regulation of cytokine production 0.0467 THBS1 and SLC11A1
GO:0001775~cell activation 0.0495 ADA, SLC11A1 and JMJD6

B, GOTERM_CC P-value Genes

GO:0044463~cell projection part 0.0263 PRSS12, CC2D2A and ADA

C, KEGG_PATHWAY P‑value Genes

hsa00565: Ether lipid metabolism 0.0472 AGPAT2 and PPAP2B

ADA, adenosine deaminase; AGPAT2, 1‑acylglycerol‑3‑phosphate O‑acyltransferase 2; BP, biological process; CC, cellular component; 
CC2D2A, coiled‑coil and C2‑domain containing 2A; GO, gene ontology; JMJD6, Jumonji‑domain containing 6; KEGG, Kyoto Encyclopedia 
of Genes and Genomes; NAPEPLD, N‑acyl phosphatidylethanolamine phospholipase D; PPAP2B, phosphatidic acid phosphatase type 2B; 
PRSS12, protease, serine 12; SLC11A1, solute carrier family 11 member 1; THBX, thrombospondin 1.
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which may have the benefit of aiding in the determination of 
an appropriate treatment program for patients with OSCC, 

in addition to the traditional evaluation index. AGPAT2, 
PPAP2B, SLC11A1, ADA and JMJD6 may be biomarkers for 

Figure 5. Validation of survival analysis using two additional data sets. (A) ROC curve of the classification in the GSE42743 data set; AUC=0.994. 
(B) Kaplan‑Meier curve indicating a significant difference in survival between high and low risk samples in GSE42743; P=4.55x10-15. (C) ROC curve of the 
recurrent classification in the GSE26549 data set; AUC=0.984. (D) Kaplan‑Meier curve indicating a significant difference between high and low risk samples 
in GSE26549; P=1.41x10-14. AUC, area under the ROC curve; ROC, receiver operating characteristic.

Figure 4. Multivariate survival analysis of 24 signature genes. (A) ROC curve; AUC=0.97. (B) Kaplan‑Meier curve indicating a significant difference in 
survival between high‑risk and low‑risk samples identified by the multivariate prognosis of 24 genes; P=2.48x10-19. AUC, area under the ROC curve; ROC, 
receiver operating characteristic.
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OSCC prognosis; however, further experimental validation is 
required to confirm these predictions.
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